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Wastewater Treatment Plants are energy-intensive consumers. Thus, understanding their energy consumption 
to achieve efficient management can provide considerable environmental and economic benefits. The complexity of 
the treatment systems, the non-linearity, and the uncertainty and data availability limitations require the use 
of energy audits, according to a truly holistic view, as well  as the use of alternative analysis models and 
decision support, more efficient than traditional modeling techniques. The purpose of this review paper is to 
identify practical examples of the main lines of thought using Artificial Intelligence algorithms used to reduce 
the consumption of electrical energy in the wastewater sector over the last years. From the several reviewed 
papers, from different research platforms, it is concluded that, despite the success of AI in reducing energy 
consumption, in particular Artificial Neural Networks, there is room to improve energy efficiency consumption, 
identifying or quantifying inefficiency phenomena associated with data collection. 
 
Keywords: Wastewater treatment plants, energy efficiency, inefficiency phenomena, electrical energy 
consumption reduction, artificial intelligence, decarbonization. 
 

INTRODUCTION 
Currently, climate change demands new goals of human 

behavior in protecting and sharing a common space, our planet. 
Gradually, global and unprecedented climate change is 
increasing the uncertainty of the water cycle through extreme 
weather events that risk the prediction of water availability and 
its quality. These events threaten sustainable development, 
biodiversity, and the worldwide human right to water and 
sanitation. 

Energy expenses usually represent a significant portion of 
the Wastewater Treatment Plants (WWTP’s) running costs. 
Therefore, increasing these infrastructures’ energy efficiency 
and implementing energy management systems is crucial 
(Silva and Rosa, 2015). Understanding the water-energy 
nexus is a relevant issue for plant managers due to the 
significant potential in energy costs (Torregrossa et al., 2017, 
Molinos-Senante et al., 2014, Longo et al., 2016a). The 
International Energy Agency (IEA) claimed an increase of 
80% in electricity consumption in this sector by 2040 

(International Energy Agency, 2023). In addition, new 
environmental regulations, with higher standards, lead to 
higher energy consumption (Doherty et al., 2017). 

A considerable amount of papers were found in the literature 
about energy efficiency concerning WWTPs (Zhao et al., 2020, 
Torregrossa et al., 2018, Nourani et al., 2018, Ostojin et al., 2011, 
Oliveira et al., 2021). The authors used different modeling and 
approach tools for identifying, analysing, and understanding the 
causes and consequences of energy inefficiency (Nieto et al., 
2013, Longo et al., 2016a, Filipe et al., 2019). 

Due to the physical and chemical characteristics of the 
influent flow, a WWTP is a highly dynamic, complex, and non-
linear system, so its proper operation and control are essential to 
secure public and environmental welfare (Ahmadi et al., 2017). 
Therefore, modeling such an intricate system is quite difficult, 
and most of the available classical linear models are based on 
rough expectations, linear approximations, and assumptions, 
causing difficulty in decision support (Nieto et al., 2013, Gao et 
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al., 2017, Li et al., 2017). 

In this research about the impact of Artificial Intelligence (AI) 
on reducing energy consumption in WWTPs, two review papers 
(Zhao et al., 2020, Safeer et al., 2022) were identified that 
recognize the importance of AI in optimizing water treatment 
infrastructure in terms of pollutant removal, economic 
performance, model management, and wastewater reuse. 
However, according to a bibliometric analysis, only the author 
Zhao et al. (Zhao et al., 2020) present direct results on energy 
consumption in WWTPs. Considering the WWTPs non-linearity, 
Zhao et al. (Zhao et al., 2020) argue that AI can be an alternative 
approach to classical modeling techniques. Their review 
presents different literature approaches about AI technologies’ 
applications to lower energy consumption in WWTPs. One of the 
most used models is Artificial Neural Networks (ANN). On the 
other hand, genetic algorithms are a robust solution with low 
computational costs, given their adaptability to complex and 
non-linear systems (Holenda et al., 2007). 

Having the present review paper as the main objective of the 
direct reduction of electrical consumption in WWTPs, through 
AI methods, there are three papers (Torregrossa et al., 2016, 
Torregrossa et al., 2018, Long and Cudney, 2012) that stood out, 
that were not included in the bibliometric review of Zhao et al. 
(Zhao et al., 2020). Thus, the three papers cited assume special 
importance (i) for the solution presented to reduce the difficulty 
in acquiring and processing data (Torregrossa et al., 2016), (ii) for 
the usefulness of these techniques in energy management 
models (Torregrossa et al., 2018), and (iii) for the importance of 
a global vision in the analysis of the entire treatment system 
(Long and Cudney, 2012). The present paper review intends to 
contribute to future works in the identification of new challenges 
related to the identification and quantification of new 
phenomena of inefficiency in the study of energy efficiency in 
WWTPs. 

This paper is structured according to the following sequence. 
The first step presents the approach used for selecting the 
reviewed literature and its content analysis. The different 
treatment stages of a WWTP and the respective energy 
consumption are presented in the second point. AI techniques 
will appear in the following step, according to historical 
evolution and individual characteristics, followed by a 
bibliographic review of AI applications in wastewater treatment 
systems. Finally, conclusions and future trends will be 
presented. 

THE METHODOLOGY APPROACHES 
The presented paper reviews the literature on the 

performance of applications using Artificial Intelligence (AI) 
algorithms to reduce energy costs during the treatment 
process in the Wastewater Treatment Plant (WWTP). For 
better qualitative and quantitative research, a period of 
publication between 2005 and 2022 was defined as reviewed 
journals, from different platforms such a IEEE, Scopus, Web 
of Science, and Google Scholar, among others. Institutional 
documents of technical support were also consulted for the 
efficient use of energy in water utilities, as well as current 
European legislation dedicated to the sector. The research 

focused on the combination of the following keywords: 
wastewater treatment plants, energy efficiency, inefficiency 
phenomena, reduction of electricity consumption, artificial 
intelligence, and decarbonization, which allowed to select, 
from the 104 papers reviewed, 85 citations, of which 14 
were about AI applications in reducing electricity 
consumption in WWTPs. 

ENERGY DATA AND CONSUMPTION 
PER TREATMENT STAGE 

As previously discussed, the wastewater treatment plants’ 
complexity, associated with the quality control requirements, 
needs a rigorous definition of the main indicators for the 
electricity assessment consumption in each treatment stage. 
According to the literature review (Longo et al., 2016b, 
ADENE, 2021), the following will present the energy Key 
Performance Indicators (KPIs), as well as the electrical energy 
consumption per treatment stage. 

 

Parameters and Key Performances Indicators 

According to the literature reviewed, to assess the WWTP 
performance using AI models, it is essential to identify available 
sources and databases containing energy data of WWTPs. 
Usually, the energy consumption is attached to the data related 
to the electrical equipment: blowers, mixers, pumps, aeration 
systems, and filters, according to the influent and effluent 
characteristics (Longo et al., 2016b), in order to control 
parameters such as Chemical Oxygen Demand (COD), 
Biochemical Oxygen Demand (BOD), Total Suspended Solids 
(TSS), Total Nitrogen (TN), and Total Phosphorus (TP) (Li et al., 
2017, Longo et al., 2016b). 

Longo et al. (Longo et al., 2016b) defined three energy KPIs 
referring to the volume of treated wastewater, served Population 
Equivalent (PE), and kg of COD removed. 

𝐾𝑃𝐼1 =
௘௟௘௧௥௜௖ ௘௡௘௥௚௬ ௖௢௡௦௨௠௣௧௜௢௡

௩௢௟௨௠௘ ௢௙ ௧௥௘௔௧௘ௗ ௪௔௦௧௘௪௔௧௘௥
    [𝑘𝑊ℎ/𝑚ଷ] (1)  

𝐾𝑃𝐼2 =
௘௟௘௧௥௜௖ ௘௡௘௥௚௬ ௖௢௡௦௨௠௣௧௜௢௡

௦௘௥௩௘ௗ ௉ா
    [𝑘𝑊ℎ 𝑃𝐸⁄ 𝑦𝑒𝑎𝑟] (2)  

𝐾𝑃𝐼3 =
௘௟௘௧௥௜௖ ௘௡௘௥௚௬ ௖௢௡௦௨௠௣௧௜௢௡

஼ை஽ ௟௢௔ௗ ௥௘௠௢௩௘ௗ
    [𝑘𝑊ℎ 𝑘𝑔𝐶𝑂𝐷𝑟𝑒𝑚𝑜𝑣𝑒𝑑] (3)⁄   

 
As the literature review refers, commonly, energy 

consumption in WWTPs has indexed to the treated wastewater 
volume (kWh/m3) or (kWh/PE) (Yang et al., 2010, Mizuta and 
Shimada, 2010, Torregrossa et al., 2016). Despite the simplicity of 
these approaches, which can quickly provide an estimation of 
energy consumption indicators, can provide incorrect values 
(Longo et al., 2016b). Usually, the energy consumption in 
WWTPs has calculated in kWh/m3 (Longo et al., 2016b). 
However, in some cases where sanitation networks are 
connected to rainwater networks, the WWTPs often show higher 
energy efficiency, which is caused by the higher dilution of the 
polluting load in the influent (Campanelli et al., 2013, Bodik and 
Kubaska, 2013). Therefore, the calculation of energy efficiency 
based on the pollutant load (i.e., kWh/PE) provides greater 
accuracy.  But in this case, nitrogen (N) should be favored as a 
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basis to calculate PE load instead of BOD and COD (Benedetti et 
al., 2008) because N is dissolved in the form of ammonia in the 
influent, while BOD, in the case of low drain speed, can cause 
sedimentation phenomena and introduce calculation errors. On 
the other hand, rainwater carries inert matter that will influence 
the COD calculation. 

Several authors (Benedetti et al., 2008, Campanelli et al., 2013, 
Bodik and Kubaska, 2013), present an approach to report the 
energy consumption of WWTPs per unit of the pollutant 
removed, i.e., kWh/kg  TSSremoved,  kWh/kg  BODremoved  
and  kWh/kg  CODremoved,  to  quantify   the   removal   of 
organic matter and nutrients are major contributors to energy 
consumption in WWTPs. 

The influent and effluent flow characteristics of a WWTP 
significantly influence energy consumption during the process. 
Therefore, to improve the WWTP performance, there are specific 
parameters, i.e., BOD, COD, TSS, and TN, that have been focused 
on in studies using AI methods to develop efficient energy-
saving strategies (Nourani et al., 2018, Li et al., 2017, Zhao et al., 
2020, Torregrossa et al., 2016). 

As the number of WWTPs increase and the effluent quality 
requirements become more demanding, the energy issue has 
become a crucial matter in economic and environmental terms 
(Molinos-Senante et al., 2015). According to EU Directive 
2012/27/EU, water utilities with more than 250 employees and an 
annual trading volume greater than €50 million or whose annual 
balance sheet exceeds €43 million must perform an energy audit 
every four years from December 2015 (Diretiva, 2012 ). ISO 50001 
(ISO, 2011), developed by the International Organization for 
Standardization, represents an international energy 
management standard for industrial plants’ energy efficiency, 
based on the Plan-Do-Check-Act continuous improvement 
methodology, according to Table 1. 

 

Table 1. ISO 50001 standard energy efficiency indicators (ISO, 
2011). 

ISO 50001 

Plan Energy assessment  
Establishment of energy performance indicators 
Definition of the action plan 

Do Action plan implementation 
Check Monitoring and Measurement 
Act Management review and continuous improvement 

 

Some AI approaches show that within the field of wastewater 
treatment, identifying KPIs is one of the significant challenges to 
reducing or optimizing electrical energy consumption 
(Torregrossa et al., 2016). Usually, the energy audit uses KPIs to 
assess the study of energy efficiency in industrial units, i.e., 
proper measurement and treatment of data, which is an essential 
approach to estimating the parameter’s importance in WWTPs. 

The standard definition and measure (4)–(6) of energy 
efficiency in the industry are evaluated based on three KPIs: 
Energy Intensity (EI) given by tonne of oil equivalent per euro 
(toe/€), Specific Energy Consumption (SEC), and Carbon 
Intensity (CI) (ADENE, 2021). 

𝐸𝐼 =
௘௡௘௥௚௬

௣௥௢ௗ௨௖௧௜௩௘ ௔௖௧௜௩௜௧௜௘௦
 [𝑡𝑜𝑒 €⁄ ] (4)  

𝑆𝐸𝐶 =
௘௡௘

௣௥௢ௗ௨௖௧௜௢௡
 [𝑡𝑜𝑒 𝑚ଷ⁄ ] (5)  

𝐶𝐼 =
௚௥௘௘௡௛௢௨௦௘ ௚௔௦ ௘௠௜௦௦௜௢௡௦

௘௡௘௥௚௬
 [𝑡𝑜𝑛𝑔𝑎𝑠 𝑡𝑜𝑒⁄ ] (6)  

 

Energy consumption per treatment stage 

Many authors consider the urban wastewater treatment 
sector an intensive energy consumer (Daw et al., 2012, Oliveira 
et al., 2021). Data reported on energy usage accounts for 7% of 
the electrical energy worldwide, and the water utilities’ annual 
operating budget can represent up to 65%. (Plappally et al., 2012, 
Boulos et al., 2001). Nearly 4% of the electricity consumed in the 
U.S. corresponds to the energy consumed in the wastewater 
treatment sector, being the pumping systems responsible for 
79%-80% of the used electrical energy consumed (Singh et al., 
2012, Goldstein and Smith, 2002). For these reasons, it is essential 
to understand the different stages of treatment, as well as the 
associated electrical equipment, as a way of improving energy 
performance. WWTPs comprise various treatment stages: 
preliminary, primary, secondary, tertiary, and sludge treatment, 
constituted by different equipment with different energy 
consumption. 

Preliminary treatment usually contains pumping 
wastewater, screening, grit removal, and comminutors. Apart 
from the pumping system, these different types of equipment are 
responsible for a tiny part of the total electric energy 
consumption (Longo et al., 2016b). The electrical energy 
consumed  for  influent  pumping  varies  between  2.2 x 10−2  and  
4.2 x 10−2  kWh/m3,  representing 5 to 18% of the total energy 
consumed, according to the size and intensity of the treatment 
(Longo et al., 2016b). 

Primary treatment, consisting of a simple separation step in 
circular settling tanks equipped with mechanized scrapers, has 
energy consumption between 4.3 x 10−5 and 7.1 x 10−5 kWh/m3, 
representing a small portion of all the total energy consumed, 
between 2 to 8% (Longo et al., 2016b). For one of the most 
complex stages of the treatment process, the secondary treatment 
is responsible for a considerable part of electrical energy 
consumption, particularly in the aeration system with 
consumption between 0.18 and 0.8 kWh/m3 (Longo et al., 2016b), 
which varies between 45 to 75% of the energy consumed (Rosso 
and Stenstrom, 2006). 

Tertiary treatment is responsible for increasing effluent 
quality as well as the total energy consumption. Depending on 
specific technologies used, values vary from 4.5 x 10−2 to 0.11 
kWh/m3 for Ultra-Violet (UV) disinfection or between 9.0 x 10−3 
and 1.5 x 10−2 kWh/m3 for mechanic equipment required for the 
dosage of chemicals, and from 7.4 x 10−3 to 2.7 x 10−3 kWh/m3 for 
tertiary filtration, representing between 8 and 13% of the energy 
consumed. The energy consumed with the separation and 
sludge dewatering represents a significant portion of the global 
electricity balance of a WWTP, about 15% (Longo et al., 2016b), 
specifically during the mechanical centrifugation process, which 
values vary between 1.8 × 10−2 and 2.7 × 10−2 kWh/m3 (Longo et 
al., 2016b). 
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ARTIFICIAL INTELLIGENCE TECHNIQUES 
IN WASTEWATER TREATMENT 

The interest in using Artificial Intelligence (AI) has been 
growing in engineering (Fadlullah et al., 2017, Gupta et al., 2021), 
intending to optimize data analyses and enhance algorithm 
performance. The wastewater treatment sector is no exception, 
where the complexity of natural conditions of the influent, for 
instance, chemical and physical characteristics, results in 
uncertainties during the treatment process (Longo et al., 2016b). 
These ambiguities lead to variations in effluent quality, 
operation energy costs, and environmental dangers. There has 
been an attempt to apply AI technologies by researchers to 
reduce these issues (Torregrossa et al., 2018, Ostojin et al., 2011, 
Filipe et al., 2019, Asadi et al., 2017). 

In 1956, a group of scientists led by John McCarthy met at 
Dartmouth  Summer  Research Project on AI, considered to be 
the founding event of AI as a research field. AI is a method that 
uses machines attempting to mimic the human brain through 
structured symbols to solve complex problems in real-world 
applications (Salehi and Burguenõ, 2018). 

Another term widely used in literature to refer to a strong 
field of particular AI is Machine Intelligence (MI) (Fadlullah et 
al., 2017,  Gupta et al., 2021).  As  a  rule,  there  are  two  types  
of MI: Hard Computing (HC) and Soft Computing (SC) methods. 
As opposed to the HC, which demands a precisely stated 
analytical model and can produce more accurate answers, the SC 
is useful for handling highly nonlinear systems with ambiguous 
and noisy data (Chen et al., 2001, Salehi and Burguenõ, 2018). 

Also known as Computational Intelligence (CI), soft 
computing methods are based on Fuzzy Logic (FL), Artificial 
Neural Networks (ANNs), Machine Learning (ML), 
Evolutionary Algorithms (EA), and probabilistic methods. They 
can solve and approximate nonlinear issues using programs that 
simulate human knowledge (Pedrycz, 1990, Siddique and Adeli, 
2013). 

Despite the same objective, there is little difference between 
AI and CI. According to the authors (Bezdek, 2016, McCarthy, 
2007), CI is a subset of AI. Understanding the relationship 
between AI and other intelligent computational techniques is 
important. Figure 1 presents the different intelligent techniques 
and their correlation. Machine Learning (ML) technique, while 
an AI subfield, is used to create a prediction classification 
learning model through the training data (Cherkassky and 

Mulier, 2007, Marsland, 2011).  Integrated ML, Deep Learning 
(DL) is a tool that can learn unsupervised from unstructured data 
based on deep neural networks, which neural networks  with  
more  than  one  hidden  layer  (Ciresan et al., 2011). Data  
Mining/Science (DM/S) is a technique applied to discover 
information and tendencies in data sets, where the goal is the 
discovery of unidentified characteristics in an area with limited 
knowledge. The Big Data (BD) designation refers to broad or 
complex data sets difficult to represent using conventional 
processing techniques (Salehi and Burguenõ, 2018). 

 

Figure 1. Computational techniques relationship 

 

In this research field, it is possible to find as the main 
algorithms the ANNs, while the computing system, Random 
Forests (RF) learning methods and Support Vector Machines 
(SVM), the Genetic Algorithms (GA), and finally, also integrated 
into AI techniques, the Fuzzy Logic (FL) method (Zhao et al., 
2020). 

Framed in four currents of thought, connectionists, 
symbolists, analogists,  and evolutionists, the algorithms can be 
characterized according to the process of optimization, 
evaluation, and representation, according to Table 2. 

 

Table 2. Characteristics of the main lines of thought 

 Optimization Evaluation Representation 

Connectionists Backpropagation Quadratic Error Artificial     Neural    Net work 

Symbolists Reverse-deduction Gain (accuracy) Random Forest 

Analogists Optimization with 
constraints 

Margin Support Vector Machine 

Evolutionists Genetic propagation Fitness Genetic Algorithm 
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The result of the reviewed papers indicated, according to 
Figure 2, that it is one of the most widely used methods in 
WWTPs (Ramli and Hamid, 2018). Throughout this review, no 
papers were found, published between 2021 and 2022, according 
to the search criteria of the methodology approach. 

 

 

Figure 2. AI techniques applied to energy reduction 
trends in wastewater treatment 

The first mathematical ANN model was presented in 1943 by 
Warren McCulloch and Walter Pitts in the published paper “A 
Logical Calculus of the ideas Imminent in Nervous Activity” 
(McCulloch and Pitts, 1943). Inspired by Alan Turing (Turing, 
1936), they provided an important contribution to the 
construction of the first modern computational theory. 

Rosenblatt, Widrow, and Hoff (1959-1960) explored for the 
first time the neural networks as computational structures with 
learning and generalization capabilities,  employing  a  technique  
that distributes and stores knowledge collected through known 
samples (Rosenblatt, 1958, Widrow and Hoff, 1960). 

ANN was developed over the years and today represents a 
computational model inspired by biological neural networks, 
containing multiple elements called neurons and connections 
designated by synapses (Zhang and Pan, 2014). Easily adaptable  
to  cases  with  one  or  more  variables, the model complexity can 
be easily altered by changing the transfer function, the training 
algorithm, or the network architecture (Rajaee et al., 2019). 
ANNs have been adopted  to remove contaminants during the 
complex and non-linear process of WWTPs (Raduly et al., 2007, 
Wang and Deng, 2016, Fan et al., 2018), usually with better 
results than the regular regression models (Torregrossa et al., 
2016, Zhang et al., 2016). One of the advantages is the ability to 
handle the presence of noise in the data set without affecting the 
prediction result. However, it requires a large amount of 
available data (Kuster et al., 2017). 

Created in 1995 by Tin Kam Ho (Ho, 1995), RF is the most 
used supervised ML algorithm for classification and regression, 
composed of several decision trees, where the nodes are 
generated through input parameters, and the tree leaves dictate 
the classification or regression result (Breiman, 1996). The RF 
result is evaluated considering all the individual trees. RF 
algorithm has been used for studying the energy efficiency in 
WWTP due to the possibility of model calibration, according to 
the preagreed criteria (Torregrossa et al., 2018),  (Zhang et al., 

2016).  According to the literature review, some RFs have lower 
generalization errors than others. To reduce the error, some 
authors presented different solutions. Random split selection of 
Dietterich (Dietterich, 1998) has better results than bagging. 
Breiman (Breiman, 1998) also introduced random noise into the 
outputs with good results. However, the forest with better 
results is the adaptive boosting (Adaboost) algorithm. 
Introduced in 1996 by Freund and Schapire (Freund et al., 1999), 
Adaboost is a common approach to improve the accuracy of any 
given learning algorithm. However, it is more sensitive to 
overfitting than random forest. 

Developed in 1998 at AT&T Bell Laboratories by Vladimir 
Vapnik (Drucker et al., 1999), the SVM is one of the most robust 
and effective statistical ML theories used for classification, and 
regression (support vector regression), among other tasks.  This 
method consists of the construction of hyperplanes in an infinite 
dimensional space supported by the input vectors selected 
through a model training process (Drucker et al., 1999). The main 
algorithm goal is to create an optimal hyperplane with the 
largest distance between the different types of samples 
belonging to each class (Drucker et al., 1999). The SVM method 
is used in various application domains, including electrical 
energy consumer analysis in the water and wastewater sector, to 
solve linear and non-linear problems (Ramli and Hamid, 2018, 
Zhang et al., 2012). One of the SVM advantages is the adjustment 
of the objective function, which allows the regularization 
parameter and helps to avoid overfitting the training data. 
Despite the difficulties, choosing a good kernel function can 
represent an advantage when the sample is linearly not 
separable. The Kernel changes the input space dimension, allows 
to capture non-linear relationships, and performs the regression 
task more efficiently (Drucker et al., 1999). 

GA came from the research of John Holland, at the 
University of Michigan (Martin H et al., 2009), in 1975, as a 
way to perform a randomized search from a sample. 
Nonetheless, it only became popular in the 1990s. From an 
initial randomly generated population, according to the 
characteristics of the process, GA promotes the evolution of a 
new population with the desired characteristics (Chau, 2006, 
Golberg, 1989) according to Darwin’s theory of natural 
selection, based on mutation and crossover operators. GA can 
work out a significant dimension of linear or non-linear 
problems, so GA applications have grown enormously in the 
wastewater treatment field (Herrera and Magdalena, 1997), 
such as pump scheduling to minimize pumping costs 
benefiting from low-cost electricity tariffs (Savic et al., 1997). 
GAs have as advantages the systematic random search and 
derivative-free optimization, but they could be challenging to 
tune and do not guarantee convergence to the optime 
(Shapiro, 2002). 

Proposed in 1965 by Zadeh (Zadeh, 1965), the fuzzy 
method was developed for modeling complex systems, 
inputs variables that are partitioned into overlapping sets, 
and each of these sets represents a membership function that 
quantifies the belonging degree over the range (0,1) (Zadeh, 
1965, Zadeh, 1983). Despite the difficulty of building and 
tuning the fuzzy membership functions and rules, the 
convenience of using this methodology in studying the 
energy efficiency of WWTP is its ability to store and process 
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imprecise, uncertain, and resistant data for classifying 
(Vijayaraghavan et al., 2015). 

Over the last decade, optimization processes have been 
used to find different solutions in the wastewater treatment 
field. Usually, finding the best solution involves using 
technologies heuristically adapted to the problem, with data 
availability playing a key role (Shapiro, 2002).  For example, 
fuzzy logic is critical in approximating reasoning, 
nevertheless, its weak point is the lack      of effective learning 
ability, unlike ANN. So, merging these technologies through 
a Fuzzy Neural Network (FNN) will allow to focus on taking 
advantage of their strengths and atone for weaknesses 
(Mingzhi et al., 2009). Table 3 enumerates the main 
advantages and disadvantages 

BIBLIOGRAPHIC REVIEW  
This section presents several works using AI in the 

wastewater treatment sector according to the described 
methodology. Figure 3 shows the number of published 
papers reviewed in this study on IA in the wastewater 
treatment industry. The papers’ results reveal that IA is a 
viable alternative  to classical modeling techniques. 

 

 

Figure 3. Number of published papers regarding AI 
techniques for energy reduction in the wastewater treatment 
industry 

Fiter et al. (Fiter et al., 2005) used a fuzzy logic controller 

to adjust the aeration system and reduce energy consumption 
without interfering with the quality of the effluent. The 
presented results demonstrated that saving more than 10% of 
energy is possible. 

Huang et al. (Mingzhi et al., 2009) developed a combined 
fuzzy neural controller to regulate an aerated submerged 
biofilm wastewater treatment process. To cope with the 
complexity of the wastewater process, the authors used a 
flexible neuro-fuzzy inference structure to control the 
environmental performance and economic goals 
simultaneously, with an operating cost reduction of almost 
33%.  

Ostojin et al. (Ostojin et al., 2011) developed a fuzzy logic 
controller using an AI approach to optimize the sewer pumping 
system. The project used a combination of the most reliable 
sensing technologies, data communications techniques, and 
analytical software in the context of the current system 
configuration and operating parameters. Although the results 
showed energy cost-saving, the fuzzy system proved robust in 
relation to the different flow patterns. In order to optimize the 
solution, the authors used a GA to adjust the parameters that 
define the membership functions according to the fuzzy rules. 
The GA system was successfully shown to be adaptable to other 
pumping stations with different characteristics. 

Zhang et al. (Zhang et al., 2012) introduced a scheduling 
model pumping system to reduce energy consumption and fluid 
flow rate after pumping using a neural network algorithm. The 
scheduling model is a Mixed-Integer Non-linear Programming 
Problem (MINLP). The energy consumption in multiple pump 
system configurations can be significantly reduced, although 
with more complex configuration dynamics. In this case study, 
the results indicate that the proposed model reduces the energy 
consumed by the pumps, maintaining the hydraulic load, with 
gains in energy consumption between 7.6% and 24.3%, with a 
margin of error of less than 3%. 

 

 

Table 3. Advantages and disadvantages of ANN, SVM, RF, GA, and FL techniques 

Technique  Advantage Disadvantage 
ANN Adaptation, learning, approximation, capability 

to work with incomplete information, 
distributed memory by entire network 

Hardware dependence, slow 
convergence time, “black box” data 
processing structure, unexplained 
solutions of the network 

RF The bagging algorithm and the Ensemble 
Learning technique reduce the overfitting 
problem and variance, therefore improving the 
accuracy, classification, and regression, ease of 
handling missing values, handles non- linear 
variables efficiently, less impacted by noise 

Requires a lot of computing power and 
resources, long training time as it 
generates a lot of trees 

 

SVM Handles non-linear variables efficiently through 
a Kernel function, classification, regression, 
and stability 

Memory capacity requirement, long 
training time for large datasets, difficult 
understanding and interpretation 

GA Systematic random search, derivate-free 
optimization, multiple optimal solutions 

Difficult to tune, lacks effective learning 
capability, computational complexity 

FL Approximate reasoning Difficult to tune, no convergence criterion 
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Wei and Kusiak (Wei and Kusiak, 2015) presented two data-
driven ANN approaches to predict influent flow in WWTP: a 
static Multi-Layer Perceptron (MLP) and a dynamic neural 
network. Despite the good performance of MLP for the current 
time prediction, the Dynamic ANN, with an online corrector, 
provides a better prediction with 15% accuracy, representing an 
advantage regarding managing energy efficiency during 
treatment stages. 

Zhang et al. (Zhang et al., 2016) developed a data-driven 
method based on an ANN to increase the performance of 
wastewater pumping systems, with two objectives: reducing 
energy consumption while maximizing wastewater flow rate. 
According to the results, energy consumption could be 
diminished by 11%, corresponding to a gain of 14%. 

Asadi et al. (Asadi et al., 2017) presented a data-driven 
proposal applied to the aeration process of WWTP, aiming to 
optimize energy consumption without sacrificing water quality. 
Results obtained demonstrated a 31% reduction in airflow while 
maintaining the same water quality within the legal 
requirements due to the increase in noise caused by the lack of 
high-frequency data such as BOD and TSS. The author 
recommended more frequent sampling of mentioned variables 
to develop a reliable control system. 

Han et al. (Han et al., 2018) developed an improved Multi-
Objective Optimal Control (MOOC) strategy to improve 
operational efficiency according to the Effluent Quality (EQ) and 
reduce Energy Consumption (EC) in the WWTP under three 
weather conditions: dry, rainy, and stormy weather. They use an 
adaptative kernel function model of the process to describe the 
complex dynamics of EQ and EC dedicated to MOOC strategy, 
and an adaptative Fuzzy Neural Network Controller (FNNC) to 
achieve the tracking control of the set points. Compared with 
other optimal controllers, such as the Adaptative Multi-Objective 
Differential Evolution algorithm and PI controller (AMODE-PI), 
the MOOC strategy’s performance of the EC’s values is reduced 
by 1.2%, 1.15%, and 2.2%, according to the three different 
weather conditions. 

Filipe et al. (Filipe et al., 2019) proposed a data-driven 
optimization framework developed specifically for operating 
variable-frequency pumps in the wastewater treatment sector. 
Using ML techniques combined with innovative predictive 
control, the authors presented an enhancement in the energy 
efficiency of 17%, in contrast to normal operations conditions. 

Ramli and Hamid (Ramli and Hamid, 2018) presented a data-
based modeling study to predict WWTPs energy consumption 
using different machine learning methodologies: Linear 
Regression (LR), K-Nearest Neighbor method (K-NN), SVM, and 
ANN. According to the results, the SVM technique has the best 
Amount of Cost Saving (ACS) of 158 939, but the second-highest 
Root Mean Square Error (RMSE) of 62 280. The method that 
provides the least error and maximum amount of production is 
the artificial neural network. Before the analysis was carried out, 
the Energy Performance Indicator (EnPI) was 0.44 kWh/m3. The 
reduction target is 10%, which results in 0.40kWh/m3. 

 

 

Cao et  al.  (Cao and Yang, 2020)  proposed  a  modified  
neural  network  with  adaptive  control based on an Online 
Sequential  Extreme  Learning  Machine  (OS-ELM)  (Liang et al., 
2006, Huang et al., 2004). According to the results presented, this 
technique of oxygen control in the aerobic and anoxic treatment 
tanks represents a 40% reduction in energy consumption. 

Most of the cited papers in the previous paragraphs of this 
chapter focused on the application and comparison of AI 
techniques in the treatment stages of WWTPs with higher energy 
consumption: pumping systems and in the biological reactor. 
Despite the importance of having a vision of the main 
consumptions, we must not forget the interdependence between 
the different stages of treatment, as well as the importance of 
data collection, and the associated inefficiency phenomena in the 
process of modeling energy consumption. Thus, bearing in mind 
the complexity of wastewater treatment systems, the three 
papers that most stood out in the research carried out for this 
paper review will be presented below. 

The following study by Long and Cudney (Long and 
Cudney, 2012) advocated integration on the same platform, 
establishing a relationship between energy and environmental 
systems in wastewater treatment plants. This model’s primary 
goal was to optimize each treatment stage through a detailed 
evaluation according to each approach, allowing the WWTP 
operator to define strategies, schedule operations, and 
implement techniques to reduce consumption without 
neglecting the requirements imposed by environmental policies. 
Throughout the study, flow-based models were defined for the 
energy and environmental management systems (of China, 2005) 
based on common energy efficiency technologies, environmental 
occurrences, and their respective corrective measures. The 
factors considered an important part of the integrated 
management model were divided into dependent and 
independent variables and subjected to multivariable regression 
analysis. The calculation of the energy intensity according to 
each treatment stage made it possible to identify the most 
significant factors for the performance rating, according to the 
Energy Star reference model. Biological oxygen demand, 
suspended solids, flow rate, and precipitation were independent 
variables, and energy was considered dependent. Data was 
recorded over 23 months according to the independent variables. 
The value of the adjusted R2 = 0.5655 for the three main treatment 
stages: clarifying, oxidation, and filtering, which demonstrates 
the effectiveness of the model. The authors (Long and Cudney, 
2012) demonstrated the importance of a holistic view in 
balancing environmental and energy factors throughout the 
treatment process. The simultaneous analysis of the systems and 
the correlation between the respective performance factors 
enable the creation of a balanced management model that is 
more efficient and less energy-consuming. Long and Cudney 
(Long and Cudney, 2012) have also shown that auditing tools to 
pursue the defined objectives lack the monitoring of the cause-
effect dynamics. 
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Table 4. Application of AI to energy reduction during wastewater treatment 

Work Treatment stage AI technique Performance Energy R2 reduction 

(Fiter et al., 2005) Aeration system FL  10% 

(Mingzhi et al., 2009) Aerated submerged biofilm FL  33% 

(Ostojin et al., 2011) Pumping systems FL, GA   

(Zhang et al., 2012) Pumping systems ANN 7.6%–24.3%  

(Wei and Kusiak, 2015) Activated sludges DM  15% 

(Zhang et al., 2016) Pumping system ANN, RF, SVM 0.93% 10% 

(Asadi et al., 2017) Aerobic biological ANN, DM  31% 

(Han et al., 2018) Activated sludges FL, MOOC 1% 1.6% 

(Filipe et al., 2019) Aerobic biological RL 2.43% 16.7% 

(Ramli and Hamid, 2018) Cost  modelling of   WWTP LR, KNN, SVM, ANN  10% 

(Cao and Yang, 2020) Control of WWTP OS-ELM  40% 
(Long and Cudney, 2012) Integration systems MR  0.5655a 

(Torregrossa et al., 2016) Efficient Management WWTP ANN, SVM, RF  0.9 

(Torregrossa et al., 2018) Cost modelling of WWTP ML   

Note: a – Adjusted R2 

 

Torregrossa et al. (Torregrossa et al., 2016) introduced a 
methodology to perform a daily benchmark analysis under an 
unreliable database, applied to the Energy Online System (EOS) 
developed in the framework of the project INNERS (Innovative 
Energy Recovery Strategies in the urban water cycle). EOS 
calculates a set of KPIs to evaluate energy and process 
performances. Due to the complexity of the treatment system 
and the inherent data noise, the authors (Torregrossa et al., 2016) 
used the FL, ANN, SVR, and RF methodologies. The RF 
regression model was also applied to find the best results for the 
chemical oxygen demand analysis and  has  been  used  to  solve  
regression  problems  in  WWTP  (Durrenmatt and Gujer, 2012). 
According to the results presented in this study, the author 
obtains different results: the validation dataset R2 = 0.72, the test 
dataset R2 = 0.71, and for the training dataset R2 = 0.90. 

Torregrossa et al. (Torregrossa et al., 2018), in order to 
understand the energy costs structure of WWTP (using 
conventional activated sludges technology), proposed a new 
methodology supported by an ML algorithm named Machine 
Learning Cost Modeling (MLCM), more adapted to complex and 
non-linear variables. Despite the importance of energy tariffs as 
support for decision-makers, the authors showed that the impact 
of the price had less importance than other parameters in 
modeling the global energy consumption of the WWTPs. 

Table 4 summarizes the reviewed papers according to the 
different AI applications used to reduce energy consumption in 
wastewater treatment plants. The first column identifies the 
work. The second column indicates the stage where the method 
is applied. Then, the third column presents the methods used in 
the problem. The fourth column shows the algorithm’s energy 
performance. The penultimate column shows the energy 
reduction achieved by the algorithm. Finally, the last column 
presents the coefficient of determination R2. 

Regarding AI algorithms, ANN and SVM are among the most 
used machine learning techniques, followed by RF,  GA,  and  FL.  
According  to  this  review  paper,  modeling  techniques  
supported by intelligent optimization methods and data 
classification methods can reduce operational costs by about 

30%, which will also contribute to the reduction of electricity 
costs. If the control is focused on the aeration stage, where energy 
consumption is higher (64 to 74% of total energy consumption), 
the reduction can reach 15%, thus demonstrating the importance 
of optimization and data classification methodologies based on 
artificial intelligence. 

Some papers highlighted the importance of identifying and 
quantifying inefficiency phenomena that impact the calculation 
of indicators, especially those related to electricity consumption. 
It is not possible to evaluate and quantify the energy efficiency 
of a treatment system without knowing all the input variables 
and their origin. 

CONCLUSIONS AND FUTURE TRENDS 
Wastewater treatment systems are large electricity 

consumers, so it is crucial to define energy policies that allow 
more energy efficiency and, consequently, less greenhouse gas 
emissions into the atmosphere. The high-quality requirements 
for treated wastewater, as well as energy and environmental 
restraints, impose new challenges on the industry and create an 
opportunity for intelligent systems incorporation. 

This review analyzed the contributions of AI techniques on 
the main energy modeling tools used in wastewater treatment 
systems since 2005. The methodology approach allowed a 
selection of papers, identifying and contextualizing the main 
problems and the different optimization strategies. The main 
conclusion of this review is the difficulty in accessing data. The 
variability of the physical-chemical characteristics of the influent, 
as well as the unpredictability of inefficiency phenomena, 
transform WWTPs into complex and non-linear systems. These 
and other factors, yet unknown, require tools that can analyze 
and process data in real-time, decrease response time, and 
improve decision support. It also demonstrated the importance 
of a holistic vision in defining procedures and techniques for 
configuring and managing treatment systems. The diversity of 
occurrences requires a complementarity of competencies in the 
management model. 
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The ML techniques modeling costs in WWTPs can be a 
suitable basis for new scientific and technological achievements 
to increase the energy efficiency of treatment systems. Artificial 
Intelligence algorithms, such as ANNs, RF, SVM, GA, and FL, 
may provide improved control of effluent quality and efficiency 
of energy consumption simultaneously. Despite the small 
number of published papers, it was highlighted through this 
review the importance of AI in reducing electrical energy 
consumption, which in the aerobic and anoxic treatment tanks 
can represent 40%. On the other hand, given the importance of 
different inefficiency phenomena,  AI can also contribute to their 
identification and quantification as a way of assessing their 
impact on consumption and providing data to the supporting 
decision. 
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