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 Interaction and command modes as well as their combination are essential features of modern and futuristic 
robotic systems interacting with human beings in various dynamical environments. This paper presents a 
synthetic overview concerning the most command modes used in Human-Robot Interaction Systems (HRIS). It 
includes the first historical command modes which are namely tele-manipulation, off-line robot programming, 
and traditional elementary teaching by demonstration. It then introduces the most recent command modes which 
have been fostered later on by the use of artificial intelligence techniques implemented on more powerful 
computers. In this context, we will consider specifically the following modes: interactive programming based on 
the graphical-user-interfaces, voice-based, pointing-on-image-based, gesture-based, and finally brain-based 
commands. 

Keywords: human-robot interaction, teleoperation, speech-based commands, image-based commands, gesture-
based command, brain-computer interface. 

INTRODUCTION 
In a modern technological sense, the first robots which 

appeared during the second world war were serial arm 
manipulators. They were mainly dedicated to telemanipulate 
objects in hazardous environments such as nuclear plants and 
to perform simple repetitive industrial tasks. During this 
historical period, the traditional modes of command and 
control were telemanipulation, off-line robot programming, 
lead-through and teach pendant (Low, 2006; Wallén, 2008).  

Later on, since the seventies, with the progressive 
improvement of computer performances, serial robot have 
proven to be very efficient for various industrial tasks. 
Moreover, since the eighties, parallel robots joined the domain 
of industry adding principally more precision and speed 
compared to serial robots (Ceccarelli, 2001; Gasparetto and 
Scalera, 2019).  

Next, since the nineties, new shapes of robotic systems 
appeared and continuously evolved in structures, 
functionalities and performances (Zamalloa et al., 2017). 
Different robot shapes are experienced such as mobile robots, 
cable-based robots, flexible robots like snakes, various other 
animals-like robots, drones, and even humanoid robots 
(Ramos, 2018). It is a fact that modern robots are becoming 
popular and proved to be capable of achieving relatively 
complex tasks in various environments including unknown, 

hazardous and/or remote areas. Some examples of such systems 
are space exploration robots as rovers, assistive robots for elderly 
and disabled people, surgery robots, etc. Humanoid robots are 
particularly remarkable because of their resemblance to human 
beings. They are going to be used in social environments with the 
capability to interact directly with human beings. They will be 
also used for rescue operations, during wars as soldiers, etc 
(Ford, 2015). 

In the course of this extensive evolution of modern robotic 
systems, adaptive and smart Human Robot Interaction (HRI) 
rises unavoidably to be essential for ensuring the success of 
performing complex tasks and missions. As a consequence, HRI 
has emerged and stands more and more as a topic of a 
paramount importance. In the same context, command modes 
play a fundamental role in any dedicated framework of human-
robot interaction as they are substantial features by which 
communication, interaction, cooperation and expected mutual 
understanding between humans and robots become possible. In 
fact, this topic is an essential key for successful development of 
modern and futuristic HRIS (Sheridan, 2016) and justifies the 
interest to present this overview about the most used command 
modes for HRIS. 

This paper briefly presents some of the most relevant HRI 
techniques that are used to generate robot commands. It includes 
telemanipulation that evolved towards telerobotics, off-line 
robot programming, interactive-based command, voice-based 
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command, gesture-based command, pointing on image-based command, and brain-based interaction and command. 
 

 
TRADITIONAL MODES OF HRI 

There are actually different techniques through which a 
human can interact with and command robots. However, at the 
beginning of the emergence of robotics, there were few 
elementary interaction and command modes. 

 

Teleoperation 

Teleoperation constitutes the first mode of interaction 
and command that has been employed in teleoperating 
robotic systems. It started around the 1945 with the first 
master-slave manipulator designed to manipulate 
radioactive material in hot cells (Sheridan, 1992). 
Teleoperation is a  manual control performed by an operator 
who is usually situated in a local site controlling remotely a 
robot which is situated in its workspace environment. The 
most common configuration of teleoperation is that of the 
master-slave where the human operator (master) directly 
controls the remote robot (slave) by means of a hand 
controller. Traditionally, the task monitoring was assured by 
direct vision if possible and by cameras. Figure 1 illustrates 
the general organization of a teleoperation system presented 
in (Sheridan, 1992). On the left side, one can distinguish the 
human operator (master) who is teleoperating and 
supervising the task. On the right side, one can distinguish 
the subordinate (slave) which is executing the received 
commands. 

However, this mode continuously involved the 
operator’s attention in a direct coupling. It, thus, generated 
fatigue and a boring feeling during repetitive tasks, leading 
to cognitive fatigue of the operator. Besides that, other 
drawbacks can affect teleoperation such as the weakness of 
sensory feedback, the limited communication bandwidth, the 
operator's subjective experience and present work 
conditions. There is also one issue that very seriously affects 
and reduces the performance of teleoperation and which is 
hard to address. It is the control instability that is caused by 
time delays of the feedback signal between the operator and 
the telemanipulated robot (Lichiardopol, 2007; Sheridan, 
1992; Zaatri, 2000).  

Thus, to overcome these problems, it was necessary to 
incorporate a certain degree of autonomy into the system in 
order to relief the operator. So, with the continuously 
increasing power processing of computers and IA, the 
development of traditional teleoperation leaded to 
telerobotics and to supervisory control systems. These last 
techniques were developed since the seventies and were 
enriched with more HRI techniques, smart, adaptive and 
multimodal user interfaces (Oussalah and Zaatri, 2003; Zaatri 
and Van Brussel, 1997). The most common techniques which 
have been used later on to relief teleoperation were: 
telepresence, teleprogramming, semi-autonomous control, 
intelligent assistance to support operators and augmented 
reality (Lichiardopol, 2007; Makhataeva and Varol, 2020; W. 
S. Kim et al., 1992). 

 

 

Off-line Programming Mode 

Contrarily to telemanipulation techniques where the 
human operator is fully engaged in the interaction with the 
robot; for off-line programming techniques, the task execution 
is fully managed by an automatic controller so that the operator 
is left almost in an observer role. The off-line robot 
programming technique is similar to computer programming 
languages which are usually used for simulation. It consists of 
writing a textual program (code) that contains the 
specifications for task execution. The program is a software 
which is written independently of the robot cell (off-line). To 
execute the task by the robot, the operator interacts with a 
computer from where he uploads the program and launches its 
execution. Once the program starts, the computer manages 
automatically the task by means of the robot controller 
according to the program instructions. In the beginning phase 
of robotics, the operator is left out of the task operations unable 
to intervene. Nevertheless, while supervising the task 
execution, he/she can only intervene if necessary by means of 
an emergency button to stop the task execution by disabling the 
power supply.  

Contrary to traditional teleoperation; textual 
programming, while it is fully automatic, lacks flexibility for 
performing complex tasks which require some skills. It is not 
practical in unstructured environments. Moreover, because of 
the uncertainties inherent to modelling real environments, 
robots and sensors. This mode is not applicable at all in 
unknown and remote environments. It is however well 
adapted for programming simple tasks (Mitsi et al., 2005; Pan 
et al., 2012; Yong and Bonney, 1999).  

Other techniques: teaching by demonstrating  

Beside teleoperation and off-line programming, there are 
two other traditional methods that were used to facilitate the 
programming of robots for performing some simple repetitive 
but relatively complex manipulation tasks. They are based on 
teaching by demonstration, and they are namely the lead 
through method and teach pendant method. 

"Lead through method:" is a method that is also referred to 
as hand guidance programming method. It is an intuitive 
method that involves the human operator to demonstrate the 
task by performing it manually by guiding the robot end-
effector. During the demonstration phase, the operator moves 
by means of his own hands the robot's the end-effector and 
guides the robot while performing the task. The robot 
controller stores the trajectory provided during the 
demonstration. This enables the robot to play back 
automatically the demonstrated task during the production 
cycle. The walk through method was usually appropriate for 
some type of tasks such as spray painting and arc welding 
(Argall et al., 2009; Eakins et al., 2013; Qi and Zhang, 2009). 

"Teach pendant method:" like the lead-through method, 
teach pendant method consists of teaching the robot how to 
perform the given task, but by means of a teach pendant which 
is used as an interface tool that serves to guide the robot. The 
teach pendant is a hand-held device that is used to control the 
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robot without contact and remotely. It is provided in the form 
of a portable device like a tablet with buttons, switches and 
dials corresponding to specific functions designed to 
controlling the robot.  

During the teaching or learning phase, the operator holds 
and uses the teach pendant to drive the robot step by step to 
any desired locations which are required to performing the 
task. Thereafter, the relevant poses are stored, and finally, 
during the production cycle, the robot repeats autonomously 
the movements and actions that lead to perform the task at 
specified speed. (Fukui et al., 2009; Joseph, 1998). 

The lead through and teach pendant methods involve the 
human operator in the task, but only during the teaching 
phase which is performed out of the production cycle. After 
learning the processes, the robot actions are converted into 
textual programs which are used thereafter to automatically 
perform the task (Argall et al., 2009). 

 

INTERACTIVE COMMANDS BASED ON 
GUI 

If we consider the previously presented traditional 
interaction modes, we notice that there was a need to free the 
operator from his continuous engagement during full 
teleoperation and inversely to give him the possibility to 
intervene when needed during the full automatic task 
execution of the programming mode. To this end, the 
interactive control mode, which has emerged around 1995, has 
provided an alternative for the user to intervene during task 
execution and even to switch from one command mode to 
another. It was fostered by the apparition of software 
interfacing facilities. It has been made possible conjointly with 
the development of the object-oriented programming 

techniques and their corresponding languages such as C++, Java, 
Python, etc. Basically, interactive programming enables to built 
up Graphical User Interfaces (GUI) on computer screens that 
contain graphical objects like windows, panels, buttons, sliders, 
pop-up menus, etc. Each graphical object can be linked to a 
function that can be executed each time the user activates the 
corresponding object from the GUI. The generation of functions 
can be done by mouse clicks on particular widgets, by typing 
specific character keys of the computer keyboard or by screen 
touch (Figure 2). The GUI  enables also the presentation of data 
in different formats and structures (texts, images, videos) 
(Appelstal et al., 2018; Myers, 1995).  

From the HRI point of view, the introduction of interactive 
programming techniques was welcomed as it gives the 
possibility to generate interactively commands via GUI while the 
robot is even performing operations without necessarily 
stopping it. It enables also the reflection of feedback information 
via the GUI. 

As shown in Figure 2, many needed functions can be 
programmed and launched via the GUI. Position commands, 
joint commands, velocity commands, force commands, either 
constrained or not can be generated interactively. Within this 
interactive mode, the operator can carry out pick-and-place tasks 
with robot manipulators or direct a mobile robot to some 
destination. For instance, to achieve tasks with this mode, the 
operator directs the robot by a series of clicks on the appropriate 
buttons. 

In addition, this mode enabled to combine pure teleoperation 
with pure textual programming, providing a way of overcoming 
their inherent limitations. These modes of teleoperation, off-line 
programming and interactive programming can be combined 
and shared to perform tasks more efficiently. This interactive 
mode has opened many ways for HRI and cooperation (Marion 
et al., 2017; Zaatri, 2000; Zendoui et al., 2018)

 

 
Figure 1. Teleoperation system 
 

 
Figure 2. Interactive commands 
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MODERN COMMAND MODES 
Modern command modes make the evolution of the task 

easier and more efficient. Yet, they require more complex 
systems to be implemented for they need sensors, relatively 
fast computers and AI techniques. They need algorithms that 
process data, extract relevant features and important 
information as humans do. In the following sections, we 
present speech-based command, pointing on image-based 
command, gesture-based command, and brain-based 
command. 

Speech-Based Commands 

It is well known that speech is the most natural way to 
communicate between humans otherwise talking to robots at 
the earlier age of robotics was like a dream. However, later 
on with the development of AI, human speech appears to be 
an interesting mean to command, control and communicate 
with robots. 

Still, using human speech to command robots requires 
speech recognition techniques, which started in the early 
1950s. Of course, early systems had limited vocabulary, but 
modern speech recognition systems have evolved and are 
now widely available in many domains. They have gained 
use with intelligent assistants, such as Amazon's Alexa, 
Apple's Siri and Microsoft's Cortana, Google’s Google 
Assistant and others (Terzopoulost and Satratzemi, 2020). 
These systems are enabling speech interaction with 
computers and other devices. They have capabilities to 
interpret what is said through speech recognition systems 
and even may respond to questions or commands across text-
to-speech systems. 

In particular, automatic speech understanding for 
generating robot commands is linked to the field of 
Automatic Speech Recognition (ASR). ASR is intended to 
convert human speech into written texts. Most Speech-based 
commands and interaction between humans and robots have 
been developed with the recognition of isolated words 
because it is easier to be used as robot commands. Examples 
of sentences that are used by speech systems to command 

robots are: go to initial position, find table, move left, etc. 
However, because of the complex nature of voice signals, ASR 
still remains in some circumstances a relatively hard issue for 
robots to understand speech commands. 

The principle of speech commands 

The principle used for most word recognition systems can 
be illustrated in Figure 3 and Figure 4. It comprises two phases: 
the learning phase and the recognition phase. The learning 
phase consists of creating a list of words which are stored into 
a dictionary as reference words. The recognition phase consists 
of identifying any new spoken word to one of the reference 
words stored in the dictionary.  

An example of ASR we have implemented was based on 
the following procedure: any spoken word which is a 
continuous acoustic signal is translated by the microphone into 
an electric continuous signal. This continuous electrical signal 
is then sampled by a sound card. Some digital operations are 
then applied such as pre-emphasis, Fast Fourier Transform 
(FFT), power spectrum, filter bank integration (Mel's Filter), 
logarithmic compression, Discreet Fourier Transform. The final 
output is a set of coefficients which are called Mel Frequency 
Cepstral Coefficients (MFCC) (Muda et al., 2000). MFCC are the 
main features that characterize a speech signal. They serve to 
build the dictionary of the robot commands (references) after a 
training phase of the user. They serve also in the recognition 
phase to identify any new unknown robot command by 
comparing it to those stored in the dictionary. 

In order to recognize any spoken words considered as 
possible robot commands, ASR is using various methods of 
classification such as  Hidden  Markov  Model  (Rabiner, 1989), 
VQ  vector  quantification  (Linde et al., 1980),  and learning 
techniques as Neural Networks (Paul and Parekh, 2011). 
However, the  MultiLayer  Perceptron (MLP)  is  of special  
importance  for  acoustic modeling in  ASR (Pinto, 2010). As an 
example in one of our implementation, the role of the classifier 
is played by the MLP (Zaatri et al., 2015). It selects the closest 
reference word with respect to the spoken one. The scheme of 
an ASR is represented in Figure 4. 

 

 
Figure 3. Learning phase 
 

 
Figure 4. Recognition phase 
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However, speech-based command is interesting for 
handicapped people using for instance wheelchairs id the 
operator’s hands cannot be used or if they are busy with some 
other tasks. With the recent development of personal and 
humanoid robots, this mode is also gaining more interest. 
Nevertheless, ARS applied to robotic domain still suffers 
from many barriers. It is sensitive to hard noisy 
environments. The results depend on the personal 
characteristic of the operator that can only be improved by a 
long training. Efficient success can be obtained with limited 
vocabulary and cannot match all and new contexts  
(Oussalah and Zaatri, 2003; Zaatri et al., 2015).  

Commands by Pointing on Images (Look-then-Move) 

The use of vision to command and control robots is a very 
important element for enhancing robot applications. Today, 
many commercial robotics integrating vision systems are 
available. But because of the sensitivity and complexity of 
image processing, the efficiency of such systems is mainly 
limited to static industrial applications. For telerobotics, 
vision-based control techniques, as stressed in (Sheridan, 
1992), make a powerful set of tools for robot interaction and 
control especially in unstructured and unknown 
environments. These techniques do not require pre-
knowledge or models about the objects to work with. With 
these techniques, the human operator designates the objects 
or locations of interest from the received images; afterwards 
the system extracts their corresponding features and heads 
towards them in real space. In all these techniques, the 
supervisor’s role, as observed in (Sheridan, 1992) “is limited 
to conception and pointing, and the tele-robot do the rest”.  

In general, vision-based robot command systems can be 
divided in two main folds regarding the applied control 
system architecture. The earlier technique is named look-
and-move and the other one is visual servoing. 

Image-Based as Look-then-Move Commands 

Because real-time image processing was relatively slow, 
the earlier vision-based systems were principally designed 
for applications of type "look-then-move" which are usually 
dedicated to static environments. They were also referred 
sometimes as point-and-click or image-based commands 
(Kim and Stark, 1989; Oussalah and Zaatri, 2003). From the 
control system viewpoint, their control architecture is an 
open loop one without continuous image processing 
feedback.  

These systems include stereovision systems to capture 
images. They work as follows (Figure 5). A scene is selected 
by the operator which inside which the object of interest 
appears in both stereovision cameras. The operator selects 
this object in one image by pointing on it with a pointing 
device such as a mouse click. The stereovision system grabs 
automatically the left and right images. Then a stereovision 
algorithm proceeds these images in order to extract the 
corresponding 3D coordinates of the selected object of 
interest in the real word. Once, these 3D coordinates are 
estimated, they are sent as a position command to the robot 
for heading towards this location or this object. In fact, the 
robot executes this command by performing “blind” 

movements which assumes that the environment remains 
static after the robot has started to move. It is an open-loop 
approach of a type fire and forget (Wang, 2016) . By repeating 
this process, the operator can direct easily the robot to perform 
manipulation tasks and/or navigation. 

However, while this technique is simple, it enables high 
level commands. It represents an efficient way to generate 
look-then-move robot commands for static environments.   

A successful implementation of an automatic image-based 
(look-then-move) commands named click-and-move, has been 
developed for six DOF manipulators. It has been described in 
(Oussalah and Zaatri, 2003; Zaatri and Van Brussel, 1997). It has 
also been extended to mobile manipulators (Zaatri, 2000) and 
to parallel cable-based robots (Bouchemal and Zaatri, 2014). All 
our experiments have proven that it is a very powerful 
technique for various types of robots in the range where 
calibration of the cameras has been performed.  

Visual Servoing Control 

With the increasing power of image processing, it becomes 
possible to apply machine vision to dynamic systems acting or 
moving in a non-static environment and capable of tracking 
moving targets. This technique, known as vision-based control 
or visual servoing appeared in 1979 (Corke, 1994; Hans, 2018). 
Visual servoing is distinguished from look-then-move since it 
enables to control the robot's motion using real-time feedback 
based on vision sensors (Vahrenkamp et al., 2008). 

Gestural-based Commands 

Gesture-based robot command is a technique that uses the 
movement of some body parts in order to interact and 
command robots. Gestures can be of any type of body 
movements: head movement, hand gesture, anybody 
movement and even facial expressions. Also, tools moved by a 
human operator such as pencils, flags, sticks, etc. can be used 
to interact and command robots.  

As the many modern modes of robot command, gesture-
based command has been studied, designed and implemented 
by many authors. A survey concerning gesture-based 
interaction is presented in (Galván-Ruiz et al., 2020; S. Mitra 
and T. Acharya, 2007). Technically, in most applications, 
gesture-based interaction requires detection and identification 
of gestures as intended robot commands. Actually, detection 
and identification of gestures are mainly based on object 
recognition and tracking approaches involving CCD camera 
sensors. As for visual servoing, several image processing 
methods are used for image recognition such as features-based, 
appearance-based, gradient-based, learning methods, etc. 
(Baker and Matthews, 2004; Bonci et al., 2021; Lucas and 
Kanade, 1981; Nearchou, 2011).  

Principle of Gesture-Based commands 

The principle of gesture-based interaction systems is 
simple. It requires sensors that capture sequences of images 
during the movement of a human body part or of any tool 
moved by the operator. These sequences of images are then 
analyzed by an image processing software in order to track the 
motion of some detected elements of interest. Once a significant 
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movement is detected and tracked; the final configuration of 
the gesture is identified. It is interpreted with respect to a 
code that links detected movements with corresponding 
robot commands. This identification of the gesture is finally 
sent as a corresponding robot command. Lastly, the robot 
performs the intended action or task. Figure 6 summarizes 
the principle of gesture-based robot command showing the 
sequence of the designed and implemented main operations 
(Zaatri, 2021). 

Applications of gesture-based robot command are 
numerous and can be adapted and extended according to 
many needs and contexts. Gesture expressions can be 
employed in regions where the speech is useless. This can 
happen, for instance, in noisy places, in underwater areas, 
and in empty space where the medium cannot convoy the 
voice waves as with astronauts (Liu et al., 2016). It can be also 
used for learning by demonstration and for imitation as 
reproducing operations in medical care or tele-surgery 
(Staub et al., 2011). This command mode is also interesting in 
some military activity to communicate and direct remote 
teams, autonomous and unmanned systems (Elliott et al., 
2016). Moreover, it can be used in assistive robotics for 
supervising deaf people, for surveillance of disabled people, 
etc. (Bouchemal and Zaatri, 2013).  

In addition, the gesture-based interaction can be designed 
with contact or without contact. Examples of gesture 
interaction with contact are used for teaching on blackboards, 
tables and other supports. In these situations, markers and 
colours can be employed to facilitate the tracking of elements 
of interest (Bouchemal and Zaatri, 2013; Nearchou, 2011; 
Sigalas et al., 2010). Moreover, with the event of Covid-19 
pandemic, gesture-based control without contact is gaining a 
special importance by avoiding touch and contact with 
contaminated people and objects like door handles, 
machines, etc. 

This command mode offers the advantage of freeing the 
operator from the contact with the computer. Nevertheless, 
some difficulties which are related to image processing and 
environmental issues can limit the capabilities and 
performances of this command mode.  

 

BRAIN-BASED INTERACTION AND 
COMMANDS 

Beside the variety of existing human-machine interaction and 
command techniques, these last decades, biological ones have 
opened new unprecedented perspectives towards very 
interesting and promising innovative researches. Indeed, bio-
mechanical actions, myo-electric and bio-cybernetic techniques 
can be used for interaction, command and control of dynamical 
systems such as robots, wheelchairs, and even paralyzed  body 
parts of human (Berna-Martinez, 2011; Martinek et al., 2021; 
Rechy-Ramirez and Hu, 2015).  

In this context, the mastering of the brain activity of human 
beings for interacting and commanding systems reveals to be a 
very attractive topic. Indeed, brain activity is the prime source 
for generating command signals. In the past, understanding 
mind thoughts and detecting intentions were considered as a 
kind of telepathic capability which only exists in science fiction. 
However, with recent advances in neuro-sensing technologies, 
this belief is finally turning into reality (Nam et al., 2018). As a 
result, the field of human-robot interaction has been significantly 
enriched by the brain-based interaction and command 
techniques. It is actually possible for a subject, by means of  Brain 
Computer Interfaces (BCI), to  detect or generate commands that 
can be used to manipulate virtual or real systems according to 
intentions through the brain activity (Nicolas-Alonso and 
Gomez-Gil, 2012).  

 

 
Figure 5. Look then move commands 
 

 
Figure 6. Look then move commands 
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Principle of Brain-Computer Interfaces 

Crow It is well established that human brain activity 
consists of emitting waves with certain patterns as a result of 
external stimuli or mental states (Buzsaki, 2006; Doelling and 
Assaneo, 2021). BCIs are specific devices which are capable 
of capturing and measuring brain activity, then extracting 
interesting features, and finally converting these features into 
outputs to interact with and command dynamic systems. 
Thus, BCIs enable users to interact with computers and other  
devices by means of brain activity only (Afonso et al., 2014; 
Afonso, 2013; Yonck, 2002). They provide a unique way of 
communication between a human and a machine (or device) 
without any neuromuscular intervention (Abiri et al., 2017; 
Wolpaw et al., 2002). More generally, Brain–Machine 
Interfaces (BMIs) are devices that translate neuronal 
information into commands capable of controlling external 
software or hardware such as computers, wheelchairs, 
prosthesis, and robots.  Figure 7 shows a scheme of a BCI 
interfacing and converting brain activity of a user into 
command signals with possible feedback (dotted lines) to the 
user.  

The design principle of BCIs is similar to most other 
interfaces such as speech-based, image-based, gesture-based 
ones. It consists of converting basic signals into commands 
by means of a set of processing operations: detecting the 
primary user's signals, processing it in order to extract 
relevant features, classifying the obtained features in order to 
decide to which predefined command it is supposed to have 
been issued; then this command is sent for execution (see 
Figure 8). 

BCI techniques 

Different techniques are used to measure brain activity 
for BCIs. Most BCIs use electrical signals which are detected 
using sensors placed invasively or non-invasively. There are 

several techniques for noninvasive BCI, such as EEG 
(electroencephalography), MEG (magnetoencephalography), 
or fMRT (functional magnetic resonance imaging: 
tomography) (Ferreira et al., 2008). Electroencephalography 
(EEG) is a physiological method to record the electrical activity 
generated by the brain via electrodes placed on the scalp 
surface. The signal amplitude is usually under 100 μV and the 
frequency band of normal EEG signals is usually above DC up 
to 50 Hz (Martinek et al., 2021). 

In invasive techniques, special devices are inserted directly 
into the human brain by surgery. In Semi-invasive, devices are 
inserted into the skull on the top of the human brain, or directly 
on the cortex (called Electrocorticography – ECoG); the surface 
of the brain (signal having about 1- 2 mV of amplitude (Ferreira 
et al., 2008). In general, non-invasive techniques are considered 
as safest, of low-cost type of devices and then easiest for 
studies. However, the captured a human brain signals are 
weaker compared to invasive techniques which are in direct 
contacts with neural cells (Ferreira et al., 2008; Steyrl et al., 
2016). 

Applications and Perspectives of BCIs 

From the beginning, most applications of the biological and 
physiological control techniques were oriented towards the 
assistance of handicapped and disabled people. The progress in 
developing BCIs is providing a lot of hope for this community, 
especially for those without muscular capability. What is 
remarkable concerning the BCIs is that most applications 
dedicated to medical applications can involve the user at the 
same time as a commander and as a subject. 

After a training period, the user can learn how to generate 
commands by thoughts, to control and activate prosthesis 
members or his own body parts such as paralyzed members 
(Baniqued et al., 2021; Mane et al., 2020).  Figure 9 present an 
operator wearing a BCI for controlling a mechanical system. 

 

 
Figure 7. BCI interfacing brain activity to systems  
 

 
Figure 8. Global organization of BCIs 
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Figure 9. Operation with BCI commanding a mechanical 
system 

 

BRIEF SUMMARY ABOUT AI AND HRI 
Since the emergence of the first theories and approaches of 

AI, there was a hope to infuse these techniques in particular to 
robots for improving their adaptivity and smartness. The flow 
of techniques provided by AI such as symbolic computations, 
genetic algorithms, neural nets, fuzzy logic, and machine 
learning, has served and still serves to attempting to solve and 
overcome many issues that limit robotic applications. Actually, 
AI has fed robots by numerous capabilities with more or less 
satisfying success. Some  remarkable fields are speech 
understanding, object recognition based on vision, 
autonomous navigation, manipulation tasks, interactions with 
humans and other entities, cooperation, and so on (Perez et al., 
2018; Semeraro et al., 2021).  

But following the increasing complexity of robotic systems 
designed to autonomously perform tasks and missions in 
various environments; specific control architectures for 
intelligent systems requiring high level flexibility and 
adaptivity was proposed and implemented. One popular 
example of such architecture is the three layered one which 
combines reflexive and reactive behaviors as well as 
deliberative capabilities (Arkin, 1998, p. 199; R. Brooks, 1986; S. 
Garcıa et al., 2018).  

However, concerning the contribution of AI to the 
particular domain of HRI, some authors have analyzed and 
discussed many relevant applications, challenging issues and 
potential promising perspectives (Feil-Seifer and Mataric, 2009; 
Lemaignan et al., 2017; Semeraro et al., 2021; Sheridan, 2016). 
In fact, the most challenging goal for AI related to HRI is still 
how to design robots that can understand and interpret human 
behaviors and intentions in dynamic and possibly unpredicted 
situations in order to take appropriate decisions?  

To this end, continuous efforts are spent on researching 
techniques and designing join cognitive architectures to 
improve HRI by trying to allow robots gaining more 
knowledge and autonomous development as human beings 
do. Efforts are oriented to developing robot mechanisms to 
enable developmental learning and capability for acquiring 
skills (Lemaignan et al., 2017; Nicolescu and Mataric, 2005; 
Semeraro et al., 2021). Beside supervised and unsupervised 
learning, reinforcement learning, deep learning; 

developmental autonomous learning is a very important and 
challenging approach. It is a kind of a self-learning competence 
where the robot attempt to acquire knowledge and skills by 
continuous observation and imitation of people and other 
intelligent systems. As with humans, it requires observing events 
and situations, classifying and organizing them, extracting 
relevant features and inferring rules and understanding 
situations and partner's intentions (Arents and Greitans, 2022; 
Nicolescu and Mataric, 2005). 

Among the issues and perspectives is the need to make more 
natural the interaction and the understanding between humans 
and robots as between humans themselves. This request 
constitutes also one main objective of the 4th industrial 
generation which intends to establish natural cooperation and 
collaboration between humans and smart robots named 
sometimes  "cobots" in order to achieve common tasks and 
missions (Arents and Greitans, 2022; Chakraborti et al., 2017; 
Javaid and Khan, 2021; Zamalloa et al., 2017). 

Moreover, the actual and futurist development of different 
kind of intelligent robots and their various possible interactions 
with humans is pressing towards a homogeneous representation 
of Human-Robot control architectures. There is a serious need to 
develop a unified control architecture for HRIS that elevates the 
cognitive competencies of the robots to approximate the level of 
humans and eliminates therefore the distinction between 
humans and artificial intelligent systems when working together 
as team members (Harriott and Adams, 2013; Krämer et al., 2012; 
Zaatri, 2021). 

 

CONCLUSION 
This paper has briefly described the most command modes 

involved in HRIS. This includes the traditional interaction and 
command modes which are namely tele-manipulation, off-line 
robot computer programming and learning by demonstration 
(lead-through and teach pendant). It then introduces the modes 
which have been fostered later on by the conjunction of robotics 
with the emergence of artificial intelligence techniques and the 
provision of powerful computing machines. The following 
modes were considered: interactive commands based on GUI, 
voice-based commands, pointing on image-based commands, 
gesture-based commands, and finally brain-based commands. In 
addition, some relevant and challenging issues corresponding to 
some command modes have been briefly discussed. 

One can notice that the generation of robot commands 
follows almost the same process: detecting the intended 
command signal generated by the operator by means of specific 
sensors; then analyzing and identifying this command w.r.t a 
dictionary; and finally ordering the robot to executing this 
command. The constitution of the dictionary that contains the 
references are usually constituted through a learning process. 

Its perspectives on the short and mean terms, there is a need 
to improve the command modes to make them more flexible and 
user friendly. These modes can also be combined under a 
multimodal operator interface to provide more flexible 
interaction and control of robots. There is also a need to use 
techniques of artificial intelligence to enable a human-robot 
cooperation and coordination as partners. On the other hand, 
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BCI is taking more attention for the capability it offers to 
controlling virtual as well as real dynamic systems. Probably, 
the most important domain in the near future is the 
applications of BCI in order to help handicapped and disabled 
people using their paralyzed limbs, wheelchairs, prosthesis, 
and service robots. 
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