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ABSTRACT 
The binarization mechanisms of continuous metaheuristics are of interest in operational research. This is 
mainly due to the fact that there are a lot of combinatorial problems that are NP-hard. In this article, we 
exploit the concept of percentile as a mechanism of binarization of swarm intelligence continuous 
metaheuristics. To evaluate the behavior of our binary operator, the Multi-verse metaheuristic is used and 
applied to solve the combinatorial problem of the knapsack. The binary algorithm obtained, the binary 
multi-verse Optimizer (BMVO) shows good performance in solving the most difficult problems of the 
knapsack. 
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INTRODUCTION 

In the industry, optimization problems are relevant, particularly at the level of decision making. Behind a 
decision-making process, there is always an optimization problem. Many of these problems have their domain in 
binary spaces. For example, we can find binary space problems in Civil Engineering, Bio-Informatics (Barman and 
Kwon, 2017), Operational Research (Crawford et al., 2017, September; 2018; Garcia and Măntoiu, 2014; García et 
al., 2019a), resource allocation (Astorga et al., 2018; García et al., 2017, September, 2019b; Valenzuela et al., 2019, 
June) scheduling problems (García et al., 2017, February, 2018a), routing problems among others. 

Another line of research that has had an important impact is the design of algorithms inspired by natural 
phenomena to solve optimization problems. Many natural phenomena are developed in continuous spaces, so it 
is common to find a large number of these algorithms that work properly continuously, As examples of these 
algorithms we have Cuckoo Search, Black Hole, Bat Algorithm, and Multi-verse Optimization Algorithm (Mirjalili 
et al., 2016) among others. It is a challenge to transform a continuous algorithm into its binary version without 
altering the exploration and exploitation processes characteristic of each metaheuristic and that subsequently it 
adequately performs in combinatorial problems.  

When a state of the art is realized, there are several techniques that give a solution to the complexity of passing 
an algorithm designed for continuous spaces in an algorithm that solves binary problems. We have general and 
specific techniques. However, these techniques work well for some problems and not for others. In general, the 
main techniques are transfer functions, angle modulation and the design of quantum operators. If you want to 
deepen this line, we recommend reading (Crawford et al., 2017). The objective of this article is to use the 
binarization technique that uses the percentile method and performs a binarization process. The multiverse 
optimizer (MVO) technique was chosen because it has been used in several continuous problems but in few 
combinatorial problems. MVO has been applied to voltage stability and voltage deviation problems in Trivedi et 
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al. (2016, March). In Kumar and Suhag (2017), they applied MVO to control multi source hydrothermal power 
system. 

Three concepts use the MVO algorithm, the white hole, the black hole who performs the exploration in the 
search space and wormholes that are in charge of performing the exploitation. The analogy says that each solution 
corresponds to a universe and associates a parameter called inflation rate which is proportional to the value of its 
fitness function. The black and white holes allow to exchange of objects of the universes and the probability that 
an exchange is made is handled by the inflation rate indicator. The solutions are ordered at the end of their inflation 
rate after each solution generates a white hole and the solution that is sent through the white hole is selected 
randomly. The replacement of the different objects is regulated by Equation 1. According to this equation, the 
lower the inflation rate, the greater the probability that the objects of that solution are replaced. However, there is 
only an exchange between universes, but there is no concept of mutation or disturbance of a universe. 

 𝑥𝑥𝑗𝑗 = �
𝑥𝑥𝑘𝑘
𝑗𝑗  𝑟𝑟1 < 𝑁𝑁𝑁𝑁(𝑈𝑈𝑖𝑖)

𝑥𝑥𝑖𝑖
𝑗𝑗 𝑟𝑟1 > 𝑁𝑁𝑁𝑁(𝑈𝑈𝑖𝑖)

 (1) 

where 𝑥𝑥𝑖𝑖
𝑗𝑗 indicates the 𝑗𝑗th parameter of the ith solution, 𝑈𝑈𝑖𝑖  corresponds to 𝑖𝑖th solution, 𝑁𝑁𝑁𝑁(𝑈𝑈𝑖𝑖) is normalized 

inflation rate of the 𝑖𝑖th solution, 𝑟𝑟1 is a random number in [0,1], and 𝑥𝑥𝑘𝑘
𝑗𝑗 indicates the 𝑗𝑗th parameter of 𝑘𝑘th solution 

selected by roulette wheel selection. 
To mutate the objects, the concept of wormhole is used. The whormhole is established between each of the 

solutions and the best solution. The exchange of objects is produced from the best solution and a perturbation of 
the original object is made. The mechanism that regulates this perturbation is shown in Equation 2. 

 𝑥𝑥𝑖𝑖
𝑗𝑗 =

⎩
⎪
⎨

⎪
⎧
�
𝑥𝑥𝑗𝑗 + 𝑇𝑇𝑇𝑇𝑅𝑅𝑥𝑥 ��𝑢𝑢𝑏𝑏𝑗𝑗 − 𝑙𝑙𝑏𝑏𝑗𝑗�𝑥𝑥𝑟𝑟4 + 𝑙𝑙𝑏𝑏𝑗𝑗�  𝑟𝑟3 < 0.5

𝑥𝑥𝑗𝑗 − 𝑇𝑇𝑇𝑇𝑅𝑅𝑥𝑥 ��𝑢𝑢𝑏𝑏𝑗𝑗 − 𝑙𝑙𝑏𝑏𝑗𝑗�𝑥𝑥𝑟𝑟4 + 𝑙𝑙𝑏𝑏𝑗𝑗�  𝑟𝑟3 ≥ 0.5
𝑟𝑟2 < 𝑊𝑊𝑊𝑊𝑊𝑊

𝑥𝑥𝑖𝑖
𝑗𝑗 𝑟𝑟2 ≥ 𝑊𝑊𝑊𝑊𝑊𝑊

 (2) 

In this expression WPE and TDR correspond to coefficients defined in Equations 3 and 4 respectively. lbj 

corresponds to the lower bound and ubj to the upper bound of the jth variable. xij represents to the variable of the 
jth dimension of the i solution. The numbers r2, r3 and r4 correspond to a random numbers between [0,1]. 

 𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑚𝑚𝑚𝑚𝑚𝑚+ 𝑙𝑙𝑙𝑙 �
𝑚𝑚𝑚𝑚𝑚𝑚 −𝑚𝑚𝑚𝑚𝑚𝑚

𝐿𝐿
� (3) 

 𝑇𝑇𝑇𝑇𝑇𝑇 = 1 − �
𝑙𝑙
1
𝑝𝑝

𝐿𝐿
1
𝑝𝑝

� (4) 

To check the binary multi-verse optimizer algorithm (BMVO) using percentile technique, we use the well-
known knapsack problem. Experiments were developed using a random operator to validate the contribution of 
the percentile technique in the binarization pro-cess of the multi-verse optimizer algorithm. In addition, local 
search operator is used to strengthen the results. Moreover, the binary artificial algae (BAAA) and K-means 
transition ranking (KMTR) algorithms were used to compare our results. (BAAA) was developed in Zhang et al. 
(2016) and uses transfer functions to perform the binarization process. KMTR was developed in García et al. 
(2018b) and uses a K-means algorithm to perform the binarization. The results show that the percentile technique 
obtains results superior to those obtained by the random operator and that our BMVO algorithm shows 
competitive results against the BAAA and KMTR algorithms. 

KnapSack PROBLEM 

One of the NP-hard problems that has been studied most, corresponds to the Knapsack problem considering 
the large number of variants that it has. In this article, we will use the multidimensional knapsack problem to test 
our percentile binarization. The problem of the multidimensional knapsack (MKP) focuses on resource allocation 
problems. The objective is to find a subset of objects that produce greater benefit satisfying the different 
restrictions of the problem. Despite a large number of studies, this problem remains a challenge due to the 
difficulties in solving medium and large-sized instances. Performing a small state of the art of MKP, we find that 
this has been addressed in Haddar et al. (2016) using a quantum binarization technique, in García et al. (2018b) 
they applied the technique of grouping k-means to perform binarization, an improved optimization of The fruit 
fly in Meng and Pan (2017), in Liu et al. (2016) a differential algorithm with transfer functions was used, and in 
Bansal and Deep (2012) a modification of the PSO equations was used. MKP can be configured as: 
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 Maximize�𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 (5) 

 subject to �𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖, 𝑖𝑖 ∈ {1, … ,𝑚𝑚} (6) 

with 𝑥𝑥𝑗𝑗 ∈ {1, … ,𝑚𝑚}. 𝑝𝑝𝑗𝑗 corresponds to the profit of element 𝑗𝑗. 𝑐𝑐𝑖𝑖𝑖𝑖 represents a cost associated with dimension 𝑖𝑖 
and element 𝑗𝑗. The constraints in each dimension 𝑖𝑖 are represented by 𝑏𝑏𝑖𝑖. The solution can be modelled using a 
binary representation, in this representation a 0 means the element is not included in the knapsack. 

BINARY MULTI-VERSE OPTIMIZER ALGORITHM 

Due to the high computational complexity of MKP, the binary multi-verse optimization algorithm (BMVO) is 
composed of 4 operators to successfully solve the MKP. The operators corresponding to an initialization operator, 
a local search operator, the binary operator that uses the percentile technique and a repair operator in the case of 
solutions that do not meet any of the restrictions. The general flow chart of the algorithm is shown in Figure 1. 
The first stage corresponds to the initiation of solutions which will be detailed in section III-A. Subsequently, it is 
verified if the algorithm meets the detention conditions which is associated with a maximum number of iterations. 
In case of not complying with them, the MVO algorithm is executed in its original form and the solutions obtained 
by MVO are binarized by the percentile operator, this part of the algorithm is detailed in III-B. After having 
performed the binarization, we must verify the consistency of the solutions with their constraints and the results 
obtained are compared against the best solution generated so far. If the new solution is superior, it is replaced and 
a local search operator is executed. 

Initialization and Element Weighting 

As BMVO is a swarm algorithm, to begin the exploration and exploitation of the search space, the list of 
solutions must be initialized. For the generation of each solution, an element is randomly chosen first. The next 
step is to check if other elements can be incorporated, for this we must evaluate the constraints of our problem. 
To select the new element, we generate a list of possible elements that comply with the constraints. For each 
element is calculated its weight and the element which has the best weight is selected. This procedure is repeated 
until no additional element can be incorporated. In Figure 2, the initialization algorithm is displayed. 

To calculate the weight of each element, several methods have been developed. In Pirkul (1987) a pseudo-utility 
in the surrogate duality approach was proposed. The way to calculate it is shown in the equation 7. In this equation 
the variable 𝑤𝑤𝑗𝑗 corresponds to the surrogate multiplier whose value is between 0 and 1. This multiplier can be 
interpreted as a shadow prices of the 𝑗𝑗th constraint. 

 
Figure 1. Flowchart of the binary Multi-verse optimizer algorithm 
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 𝛿𝛿𝑖𝑖 =
𝑝𝑝𝑖𝑖

∑ (𝑤𝑤𝑗𝑗𝑐𝑐𝑖𝑖𝑖𝑖)𝑚𝑚
𝑗𝑗=1

 (7) 

A more intuitive measure focused on the avergage resource occupancy was proposed by García et al. (2017, 
September). It is shown in equation 8. 

 𝛿𝛿𝑖𝑖 =
∑ � 𝑐𝑐𝑖𝑖𝑖𝑖

𝑚𝑚𝑏𝑏𝑏𝑏
�𝑚𝑚

𝑗𝑗=1

𝑝𝑝𝑖𝑖
 (8) 

In this article we used a variation of this last measure focused on the average occupation and proposed in 
García et al. (2018b). this variation considers the elements that exist in knapsacks to calculate the average 
occupancy. In each iteration depending on the selected items in the solution the measure is calculated again. The 
expression of this new measure is shown in equation 9. 

 
𝛿𝛿𝑖𝑖 =

∑ � 𝑐𝑐𝑖𝑖𝑖𝑖
𝑚𝑚�𝑏𝑏𝑗𝑗− ∑𝑖𝑖∈𝑆𝑆(𝑐𝑐𝑖𝑖𝑖𝑖)�

�𝑚𝑚
𝑗𝑗=1

𝑝𝑝𝑖𝑖
 

(9) 

Percentile Binary Operator 

Due to the iterative nature of swarm intelligence algorithms and considering that MVO works in continuous 
space. The velocity and position of the solutions are updated in ℝ𝑛𝑛. a general way of writing the update is shown 
in the equation 10. In this equation 𝑥𝑥𝑡𝑡=1 represents the position of the particle 𝑥𝑥 at time 𝑡𝑡 + 1. To obtain the 
position, we consider the function ∆, which is specific to each algorithm. For example in black hole ∆(𝑥𝑥) =
𝛼𝛼⨁ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝜆𝜆)(𝑥𝑥), and in PSO, Firefly, and Bat algorithm ∆ can be written in simplified form as ∆(𝑥𝑥)  =  𝑣𝑣 (𝑥𝑥).  

 𝑥𝑥𝑡𝑡=1  =  ∆𝑡𝑡+1(𝑥𝑥(𝑡𝑡)) (10) 
For the case of MVO, it is considered a binary percentile operator to perform the passage of the continuous 

space to the binary space. Given the particle 𝑥𝑥, let us consider the magnitude of the displacement 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥) in 
the 𝑖𝑖th component and we group these magnitudes for all solutions in order to obtain the values for the percentiles 
20, 40, 60, 80, 100. At each percentile, we will assign a transition probability where the values are shown in the 
Equation 11. Using these transition probabilities together with the Equation 12, binarization of the solutions is 
performed. The algorithm is detailed in Algorithm 1. 

 𝑃𝑃𝑡𝑡𝑡𝑡�𝑥𝑥𝑖𝑖� = �
0.1 if 𝑥𝑥𝑖𝑖 ∈ group{0,1}
0.5 if 𝑥𝑥𝑖𝑖 ∈ group{2,3,4}

 (11) 

 𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = �
𝑥𝑥𝑖𝑖(𝑡𝑡) if rand < 𝑃𝑃𝑡𝑡𝑡𝑡(𝑥𝑥2)
𝑥𝑥𝑖𝑖(𝑡𝑡) otherwise

 (12) 

 
Figure 2. Flowchart of generation of a new solution 
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 Repair Operator 

Local search and binary percentile operators can generate infeasible solutions. There are different mechanisms 
to address these infeasible solutions. In this article, the repair of the solutions was considered. To perform the 
repair, the measure described in the equation 9 was used. If the solution requires repair, the element with the 
maximum measure is chosen and it is removed from the solution, this process is iterated until a valid solution is 
obtained. The solution is then improved by exploring the possibility of incorporating new elements. This stage of 
improvement is iterated until there are no elements that can be incorporated without violating the constraints. The 
pseudocode is shown in Algorithm 2. 
Algorithm 2. Repair Algorithm 
1: Function Repair (Sin) 
2: Input Input Solution Sin 
3: Output The repair solution Sout 
4: S ←Sin 
5: While needRepair (S) = True do 
6 : smax ← getMaxWeight(S) 

7 :  Smax ← removeElement (S, smax) 
8: end while 
9: state ← False 
10: while state == False do 
11: smin ← getMinWeight(S) 
12: if smin == Ø then 
13:  state ← True 
14: else 
15:   S ← addElement(S, smin) 
16:  end if 
17: end while 
18: Sout ← S 
19: return Sout 

 RESULTS 

Insight of BMVO Algorithm 

This section aims to find out the contribution of the per- centile binary operator to the performance of the 
algorithm. To carry out the comparison problems cb.5.250 from the OR-library were selected. Violin charts and 
the Wilcoxon non-parametric signed-rank test were used to perform the statistical analyzes. In the charts, the X 
axis identifies the studied instances and the Y axis the % -Gap described in the equation 13. The Wilcoxon test is 
run to determine if the results obtained by BMVO have significant difference with respect to other algorithms. 
The parameter settings and browser ranges are shown in Table 1. 

% − 𝐺𝐺𝐺𝐺𝐺𝐺 = 100 (
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
) 

Algorithm 1. Percentile binary operator 
1: Function percentilebinary (vList, pList) 
2: Input vList, pList 
3 Output pGroup Value 
4: pValue = getPercentileValue (vList, pList) 
5: for each value in vList do 
6: pGroup Value = getPercentileGroupValue(pValue, vList) 
8: end for 
9: return pGroupValue 

Table 1. Setting of parameters for binary multi-verse search algorithm 
Parameters Description Value Range 
N Number of solutions 30 [20, 25, 30] 
G Number of percentiles 5 [4,5,6] 
Iteration Number Maximum iterations 1000 [1000] 
max Maximum for WEP coefficient 1 1 
min Minimum for WEP coefficient 0.2 0.2 
p p parameter for TDR coefficient 6 6 
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1) Evaluation of percentile binary operator: A random operator was designed to evaluate the contribution of the 
percentile binary operator. This random operator has the pe- culiarity of performing the transitions with a fixed 
probability of 0.5 without considering in which percentile the variable is located. Two configurations were studied: 
The first one where the local search operator is included and the second where the local operator is not considered. 
BMVO corresponds to our standard algorithm. random.ls is the random variant that includes the local search 
operator. BMVO.wls corresponds to the version with percentile binary operator without local search operator. 
Finally, random.wls describes the random algorithm without local search operator. 

When we compared the Best Values between BMVO and random.ls which are shown in Table 2. BMVO 
outperforms to random.ls. However, the Best Values between both algorithms are very close. In the Average 
comparison, BMVO outper- forms random.ls almost in all problems. The comparison of distributions is shown in 
Figure 3. We see the dispersion of the random.ls distributions are bigger than the dispersions of BMVO. In 
particular, this can be appreciated in the problems 1, 2, 4, 5, 6, and 9. Therefore, the percentile binary operator 
together with local search operators, contribute to the precision of the results. Finally, the BMVO distributions are 
closer to zero than random.ls distributions, indicating that BMVO has consistently better results than random.ls. 
When we evaluate the behaviour of the algorithms through the Wilcoxon test, this indicates that there is a 
significant difference between the two algorithms. 

Table 2. Evaluation of percentile binary operator 
Set Best best best best best avg avg avg avg 

 Known random.ls BMVO random.wls wls random.ls BMVO random.wls wls 
cb.5.250-0 59312 59211 59225 59158 59175 59132.1 59146.2 59071.8 59131.4 
cb.5.250-1 61472 61435 61435 61409 61409 61324.6 61391.3 61288.3 61372.1 
cb.5.250-2 62130 62036 62074 61969 61969 61894.4 61971.1 61801.6 61923.2 
cb.5.250-3 59463 59367 59446 59365 59349 59257.8 59324.6 59136.1 59271.7 
cb.5.250-4 58951 58914 58951 58883 58930 58725.6 58821.1 58693.6 58757.1 
cb.5.250-5 60077 60015 60056 59990 60015 59904.6 59963.1 59837.8 59943.1 
cb.5.250-6 60414 60355 60355 60348 60349 60208.2 60325.8 60230.6 60310.2 
cb.5.250-7 61472 61436 61436 61407 61407 61290.8 61337.6 61233.9 61341.7 
cb.5.250-8 61885 61829 61885 61790 61782 61737.1 61795.3 61644.9 61739.8 
cb.5.250-9 58959 58832 58866 58822 58787 58769.1 58789.2 58653.7 58771.6 
Average 
p-value 60413.5 60343 60372.9 60314.1 60317.2 60224.4 60286.5 

4.16 e-05 60159.2 60256.2 
1.16 e-05 

 

 
Figure 3. Evaluation of percentile binary operator with Local Search operator 
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Our next step is trying to separate the contribution of local search operator from the percentile binary operator. 
For this, we compared the algorithms wls and random.wls. 

When we check the Best Values shown in the Table 2, we note that wpe performs better than 05.wpe in all 
problems except 1, 6 and 7. However the results are quite close. In the case of the average indicator, wpe 
outperforms in all problems to 05.wpe. The Wilcoxon test indicates that the difference is significant. This suggests 
that wpe is consistently better than 05.wpe. In the violin chart shown in the Figure 4 it is further observed that the 
dispersion of the solutions for the case of 05.wpe is much larger than in the case of wpe. This indicates that the 
percentile binary operator plays an important role in the precision of the results. 

BMVO Comparisons 

In this section we evaluate the performance of our BMVO with the algorithm BAAA developed in Zhang et 
al. (2016). BAAA uses transfer functions as a general mechanism of binarization. In particular BAAA used the 

tanh = 𝑒𝑒𝑡𝑡|𝑥𝑥|−1
𝑒𝑒𝑡𝑡|𝑥𝑥|+1

 function to perform the transference. The parameter τ of the tanh function was set to a value 1.5. 
Additionally, a elite local search procedure was used by BAAA to improve solutions. As maximum number of 
iterations BAAA used 35000. The computer configuration used to run the BAAA algorithm was: PC Intel 
Core(TM) 2 dual CPU Q9300@2.5GHz, 4GB RAM and 64-bit Windows 7 operating system. In our BMVO 
algorithm, the configurations are the same used in the previous experiments. These are described in the Table 1. 
Additionally we made the comparison with KMTR-BH and KMTR-Cuckoo binarizations. KMTR uses the 
unsupervised K-means learning technique to perform the binarization process. In the article García et al. (2018b), 
the Black Hole and Cuckoo Search algorithms were binarized using KMTR. 

The results are shown in Table 3. The comparison was per- formed for the set cb.5.500 of the OR-library. The 
results for BMVO were obtained from 30 executions for each problem. In black, the best results are marked for 
both indicators the Best Value and the Average. For the best value indicator BAAA was higher in 4, KMTR-BH 
in 11, KMTR-Cuckoo in 7 and BMVO in 11. We should note that the sum is greater than 30 because in some 
cases there was a tie between some of the algorithms. In the Average indicator BAAA was higher in 2 instances, 
KMTR-BH in 9, KMTR-Cuckoo in 4 and BMVO in 15. We should also note that the standard deviation in most 
problems was quite low, indicating that BMVO has good accuracy. 

 
Figure 4. Evaluation of percentile binary operator without Local Search operator 
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Additionally, to evaluate the robustness of BMVO, we experiment with the problems cb.10.500 and cb.30.500. 
These problems correspond to the most difficult problems of the OR- library. A summary of the results are shown 
in Table 4. In this table we also incorporate the results for KMTR-BH and KMTR-Cuckoo algorithm. 

CONCLUSIONS 

In this article, a general binarization technique which use the percentile concept is used to perform the 
binarization of the MVO algorithm. It should be noted that the percentile technique can be applied in the 
binarization of any continuous swarm-intelligence algorithm. To test the binarization obtained, we used the 
knapsack problem to evaluate our binary algorithm. The contribution of the percentile binary operator was studied, 
observing that this operator contributes to the precision and quality of the solutions obtained. Improving the 
interquartile range of solutions and best values when we compare the percentile algorithm against a random 
operator. Additionally, we develop a comparison with the BAAA and KMTR algorithms, showing that BMVO 
has a good performance. 

As a future line of research, it is interesting to compare the performance of the percentile operator with the K-
means operator used in KMTR and with the transfer functions used in BAAA, all applied in the binarization of 
the MVO algorithm. Another interesting line of research is to explore adaptive techniques to automate the selection 

Table 3. OR-Library benchmarks MKP CB.5.500 

Instance Best 
Known 

BAAA 
Best Avg 

KMTR-
BH 
Best 

Avg 
KMTR-
Cuckoo 

Best 
Avg BMVO 

Best Avg Time(s) std 

0 120148 120066 120013.7 120096 120029.9 120082 120036.8 120082 120022.6 438 37.1 
1 117879 117702 117560.5 117730 117617.5 117656 117570.6 117656 117617.2 486 43.6 
2 121131 120951 120782.9 121039 120937.9 120923 120855.1 120923 120891.1 457 47.9 
3 120804 120572 120340.6 120683 120522.8 120683 120455.7 120683 120516.4 514 49.1 
4 122319 122231 122101.8 122280 122165.2 122212 122136.4 122212 122134.2 521 49.6 
5 122024 121957 121741.8 121982 121868.7 121946 121824.6 121982 121856.3 531 52.1 
6 119127 119070 118913.4 119068 118950.0 118956 118895.5 118956 118923.1 487 27.8 
7 120568 120472 120331.2 120463 120336.6 120392 120320.4 120487 120317.4 443 66.9 
8 121586 121052 120683.6 121377 121161.9 121201 121126.3 121295 121201.4 431 55.8 
9 120717 120499 120296.3 120524 120362.9 120467 120335.5 120467 120391.1 465 42.1 
10 218428 218185 217984.7 218296 218163.7 218291 218208.9 218291 218203.1 437 30.9 
11 221202 220852 220527.5 220951 220813.9 220969 220862.3 220951 220842.1 436 50.1 
12 217542 217258 217056.7 217349 217254.3 217356 217293.0 217356 217297.1 441 46.1 
13 223560 223510 223450.9 223518 223455.2 223516 223455.6 223516 223458.1 437 42.3 
14 218966 218811 218634.3 218848 218771.5 218884 218794.0 218848 218814.4 471 32.7 
15 220530 220429 220375.9 220441 220342.2 220433 220352.7 220410 220362.7 442 36.1 
16 219989 219785 219619.3 219858 219717.9 219943 219732.8 219858 219767.2 431 57.2 
17 218215 218032 217813.2 218010 217890.1 218094 217928.7 218010 217957.1 428 46.2 
18 216976 216940 216862.0 216866 216798.8 216873 216829.8 216866 216823.1 418 28.2 
19 219719 219602 219435.1 219631 219520.0 219693 219558.9 219631 219581.3 399 31.6 
20 295828 295652 295505.0 295717 295628.4 295688 295608.8 295688 295643.1 389 22.7 
21 308086 307783 307577.5 307924 307860.6 308065 307914.8 307924 307889.1 365 22.4 
22 299796 299727 299664.1 299796 299717.8 299684 299660.9 299796 299713.2 321 33.2 
23 306480 306469 306385.0 306480 306445.2 306415 306397.3 306415 306382.1 327 23.1 
24 300342 300240 300136.7 300245 300202.5 300207 300184.4 300245 300223.2 273 27.5 
25 302571 302492 302376.0 302481 302442.3 302474 302435.6 302481 302480.2 347 24.8 
26 301339 301272 301158.0 301284 301238.3 301284 301239.7 301284 301249.1 357 20.5 
27 306454 306290 306138.4 306325 306264.2 306331 306276.4 306331 306308.1 327 21.1 
28 302828 302769 302690.1 302749 302721.4 302781 302716.9 302771 302731.2 337 25.3 
29 299910 299757 299702.3 299774 299722.7 299828 299766.0 299828 299771.2 316 47.1 

Average 214168.8 214014.2 213862.0 214059.5 213964.1 214044.2 213959.1 214041.4 213978.9 415.7 38.0 
 

Table 4. Summary of OR-Library benchmarks MKP CB.10.500 and CB.30.500 
Problem Set KMTR-BH 

Average %-Gap std KMTR-Cuckoo 
Average %-Gap std BMVO 

Average %-Gap std 

cb.10.500.25 0.34 0.08 0.37 0.1 0.39 0.12 
cb.10.500.50 0.22 0.03 0.20 0.03 0.21 0.06 
cb.10.500.75 0.11 0.03 0.09 0.03 0.10 0.04 
cb.30.500.25 0.62 0.12 0.59 0.10 0.64 0.09 
cb.30.500.50 0.27 0.05 0.26 0.05 0.24 0.04 
cb.30.500.75 0.17 0.03 0.16 0.03 0.18 0.03 

Average 0.24 0.1 245.6 0.22 0.29 0.06 
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of parameters. From the theoretical point of view, it would also be interesting to understand how the exploration 
and exploitation of space are altered when we present the percentile operator. Also, we believe that the 
incorporation of reinforcement learning techniques for decision making in the binarization mechanism can be an 
interesting line to explore and that integrates two areas that are developing strongly. Finally, it is interesting to use 
the percentile operator to binarize other swarm intelligence algorithms in addition to solving other NP-hard 
problems. 
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