
Copyright © 2022 by Author/s and Licensed by IADITI. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2022, 7(1), 11689
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Guiding legacy systems for evolution
PmatE: a case study of maintenance and engineering

André Monteiro1, Gonçalo Vieira1 *

1 University of Aveiro, Portugal
*Corresponding Author: andremonteiro@ua.pt

Citation: André Monteiro, Gonçalo Vieira (2022). Guiding legacy systems for evolution. PmatE: a case study of maintenance and engineering.
Journal of Information Systems Engineering and Management, 7(1), 11689. https://doi.org/10.55267/iadt.07.11689

ARTICLE INFO ABSTRACT

Received: 11 Oct. 2021
Accepted: 31 Dec. 2021

Even though software change is inevitable, accurate maintenance can extend software lifespan in a subtle way
when both budget and time constraints get in the way of software replacement. In the University of Aveiro, the
project PmatE – a quiz web platform created to encourage students to like Math – emerged in the early 1990’s and
stacked several applications over the decades without major planning, cleaning or upgrade. This resulted in a
huge-sized framework that was crucial to be always available and online and had high operational cost, leading
to an increasing amount of technical debt. After 3 decades, the project was studied, refactored and refurbished,
leading to a stable consistent framework ready for evolution and software spinouts. This work shows how to
manage and engineer solutions to maintain a legacy system and evolve it even when tied up to heavy constraints.

CCS CONCEPTS: Software and its engineering • Software creation and management • Software post-
development issues • Maintaining software • Software evolution

Keywords: Software engineering, software maintenance, software evolution

INTRODUCTION

Software systems that are developed specially for an
organization have usually a long lifetime (Sommerville, 2016).
Such systems, developed many years ago, using technologies
and interfaces that are now obsolete, are still in use and remain
vital for the normal functioning of business and represent a
substantial investment for organizations (Newby, 1994).

Authors in (Bennett, 1995) state clear characteristics for a
legacy system: age (more than 10 years old), the size (hundreds
of thousands of lines of code), an old programming language, a
long history of maintenance that increased the entropy and the
maintenance costs, the relevance of the mission and the internal
domain knowledge.

The solution seems simple: software renewal or building
from scratch. But there is a significant business risk in simply
scrapping a legacy system and replacing it with a system that
has been developed using recent technology (Sommerville,
2016). One can come across several issues: the system may be
using application/service rules that are not properly
documented elsewhere; there are clients/processes that are
reliant on the legacy system; legacy systems rarely have
complete specifications - during their lifetime usually have
undocumented major changes.

However, even these large and durable systems must

change in order to remain useful. But upgrading is also usually
very expensive. The real challenge consists of finding cost-
effective and quality solutions and evolving them in order to
meet new requirements. Typical solutions available in
managing legacy systems include ordinary maintenance,
reverse engineering, restructuring, reengineering, migration,
wrapping and also discarding (de Lucia et al., 2001).

One of these examples is the project PmatE – Projecto
Matemática Ensino (Pinto et al., 2007), which emerged in 1989
as a refreshing way to learn Math and develop a fondness for
mathematics (Anjo et al., 2005). The concept was simple but
thorough: provide the students an interactive interface with
mathematical quizzes and combining competitiveness with a
gamified application – levels, lives, countdown timer. While
“playing”, the students would forget that the “game” was based
on Math, one of the least popular science ever (Bhardwa, 2018;
Flick and Lederman, 2003). The objective was to learn while
playing, which was a hit. As an academic project born in a
university, the application was always free to use, both for
teachers and students (Pmate, 2019). Sponsorships were only
used on main events to give students prizes.

Monteiro and Vieira / J INFORM SYSTEMS ENG, 7 (1), 11689 2 / 10

The web application would be available for training during
the whole year, culminating on a large physical event at the
University of Aveiro, where schools and students would
compete for top places. As the expectations evolved, the project

has grown large in the last decade to an average daily use of
5000 users and a competition average above 7000 contestants.
Table 1 shows the statistics of the CNC@UA, the largest
competition, for the last 5 years.

Table 1. Five-year stats of PmatE CNC@UA competitions (de Lucia et al., 2001)

Year # of Schools # of Teams # of Students # of Games

2016 204 4482 7308 5850
2017 195 5263 8468 7261
2018 190 6411 8912 8474
2019 192 6122 8565 8076
2020 Pandemic year
2021 120 4183 4183 5116

From its creation to nowadays, the system has grown in both
size and features with the existing technologies, responding to
the public demand. Nonetheless the system was built in a time
when hardware capacity was far more expensive than it is today
and, consequently, efficiency took priority over a maintainable
and upgradable system. This brought inevitable consequences
in terms of system degradation, also caused by poor architecture
and documentation which inevitably increases maintenance
costs (Sommerville, 2016).

In 2019 the PmatE framework began to sob due to reduced

personnel, low budget and lack of maintenance. The nationwide
recognition, the project brand and the 3-decade effort made the
coordinators assume a reinventing strategy: there was an
effective need to make a major change and to evaluate of the
project. There was a perception of intrinsic high value of the
project, but it should be formally analyzed. The matrix proposed
by (Sommerville, 2016) in Figure 1 was used to evaluate the
system and its true value chain, leading to a result high
value/low quality.

Figure 1. Legacy system decisional matrix (Alkazemi et al., 2013; de Lucia et al., 2001; Ransom et al., 1998), (Newby, 1994)

Low quality means expensive to maintain: these systems
should be replaced, if suitable off-the-shelf systems are
available, or reengineered to improve their quality. Making a
decision about evolving a legacy system should be able to
ensure an overall improvement of the quality of the legacy
system, and the reduction of its maintenance costs.
Nevertheless, the high value for both students and University of
Aveiro, on education and marketing, drives the continuity of the
project and the system reengineering and adaptability to
achieve quality requirements.

In this paper, we present a case study within a university,
showing how to evaluate the state of a legacy system in an
academic organization and how to implement a reengineered
solution that can deliver a quality product with extendable
architecture and low maintenance. The paper is organized in
eight sections: section Related Work presents similar work,
section PmatE Framework describes the existing system’s logic
and architecture followed by section Analysis and Evaluation

that uses a methodology to assess the system; section
Implementation describes the tasks’ development, followed by
section Results that compilate data and gains. Section Further
Work enumeratee later work to do, while section Conclusions
wraps the achievements and results.

RELATED WORK

The IT industry has always pursued a way minimize the cost

of maintaining legacy systems. Several assessment models, like
(Newby, 1994), have been proposed and implemented, but
because of the intrinsic private nature, closed source or
commercial, most are not accessible or viewable. In the end,
academic works are more visible and usually provide some
details on published work.

Regarding software evaluation and maintenance, there are
some case studies available, like the Umm Al-Qura University

Monteiro and Vieira / J INFORM SYSTEMS ENG, 7 (1), 11689 3 / 10

that researched for a solution to cope with the changing
environment without interrupting the routine working
activities (Alkazemi et al., 2013). The case study uses a weighted
decision-making grid to elaborate future tasks but does not
implement any change; later publications from same authors
only refer to framework process and strategies (Alkazemi,
2014). Another is the case study that uses automated analysis to
identify dependencies and refactor code (Bavota et al., 2014).
The study is interesting because of the large application range
but keeps focus on programming techniques. Authors in
(Griswold and Notkin, 1993) propose and implement a model
and a tool to restructure code in an error-free transformation; it
concludes that it should need evidence of cost-effective
advantages from real-case scenarios. On (Ahmad et al., 2021) we
can read about research to modernize legacy software, with a
very special focus on mobile application; authors present a
research method, a transformation process and an application
evaluation.

As for educational games, a very recent study (The and
Usagawa, 2018) analyzes the effectiveness of online quizzes,
comparing traditional tests with virtual tests made on Moodle
platform(Moodle Pty Ltd, 2021); it concludes elevated
attentiveness and higher achievements for online tests but does
not focus on quiz gamifying. Another interesting work focus on
online flip learning with gamification quiz (Zainuddin et al.,
2021); the study presents evidence of high engagement for the
pandemic era, based on surveys and interviews, but does not
show how it was implemented or architecture.

THE PmatE FRAMEWORK

The PmatE framework was initially a simple terminal

application, written in C. Back in the early 90’s that was a
novelty that worked well with the initial Math quizzes. It had a
simple UI with questions, each one with four true/false options
and a sense of level progress. At the time it was an excellent start
for the project’s objective, it moved the students as they enjoyed
“playing” with Math.

Figure 1. 1990 terminal application

The next step was to make it available across the campus

network, online. So, a new application was developed in ASP
and VB Script, supporting Internet Explorer. In the early 90’s it

was a breakthrough and local campus competitions became
famous and desirable: 2000 students from the whole country
gathered annually to find the best - student, team or school - in
Math games.

A few years later it was patched with a few add-ons,
especially with Adobe Flash to support Math symbols and
formulas. As the years went by, it had great acceptance and
started to grow to meet demands: more games, more templates
for games, more school years involved and more courses rather
than Math itself. In 2020 it held 14 main quiz categories from the
3rd to the 12th grade: from Mathematics to Biology, passing
through Portuguese and English but algo Physics and
Chemistry and so on. In the last years it also was extended to
assist higher education classes, supporting Calculus
assessments for instance. A module to build diagnostic tests was
also developed, allowing teachers to retrieve important
information at the start of the academic year to level-up students
with their knowledge.

The registration, participation in competitions and access to
results have been cost-free from the project’s beginning. After
registration, each student was enrolled in a class by the
corresponding teacher and had access to all categories on
his/her year but also all categories below their age. The training
quizzes are available all-year long and are parametrized models
filled with random values at the time of quiz request, generating
uncountable different questions/answers. The interactive
interface encloses a 4-question quiz game-like application –
levels, lives, countdown timer and four pairs of True/False radio
buttons, as shown in Figure 3.

Figure 3. 2019 quiz screen sample

After finishing the levels, or the time is up, the quiz ends and
the user gets back to his/her personal area. There he/she can
access to previous results and personal statistics. It seems quite
simple, but inside the hood the complexity grows
disproportionately.

Architecture

Disregarding the early years from the terminal C
application, the actual PmatE platform started as a small ASP
web application with a small webserver. Simple client-server
calls, low usage and an adequate database where the
questions were saved, were enough for the time-being.

As the years went by, users started to ask for more
academic range and more and diversified content - it grew in

Monteiro and Vieira / J INFORM SYSTEMS ENG, 7 (1), 11689 4 / 10

size and features, driven by users’ requests. The manpower
was always constituted by students or fresh-graduates’
students with scholarships, which did not contribute to a good
planning or structuring. The other problem was that after each
development cycle, usually from 1-2 years, developers moved
along to other challenges and the next staff would start with
no solid ground. Each demand outputted a software islet that
was built with the technology trending at that time. No
updates were made to the existing software, leading to a kind

of software patchwork. Every project, except for admin back-
office, lies on a version control server Microsoft TFS, which
allows to make version control, with some small updates or
changes.

After 3 decades, it led to a complex framework, constituted
of 6 applications and 1 database – with several instances – as
shown on Figure 4.

Figure 4. PmatE framework architecture

The end-user has access to the latest news and his personal

area, being able to see results, statistics, training and
competing without changing URL address, hand-over
between PHP and .NET applications is fulfilled with simple
HTTP redirects.

At the back-office, the administrators can manage all kinds
of user data and quiz results but must change the URL to
switch application and register schools and new students;
they also must switch to another platform, ModelMaker, to
develop parameterized quizzes and manage
areas/categories/target years.

All the data stays persistent over a SQL database (2013),
holding dozens of instances from decades; the latest backup
had over 10GB and some queries would take more than 2
minutes. There is also a Python daemon that produces
random values to fill parameters: on the front-office when a
quiz is generated, a random model is chosen from the
student’s category and each parameter variable (question
and/or answers) is sent to the Python daemon to be rendered
with real values within the provided range, as shown on
Figure 5.

Figure 2. Parameterized quiz template and 2 template concretizations

Monteiro and Vieira / J INFORM SYSTEMS ENG, 7 (1), 11689 5 / 10

The framework works reasonably in daily use, if we look
at the upside – several technologies, most of them obsolete,
exchanging data through 7 software blocks. The problem is
that the lack of a coherent, united strategy to follow was
decisive to increase maintenance over the years. So many
systems, with many loose-coupled connections, become
completely unsustainable. As a simple example, creating a
new competition for 2020 could take a whole day – it requires
a programmer to create four new SQL DB instances with new
competitions’ IDs and associate IDs to correspondent models
manually. Another example is the retrieval results after the
annual competitions: SQL queries running on stored
procedures can take over 8 minutes for each of the 14 sub-
categories. All results are then outputted as HTML to the
results public page on the institutional website. Too much
work, with no spare human resources or budget and no
chance to put the framework offline - about 2000 users are
online daily and an average of approximately 7000 on
competition days.

According to (Berander and Andrews, 2005), a possible
approach is to correct software faults, make it adaptive to new
environments, enhance and improve efficiency and to make it
preventative, by making structural changes and subsequent
maintenance easier. With this in mind, the objectives of this

work were then defined in 4 main goals:
A. Evolve the framework to be maintenance free
B. Speed-up results’ data retrieval
C. Enhance user interface and design
D. Cleanup unnecessary software, addons and databases
The next step was to go through each goal, elicitate the

problems and find a solution for it.

ANALYSIS AND EVALUATION

We utilized the framework described earlier to assess the

major tasks in order to build a priority table of the current state
of the system. The different contexts, together with their
corresponding factors and statuses were taken in account. The
objective was to identify, categorize and propose
improvements. The interpretation of the values obtained out
of the PmatE are given in a column called “Category” that can
defines four levels of importance from A to D. These levels
describe the impact of the obtained values on business
continuity and system adaptability from the business
perspective requirements. According to the four goals defined
in chapter 3, they were also split to fit the categorization. The
results of the analysis can be seen on Table 2.

Table 2. Framework problems

Problem Solution Category

RP1 Scattered software across several servers Merge software on a single server with redundance and
backup reinitialization

A

RP2 Obsolete software obstructing server
technology

Develop modular and extensible new software with state-of-
the-art programming languages

A

RP3 New academic years require hard code
operations

Refactor code and build automatic stored procedures to
update automatically

A

RP4 Retrieval of results take too long Reengineer DB, build indexes and optimize SQL queries B
RP5 HTML output results require manual file

insertion and editing
Refactor code to translate SQL tables into HTML and insert a

generate button for the user
B

RP6 Obsolete Quiz UI: not user-friendly, hazard
colors and fit only to 640x480 resolution

Develop new friendly UI, with responsive behavior to fit all
devices, including mobile

C

RP7 Obsolete front and back-office Develop a new consistent and coherent design transversal to
all software

C

RP8 Obsolete plugins, addons and webservices:
Flash and VB Script

Identify all necessary and remove remaining; replace by state-
of-the-art Javascript libraries

D

After the problems were identified, and as manpower was

scarce, they were prioritized to allow incremental
development sprints and show progressive enhancement on
the platform. To achieve this, we used the combined

prioritization technique referred by (Berander and Andrews,
2005), where requirements are mixed among stakeholders – in
our case Product and Project Managers. The result of that
prioritization is described below on Table 3.

Table 3. Prioritization Results. Priority, P(RPX) = RPCX × WProductM + RPCX × WProjectdM where RP is the requirement
priority, and W is the weight of the stakeholder

Problem Product
Manager (0.60)

Project
Manager (0.40)

Priority

RP1 Scattered software across several servers 0.10 0.15 0.12
RP2 Obsolete software obstructing server technology 0.10 0.15 0.12
RP3 New academic years require hard code operations 0.25 0.15 0.21
RP4 Retrieval of results take too long 0.10 0.15 0.12
RP5 HTML output results require manual file insertion and editing 0.10 0.10 0.10
RP6 Obsolete Quiz UI: not user-friendly, hazard colors and fit only to 640x480

resolution 0.25 0.10 0.19

RP7 Obsolete front and back-office 0.00 0.10 0.04
RP8 Obsolete plugins, addons and webservices: Flash and VB Script 0.10 0.10 0.10

 Total 1 1 1

Monteiro and Vieira / J INFORM SYSTEMS ENG, 7 (1), 11689 6 / 10

After prioritization, the next phase was to implement

changes according to identified significance. The focus would
be on problems RP6 and RP3.

IMPLEMENTATION

Following the requirements’ priority, one by one we
started solving the problems. The first step was the problem’s
diagnosis, then develop solutions to solve them and
implement changes. On this very first phase RP1, RP2, RP7
and RP8 were left on hold.

RP3 – New academic year creation

Expectations were that there could be a page on the back-

office to create a new academic year. This was nonexistent,
though. The standard procedure was to:

A. Create new ids for the 14 competitions and sub
competitions in the DB;

B. Clone the 5 database instances (shown on Figure 6);
C. Go to the DB instance of the current year and update

competition IDs;
D. Open webform codefile, comment 400 lines of code

and copy them to new lines and replace IDs;
E. Update the front-office application to create new

quizzes using new IDs and new academic year.

Figure 3. SQL Server DB instances

The most useful procedure would be a webform on the
back-office with listings (competition, years, etc.) and a button
to allow the creation and update of all variables. Based on that
idea, we created that webform and linked all actions to it, so it
would trigger everything without editing a single line of code.
Before that, we changed the DB in order to avoid instance
creations every year; we needed to adapt and insert new
columns into tables and apply it on the C# code-behind. The
webform did the following tasks:

A. Automate database instantiation with proper stored
procedures and triggers;

B. Generate competition IDs and attach them to relational
tables;

C. Refactor code to reduce cycles and optimize it;

D. Update front-office application to allow year choosing.
These modifications were made and resulted in an

extremely practical - as well as transparent - approach to back-
office users, which can be seen on Figure 7.

Figure 4. Automated launch of new Academic Year

RP6 – Obsolete Quiz UI + RP8 – Obsolete plugins

The ASPX webform was full of unnecessary things: Flash

plugins, old jQuery libraries and old ASP.NET controls. It also
had huge stateviews behind the page and was only loaded
with session data, retrieved from the user login and DB.

Figure 8. New quiz responsive UI

It simplified design, added responsive elements that fit

any screen and a more intuitive and better user interface.

Monteiro and Vieira / J INFORM SYSTEMS ENG, 7 (1), 11689 7 / 10

RP4 – Retrieval of results take too long

The performance problem that existed on the framework

was very clear – web forms that would return some kind of
result could last from 2 to 8 minutes to run, depending on the
query. Considering the scale, 7-10K students, it may not seem

particularly high, but the concern emerged. To solve the
problem, we started to call the queries directly on the SQL DB,
to discard network or connection problems. The results were
astonishing, the problem was indeed with the SQL queries.
We ran the SQL Live Query Statistics and the results are
shown on Figure 9.

Figure 5. SQL Query Analyzer on PmatE query

Besides an erroneous construction of the queries, with
unnecessary columns or table joins, the DB was not indexed.
The first step was to correct queries with solely the necessary
column data and table joins. This improved results and
increased performance, elapsed time remained between 10-20

seconds, depending on the query. We then created indexed
views of the tables from which we expected results. Here lies
the purpose, because the results can only be retrieved when
competitions are over, which means the view should be one
view of final and consolidated results. We created a trigger to
create a view of the results’ table, like the one shown on Figure
10, and automatically create indexation.

Figure 6. SQL trigger to create automatic indexation

This resulted in queries with elapsed time between 2-12
seconds, which sounded quite better than 1-3 minutes.

RP5 – HTML output results require manual insertion

Upon the end of competitions, the results were extracted
from the DB with SQL queries like the ones referred before on
5.3. Even though they were retrieved with HTML tags, each
query rendered a HTML output which should be copied and
saved on a PHP server, which would take a manual effort of
hours. This was corrected to a page that would call the stored

Monteiro and Vieira / J INFORM SYSTEMS ENG, 7 (1), 11689 8 / 10

procedure and save HTML input to the correct folder, with IIS
permissions. If some results would require revision (i.e. some
error on some quiz) it would be enough to delete the file from
the server and access the page again to refresh the output.

Again, this resulted in reasonable time savings and avoided
IT personnel to handle the results. Figure 11 shows an
example of the output.

Figure 11. Generating HTML results with one-click button

RESULTS

The outcome of the task’s implementation was evaluated

both in efficiency and usability, depending on the

requirement. This section presents a compilation of the effects.
For time-consuming tasks, we measured the current times

against older one, although 1-day task for a programmer was
an estimate

Table 3. Implemented RP efficiency

Problem
Initial
Time

Current
Time

Time
Gain

Ratio

RP3 Opening new academic years 6:00:00 0:01:50 5:58:10 19636%
RP4 Retrieval of results for students 0:02:00 0:00:10 0:01:50 1200%
RP4 Retrieval of results for schools 0:08:00 0:00:20 0:07:40 2400%
RP5 HTML output results require manual file insertion and editing 4:00:00 0:00:40 3:59:20 36000%

For the usability assessment, we made a small survey with

5 questions on a 20 user set – we aim to make a survey on the
end of each competition to broad validate the results with a
mode adequate scale.

Problem Initial UI
Current

UI
Gain Ratio

RP6
Obsolete Quiz UI: not user-friendly, hazard colors and fit only
to 640x480 resolution

44% 92% 48% 209%

The main goal of an algorithm is to produce correct output,

and the system was producing it; the main achievement we
aimed was efficiency, which was extremely optimized with
the best practices on the several systems.

FUTURE WORK

Due to time, manpower and budget constraints, some

requirements were still pending. In this case, the centering of
the software on a single server, with backup in case of fallback
of course (RP1), the whole refactoring and updating of old

Monteiro and Vieira / J INFORM SYSTEMS ENG, 7 (1), 11689 9 / 10

technologies (RP2) and the renewal of the entire back-office
(RP7), written in ASP and .NET 2.0 did not go through.

RP1 was a priority but the big scale of the systems’
involved were difficult to gather and reduce in such a short
time. It should be a priority and should be considered to
develop with new technologies.

The RP2 task was also not completed due to time

constraints and to IT services technology lockdown. It was not
possible to assemble a new architecture with state-of-the art
technologies while implementing the other requirements.

As for RP7, as it was not a priority to stakeholders, it will
be a task for the next development iteration. Still, it needs
some SQL refurbish also because the pages’ content holds
direct SQL queries, as we can see on Figure 12 below.

Figure 7. Example of direct SQL queries: mudarescola.asp file

The best practices indicate that they should be

transformed in transact-ready queries and isolated in stored
procedures, which will save a lot in maintenance but also can
speed up tasks.

One ultimate task to fulfill should be a user evaluation
test: gather a significant group of users and test usability and
satisfaction. This would raise the level of the application to
the highest standards.

CONCLUSIONS

A legacy application rarely can be optimized without

significant effort. It is often involves hard and complex work
that is not visible. Thus, a legacy system has a different
lifecycle where decision processes must be carried out
carefully in order to support the successful management of
the system. These processes are usually analyzed in an
implicit way, but when the complexity of the problem is not
common, one must apply a systematic approach for defining
which modifications should be made or recommended.

This paper presented a use case of how to evolve a legacy
system in order to maintain its intrinsic high value. Its model
was assessed, analyzed and then it was refurbished. The
business goals of the legacy system were defined by taking
into account the points of view of different stakeholders
within the organization. The framework interventions were
carried-out on critical software components, thus providing
a conversion result brought user usability, controlled costs
and easier maintenance for the coming years. Even though it
lacks a larger scale validation, with end-user tests, it
augmented user friendliness, made data and interface
loadings faster for all users as well as saved servers’

resources.
The use case provides a reference model that shows a

potential solution to legacy systems management, and more
specifically how address them by taking into account both
business and technical issues. Furthermore, models,
techniques, and tools to support the framework instantiation
were presented and applied.

As this was the very first phase of the renewal, we are
certain that continuing the best practices described in the
current literature will result in a systematic increase of
framework quality and value. In the second phase of the project
we will address the remaining problems.

Nevertheless, the experiment was validated with excellent
results. The conclusive results of the development will be
presented in future work.

REFERENCES

Ahmad, A., Alkhalil, A., Altamimi, A.B., Sultan, K. and Khan,
W. (2021). Modernizing Legacy Software as Context—
Sensitive and Portable Mobile-Enabled Application. IT
Professional, 23(1), pp.42-50.

Alkazemi, B., (2014). A Framework to Assess Legacy Software
Systems. J. Softw., 9(1), pp.111-115.

Alkazemi, B.Y., Nour, M.K., Meelud, A.Q. (2013). Towards a
Framework to Assess Legacy Systems, in: 2013 IEEE
International Conference on Systems, Man, and
Cybernetics. pp. 924–928.

Anjo, A., Pinto, J.S., Oliveira, M.P., Isidro, R.O.G. and Pais,
S.I.V. (2005). Computerized Diagnostic Test. Cadernos de

Monteiro and Vieira / J INFORM SYSTEMS ENG, 7 (1), 11689
, 7 (1), 11688

10 / 10

Matemática, 5(3).
Bavota, G., Gethers, M., Oliveto, R., Poshyvanyk, D., Lucia,

A. de, (2014). ACM Trans. Softw. Eng. Methodol. 23.
Bennett, K., (1995). Legacy systems: Coping with success.

IEEE software, 12(1), pp.19-23.
Berander, P., Andrews, A., (2005). Requirements

Prioritization, in: Aurum, A., Wohlin, C. (Eds.),
Engineering and Managing Software Requirements.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 69–
94.

Bhardwa, S., (2018). The least and most popular
undergraduate courses in the UK [WWW Document].
Times Higher Education. URL
https://www.timeshighereducation.com/student/news/l
east-and-most-popular-undergraduate-courses-uk
(accessed 12.1.20).

Flick, L.B., Lederman, N.G. (2003). School Science and
Mathematics 103, 117–120.

Griswold, W.G., Notkin, D. (1993). ACM Trans. Softw. Eng.
Methodol. 2, 228–269.

de Lucia, A., Fasolino, A.R., Pompelle, E. (2001). A
decisional framework for legacy system management,
in: Proceedings IEEE International Conference on
Software Maintenance. ICSM 2001. pp. 642–651.

Moodle Pty Ltd, (2021). Moodle - Open-source learning
platform | Moodle.org [WWW Document].

Newby, M. (1994). Proceedings Software Education
Conference (SRIG-ET’94) 96–102.

Pinto, J.S., Oliveira, M.P., Anjo, A.B., Pais, S.I.V., Isidro, R.O.,
Silva, M.H. (2007). International Journal of Mathematical
Education in Science and Technology 38, 283–299.

Pmate, (2019). Relatório Competições Nacionais de Ciência
2019 [WWW Document]. URL
https://pmate.ua.pt/pmate/relatorios/2019/relatorio_CN
C_2019_PmatE_UA.pdf (accessed 9.21.19).

Ransom, J., Sommerville, I., Warren, I. (1998). A method for
assessing legacy systems for evolution. In Proceedings of
the Second Euromicro Conference on Software
Maintenance and Reengineering (pp. 128-134). IEEE.

Sommerville, I. (2016). Software Engineering GE. Pearson
Australia Pty Limited.

The, M.M., Usagawa, T. (2018). International Journal of
Emerging Technologies in Learning (iJET) 13, 157–176.

Zainuddin, Z., Farida, R., Keumala, C.M., Kurniawan, R.,
Iskandar, H. (2021). Interactive Technology and Smart
Education ahead-of-print.

