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The Internet of Things (IoT) has recently become a significant focus in research circles. IoT facilitates the integration
of numerous physical entities with the Internet. Adhering to a standardized structure is imperative to manage the
vast amount of information effectively. Although many researchers in the field of IoT have proposed various
layered architectural designs, none have yet fulfilled all the requisite architectural criteria. Network congestion
occurs when the volume of data packet traffic surpasses the network's handling capacity. Apart from addressing
congestion issues, it is crucial to harmonize network resources like energy, bandwidth, and latency. The Quality of
Service (QoS) in IoT applications chiefly depends on proficient congestion management, which is the central subject
of this research. The research employs the Adaptive Neuro-Fuzzy Inference System (ANFIS) to regulate congestion,
while the Membership Function (MF) undergoes adjustments through the application of the Modified Squirrel
Search Algorithm (MSSA). This ANFIS amalgamates the advantages of Fuzzy Logic (FL) and Artificial Neural
Networks (ANN) to form a unique framework. Utilizing ANFIS, adaptive analysis services are available to interpret
complex patterns and nonlinear interactions, featuring quick learning capabilities. The MSSA aids in tweaking the
Membership Function within the ANFIS model, achieving a successful global convergence rate. An adaptive
method considering predator presence probability is employed to harmonize the algorithm's exploration and
exploitation functionalities, further bolstered by a dimensional search approach. The simulation results demonstrate
that the proposed Swarm Intelligence Adaptive Neuro-Fuzzy Inference System (SI-ANFIS) method significantly
reduced traffic overhead and attained an impressive accuracy rate of 93.58%.

Keywords: Internet of Things (IoT), Swarm Intelligence, Fuzzy Logic, Congestion, Membership Function.

INTRODUCTION
The Internet of Things (IoT) represents a network of

interconnected devices bolstered by advancing technologies
that facilitate communication between these devices and
larger cloud networks. A growing number of firms across
diverse sectors are beginning to leverage IoT for real-time
applications. As the business landscape increasingly shifts
towards digital platforms, the integration of IoT becomes a
necessity for societies and individuals. Deploying numerous
IoT devices globally is instrumental in streamlining data
collection and automation processes (Majid, 2022). In today's
context, IoT serves as a linchpin for fostering and driving
numerous innovative breakthroughs. The expansion and
accessibility of IoT are fuelled by its affordable data storage
solutions and heightened computational abilities. Moreover,
with the swift advancements in network bandwidth, the
sensors within IoT systems have become more compact, cost-
effective, and precise. Nevertheless, the expansion of IoT

brings forth considerable challenges, including the need to
reduce system complexity, enhance security measures, and
address potential communication discrepancies in varied
settings (Khan et al., 2022).

Three levels comprise the IoT: the application, network,
and perception layers. The perception layer comprises
internet-connected devices that can perceive, identify, and
share data via wireless links (Tharini & Vijayarani, 2020).
Within the constraints of device abilities and network limits,
the network layer transmits data from the perception to the
application. The application layer eventually processes the
information from the network layer. Wireless Sensor
Networks (WSNs) serve as "cells" for the IoT to collect and
distribute data, allowing intelligent and context-aware
applications. As they deploy a type of power source and can
sustain them for a long time, these WSN devices are also
fundamental IoT enablers in terms of lifespan, energy
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efficiency reduced cost, and resource interface (Gashi, Luma,
& Januzaj, 2022; Sharma, Sharma, Jain, & Kumar, 2022). IoT
designs generally include sensors that collect data types and
transfer them to the "Base Station (BS)". The BS will upload
the data to a cloud server or Internet server. This research
will focus on those simulated as sensors inside the selected
sensing area (Ramya, Srinivasan, Vasudevan, & Poonguzhali,
2022). Effective processes must be deployed to obtain a
competitive edge with higher efficiency and lower
operational costs. Consumers or companies must be able to
efficiently access the information collected from deployed
sensors inside a sensor network as actionable intelligence
that enables them to be more responsive (Beishenalieva &
Yoo, 2022; Emmanuel et al., 2023).

The sensors are essential for making operations run
smoothly and economically. They have more processing
power, better memory, and unlimited energy to work all the
time (Ahmad, Madonski, Zhang, Huang, & Mujeeb, 2022;
Alam, 2023a). The role of BS is to collect, store, display, and
analyze sensed data from SNs (Lilhore et al., 2022). In order
to interface with user agents or transfer the detected data to a
remote server over the Internet, the base station offers a
Graphical User Interface (GUI) (Majid et al., 2022). The
authorized users will obtain that data from the BS using
internet servers. Sensing field data may also be accessed
through websites worldwide, which can improve how the
data is analyzed and go beyond what a BS can achieve
(Ahmad, Wazirali, & Abu-Ain, 2022).

The BS can send periodic "heartbeats" to the cloud servers
to let them know the status (either active or inactive) of the
sensor network (Ganesh, 2022; Aqeel et al., 2023). In reply,
the server can acknowledge the BS commands, push the
most up-to-date configuration or software updates to the BS,
and support it in system management at the application level.
In order to sense and keep track of significant events, WSNs
are made up of many small Sensor Nodes (SN) connected
(Lăzăroiu et al., 2022). An SN is a tiny device with a sensing
unit for collecting data, a processing unit for storing and
processing it locally, and a wireless communication unit for
sending it (Alawad & Kraemer, 2022; Shuaib et al., 2023). The
enhancement in electronics and communications has enabled
the building of such inexpensive, tiny, low-power, and
multi-functional sensors that operate in the air, underwater,
or on the ground (Luo, Wang, Xu, Liu, & Pan, 2022). The
nature of the WSN faces diverse issues, namely Energy
Consumption (EC), flooding, network traffic, and congestion.
WSN cannot afford congestion, which might lead to
performance decline and increased resource use. When high
data traffic is induced, severe wireless contention and
network congestion may occur in the WSN. This results in
the convergence of extensive data towards a sink node (Hu,
Tang, & Xie, 2022). It creates high reporting rates and leads
to a lack of buffer space and bandwidth. It increases Packet
Loss Rates (PLR) and degrades the Quality of Service (QoS)
performance. Energy in the WSN should be consumed to
extend the network's lifetime (Alam, Mohammad, Alfurhood,
Mahaveerakannan, & Savitha, 2023). Therefore, packet
retransmission represents the consumption of resources,
energy, time, and packet forwarding cost regarding the

number of hops (Esmaeili, Hakami, Bidgoli, & Shokouhifar,
2022).

Massive consumption of resources is incurred if packet
retransmission involves multiple hop counts. Moreover, an
extended buffer wait time in a queue may impact the
authenticity and availability of data. Maintaining excellent
QoS is essential for real-time applications. Data collection
and transmission should be done as soon as possible in order
to take direct and necessary action in the impacted region
(Hakim et al., 2022). A high PLR and a prolonged processing
delay at the receiver end might result in outdated and
incorrect information. End-to-end delay (EED), linked to
processing, response, and transmission time, is another result
of congestion. Due to congestion, WSNs are highly
susceptible to PLR, EED, throughput reduction, and
increased EC.

The primary objective of this article is to develop and
validate an Adaptive Neuro-Fuzzy Inference System
(ANFIS), enhanced by a Modified Squirrel Search Algorithm
(MSSA), for optimizing congestion control in Internet of
Things (IoT) applications, with a focus on improving Quality
of Service (QoS). Specific research questions guide this
objective:

RQ 1. How does integrating ANFIS and MSSA optimize
congestion control in IoT networks?

RQ 2. What improvements in QoS can be realized
through the proposed Swarm Intelligence-based ANFIS (SI-
ANFIS) method compared to existing methodologies?

RQ 3. How does the MSSA's modification of the
Membership function (MF) within the ANFIS model reduce
packet loss and end-to-end delay in IoT networks?

While ANFIS brings sophisticated capabilities for
congestion control in IoT networks, it also comes with
specific limitations, such as complexity in design and
implementation, scalability issues, a propensity for
overfitting, a slower convergence rate, and limited
adaptability to rapidly changing network conditions. These
limitations can be effectively addressed through the
integration of swarm intelligence. The proposed SI-ANFIS
method leverages the strengths of swarm intelligence to
enhance the adaptability, scalability, convergence rate, and
overall effectiveness of the ANFIS model. By incorporating
swarm intelligence principles, specifically through the
Modified Squirrel Search Algorithm (MSSA), SI-ANFIS can
better manage the complexities and dynamic nature of IoT
environments. This integration mitigates the risks of
overfitting and scalability challenges. It ensures a faster and
more efficient adaptation to changing network conditions,
thus significantly improving the congestion control
mechanism in IoT networks. In addressing these questions,
the ANFIS model, which combines the advantages of
Artificial Neural Networks (ANN) and Fuzzy Logic (FL),
provides a unique framework for adaptive interpretation
and quick learning capabilities, essential for understanding
complex patterns and nonlinear relationships in IoT
networks. The MSSA is employed to fine-tune the
Membership Function of the ANFIS model, aiming to
achieve an effective global convergence rate. Further,
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incorporating an adaptive strategy based on predator
existence probability, supplemented by a dimensional search
approach, is designed to harmonize the algorithm's
capabilities for exploration and exploitation. Through this
innovative approach, the study aims to significantly enhance
QoS by managing congestion more effectively in IoT
environments.

This paper is organized as follows: An overview of IoT in
WSN and congestion is detailed in Section 1, the recent
literature studies on congestion in IoT-based WSN are given
in Section 2, the proposed work of SI-ANFIS is defined in
Section 3, the simulation results of SI-ANFIS and existing
methodologies are compared in Section 4, and this paper is
concluded in Section 5.

LITERATURE REVIEW
Effective communication hinges significantly on the

presence of a protocol stack. An ideal characteristic of an IoT
stack is its ability to operate with minimal processing power
while being lightweight, adaptable, and customizable. The
Routing Protocol for Low-Power and Lossy Networks (RPL)
is posited as a viable solution for routing in networks
characterized by low-power and high loss rates akin to those
found in IoT environments (Hkiri, Karmani, & Machhout,
2022). These networks face distinct routing challenges to
which RPL can adapt proficiently, offering alternative routes
when default paths are not accessible, thereby showcasing a
high degree of adaptability to varying network conditions.
However, RPL may face scalability and performance
consistency challenges in complex and dynamically changing
network environments. In terms of the transport layer, the
User Datagram Protocol (UDP) emerges as the prevalent
choice for IoT applications, attributed to its ease of

implementation and unencumbered operation, compared to
the more complex Transmission Control Protocol (TCP).
While UDP's lightweight nature is beneficial, its limitations
in terms of reliability, data sequencing, and integrity checks
present challenges in scenarios where data accuracy and
completeness are crucial.

At the application layer, the IoT stack encompasses a
range of lightweight application protocols, which include the
Constrained Application Protocol (CoAP), Message Queue
Telemetry Transport (MQTT) (Janani, Jebadurai, Paulraj, &
Jebadurai, 2022), Advanced Message Queuing Protocol
(AMQP) (Yakupov, 2022), among others.

The development of Congestion Control Algorithms
(CCA) for the Constrained Application Protocol (CoAP) has
attracted much attention. These protocols are tailored to IoT's
requirements, focusing on efficient bandwidth usage and
message delivery. However, they differ in aspects such as
security, real-time data handling, and overall communication
overhead. CoAP, for instance, is designed for simplicity and
low overhead but may lack the robust security features
necessary for specific IoT applications. MQTT offers efficient
message delivery but could be challenged by the increasing
need for real-time data processing in IoT networks. AMQP,
known for its reliability and interoperability, might
introduce more significant overhead compared to CoAP and
MQTT. In (Jiang et al., 2022; Makarem et al., 2022), a
thorough analysis of the CoAP-specific CCA is
recommended. Most solutions include changing the CoAP's
default Retransmission Time Out (RTO) calculation method.
These techniques boost CoAP/Compute and Control for
Adaptive Optics Application (CoCoA) performance but
cannot distinguish a clear congestion signal from congested
Round-Trip Time (RTT) data. The comprehensive analysis of
CCA is summarised in Table 1.

Table 1. Comprehensive Analysis of Congestion Control Mechanisms (CCM)
Ref. Methodologies Application Performance Measured

(Quwaider & Shatnawi, 2020)
Neural Network with Immune Hill
climbing (NN-IHH) based CCM is

developed.

An IoT-based
cloud computing

system
Link utilization

(Makarem, Diab, Mougharbel, &
Malouch, 2022)

Improved CoAP (ICoAP) -CCM
IoT based
application

RTO, data transmission, and
Root Mean Square Error (RMSE)

(Saleem et al., 2022)
Intelligent Fusion based Congestion
Control System (FICCS) for enhancing

the performance

Internet of Vehicle
(IoV) utilizes
FICCS

Accuracy, sensitivity, and
specificity

(Suwannapong & Khunboa,
2021)

Enhancement to the CoCo-RED
(Congestion Control for Random

Early Detection

IoT services
through Active

Queue
Management
(AQM)

PLR and response time

(Bansal & Kumar, 2020)
A distance and RTT-based technique
to predict network congestion

Client – Server
Packet Delivery Ratio (PDR)

and EED

(Demir & Abut, 2020)
A Machine Learning (ML) based
adaptive Congestion Control
Mechanism (CCM) for CoAP

Client – Server Throughput

(Swarna & Godhavari, 2021)
A new mechanism to handle the CCM

in CoAP
Client – Server EED, EC, and PLR

(Akpakwu, Hancke, &
Abu-Mahfouz, 2020)

A novel CCM for CoAP Client – Server Throughput, EC, EED, and PLR

(Suwannapong & Khunboa,
2019)

Modified the Random Early Detection
(RED) AQMmechanism and used

IoT services
through AQM

Response time and PLR



AalsalemM. Y. / J INFORMSYSTEMSENG, 8(4), 238454 / 12

Ref. Methodologies Application Performance Measured
Fibonacci-based backoff to develop a

new CCM for CoAP

(Ancillotti & Bruno, 2019)
A new rate-CCM for CoAP (BBR +

CoAP)
Client – Server

Goodput, Fairness, and Number
of retransmissions

(Järvinen, Raitahila, Cao, & Kojo,
2018)

Proposed new backoff techniques for
CoAP-based CCM

Client – Server
FCT and number of
retransmissions

(Jarvinen, Raitahila, Cao, & Kojo,
2018)

A new adaptive Retransmission
Timeout based CCM for IoT

Client – Server FCT, number of
retransmissions, and RTO

(Bolettieri, Tanganelli, Vallati, &
Mingozzi, 2018)

An adaptive CCM for CoCoA Client – Server
RTO, Number of

retransmissions, Throughput,
and Delay

(Ancillotti, Bruno, Vallati, &
Mingozzi, 2018)

Traffic-based congestion control
mechanism for CoAP

Client – Server
Data collection delay,

Interpacket delivery delay, and
Packet Loss Ratio (PLR)

IoT's introduction and integration into general settings
has ushered in significant advancements, but not without
introducing a set of inherent drawbacks. One of the primary
challenges emerging from deploying IoT networks is the
limitation in device capabilities, such as minimal memory
and slower processing rates. These constraints often lead to
network congestion, particularly when numerous devices
attempt to connect simultaneously, which is a common
scenario in densely networked IoT environments. The small
payload sizes of the data packets shared over the network by
the IoT system's component devices mean that PLR occurs
due to congestion, leading to costly retransmissions that
cause further EED and high overheads. The drawbacks
identified in the literature are rectified using the proposed
SI-ANFIS, which eventually enhances the data transmission
performance.

METHODOLOGY
This section introduces the SI-ANFIS, a novel approach

designed to manage congestion in IoT networks and enhance
QoS. Central to this methodology is the integration of the
MSSA for optimizing the Membership Function (MF) of
ANFIS. This integration is pivotal in handling the complexity
of IoT network environments.

SI-ANFIS combines advanced AI techniques, including
Deep Reinforcement Learning (DRL), Deep Neural Network
(DNN), and MSSA. The convergence of these techniques
enables the system to efficiently process and adapt to the
dynamic and nonlinear nature of IoT network traffic. The
MSSA's role in refining the ANFIS model further contributes
to the system's adaptive decision-making capabilities,
essential for effective congestion control. The proposed SI-
ANFIS framework aims to create a robust, responsive system
for improving network performance and QoS in IoT settings.

Problem Formulation
An agent uses discrete decision epochs to communicate

with the system in a traditional Reinforcement Learning (RL)
architecture. The agent checks the condition of the system
(syt) for every epoch (t), then acts in line with its plan (at) and
receives a reward (rt). The agent's primary goal is to come up
with an approach π(sy) for mapping its state to a dispersion

of probabilities for actions that maximize discounted
cumulative reward. Ro = t=0

T γtr(st,at)� , where reward
functional is represented by rt and forthcoming rewards are
diminished by the aspect in a range of [0, 1]. The traditional
Q-learning is expanded in the DRL to reduce the voids
between procedures and sensory inputs in high dimensions.
DNN is used as a function approximator in a distinctive
feature of the DRL agent. The reciprocal value Q (syt, at),
representing the expected discounted cumulative reward 'Rt',
is produced as output by DQN from a pair of state-action (syt,
at) inputs. The cumulative record is given in EQU (1).

Q syt, at = E Rt syt, at (1)

Here, Rt= k=t
T γkr(syt,at)� . The action can be derived using

the standard greedy policy in EQU (2).
π st = argmaxQ st,at (2)

Q-learning describes the state action for each pair, and
the Bellman EQU (3) determines the target value during the
training phase.

yt = r syt, at + γQ syt+1, π syt+1 θQ (3)
Where the parameter for Deep Q-Networks (DQN) is

indicated by θQ . By minimizing the loss in EQU (4), DQN
training may be carried out to achieve the desired value.

L θQ = E yt − Q syt, at θQ (4)

The DRL can only be controlled in discrete steps and has
a small range of actions. It is not controlled in a sequence of
control extensions. Yet, such as CCM is frequently used in
computer and communication networks. Also, a typical
CCM is the policy gradient. The acro-critic method focuses
on the critic and actor functions that are maintained
concurrently. The training process is like the typical DQN,
and the action functions incorporation is accomplished via
DNN where the state value acts as input, and the finest
action value acts as the constant output value. For updating
the actor-network, using the chain rule on the projected
cumulative reward P concerning the actor parameters EQU
(5) and EQU (6) is feasible.

∇θπP ≈ E ∇θπQ sy, a θQ sy = syt, a = π syt θπ (5)

∇θπP = E[∇aQ(sy, a|θQ)|sy = syt, a = π syt ∇θππ s θπ sy =
syt (6)

Where the critic function is indicated by Q sy, a θQ , actor
function is indicated by π syt θπ , and the 'E' indicates the
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constant.
The Deep Deterministic Policy Gradient (DDPG) was

made with the help of DNNs and the new deterministic
policy gradient. It's important to note that DDPG can be used
with the target network and experienced replay to maintain
learning stability. The representation of learning is associated
with the multipath CCM, where every decision is an epoch.
The learning values act as an input to the actor-critic scheme
that impacts the critic and actor networks. The specific
learning rate alters the flow of the congestion window.

Network Architecture
In Figure 1, the framework of the proposed SI-ANFIS is

displayed. A controller in a Software Defined Network (SDN)
serves as the foundation of the SDN, and the switch acts as a
gateway to interconnect external systems based on the IoT.
By using SDN switches as a gateway, the context of the IoT
sends states of the network like the Congestion Window
(CWND) and the data transmission frequency of Multipath
Transmission Control Protocol (MPTCP) to the SDN
controller. The proposed SI-ANFIS agent algorithm has been
embedded in the SDN controller to maximize overall utility.
It executes at the end node for all the active flows based on
SDN-MPTCP. The flows with transmitting host SI-ANFIS are
processed, and it is the active SDN-MPTCP. The significant
features of SI-ANFIS are given here.

Figure 1. Architecture of SI-ANFIS

Network Representation: In this network, the active state
characterization of all active TCP/MPTCP flows is learned
using Long Short-Term Memory (LSTM) in a series learning
process.

Actor-Critic: Finally, the congestion management action
of an SDN-MPTCP flow is determined using the optimum
flow state and the learned representation. The representation
network uses LSTM and actor networks, and the critic gets
training from beginning to end.

Fuzzy Normalized Function (FNF): State-space from the
IoT context serves as the actor's and critic's input. The actor
and critic networks' projected functions, which aim to
estimate the high-dimensional rates of the IoT network, are
the output of the FNF.

Swarm Intelligence-Based Adaptive Neuro Fuzzy
Inference System

The actor's current method says that the proposed model

outputs the state-action inference engine and maps the state
to the action to give random policies. In IoT-based wireless
services, the SI-ANFIS dynamically changes the size of the
congestion windows of the sub-flows to maximize the
throughput. The following is a list of the SI-ANFIS
specifications. The critic and actor networks receive their
input from the environmental state space. The estimated
function of the actor networks and the critic is the SI-ANFIS
output. The SI-ANFIS learning architecture typically consists
of four layers.

Layer 1: Every neuron in Layer 1 indicates the state
variable and the state space is passed directly to the
subsequent layer's input vector.

Layer 2: Layer 2, which includes the rules, is hidden. In
the case of fuzzy rules, each node of the second layer stands
for the rule's initial values. The nodes of this hidden layer
have the following Gaussian function, EQU (7).

vji syt
j,l = exp −

(syj−uji syt
j,l )2

2σji
2 , i = 1,2…Mh (7)
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Where the mean and scalar values of the Gaussian
function are indicated by and σj , respectively. This value
relies on the hidden node' j'. The product of the Gaussian
function is the fuzzy fitness value, which is for hidden layer j
and state syt

j,l. The fuzzy fitness is given in EQU (8).

∅i syt
j,l = j=1

M vj,t syj,t� = exp [ −

j=1
M (syj,t−uj,i syt

j,l )2

2σji
2� ] (8)

Layer 3: The normalized fitness layer is another name for
this layer. This layer's primary goal is to measure every rule's
fitness consistently and normalize all rules' fitness. The
node's normalized fitness function is given in EQU (9).

ψi st
j,i =

∅i st
j,l

l=1
Mh ∅� l st

j.l (9)

Layer 4: The critic and the performer make up the SI-
ANFIS output. The actor-network comprises action and
value functions in EQU (10) and EQU (11). The fourth layer
is referred to as the output layer.

Al syt
j,l = i=1

Mh ωjiψi syt
j,l� (10)

V syt
j,i = i=1

Mh viψi syt
j,l� (11)

Where the weight among the output of 'j' in the actor and
hidden layer 'i' is indicated as 'wji', and the weight among the
output of 'j' in the critic and hidden layer 'i' is indicated as 'vji'.

Figure 1 shows that the Temporal Difference (TD) is the
difference between the approximate and actual values. It is
shown mathematically as EQU (12).

δt = rt + γVv st+1 − Vv st (12)
The acquired parameter values are applied when

updating the centre, and the width of the hidden layer is
given in EQU (13).

μi t + 1 = μi t + αuδt
∅i(1−∅i)ωji(st−μi(t)

σi
2 (13)

σi t + 1 = σi t + ασδt
∅i(1−ωi)σji(st−μi t )

σi
2 (14)

Where the learning rates are indicated by width and
center.

In the following steps, the current class of action and
policy may impact the critic's present and future rewards.
Consequently, the TD error is updated using the value' v'
and the Eligibility Trace Approach (ETA). The ETA helps
enhance the learning process. In the SI-ANFIS model, the
ETA is mathematically represented in EQU (15) and EQU
(16).

Et = jt−1( γλ)t−j∇v iVj st� (15)

vi t + 1 = vi t + αcδtzt (16)
Where the eligibility is indicated 'et', and the updated

values are shown in the above equations.
The actor's policy is enhanced by the TD error at the end

of time 't' in EQU (17).
Al st+1 = Al st + ασδt (17)
Where the positive parameter is indicated by 'ασ' . The

critic component generates the value function that assesses
the action's excellence. Similarly, the actor component
computes the action-value function to identify the best

course of action. The process of SI-ANFIS is given in
Algorithm 1.

Algorithm 1. For Congestion control in IoT using SI-
ANFIS
Step 1. Input: Initialize decay factor λ, discount

factor γ, learning rates and αu

Step 2. The initial state set is 'syo', and eligibility
traces 'zo' vi(0) and wji(0) are initialized.

Step 3. For t=1,2,3,4,…..TDo

Step 4. Observe the state of the system 'syt'

Step 5. The reward' rt' from the feedback system

Step 6. Compute the action function in the actor
Al syt

j,l = i=1
Mh ωjiψi syt

j,l�

Step 7. Computed the value function in critic
V syt

j,i = i=1
Mh viψi syt

j,l�

Step 8. Compute the error in TD δt = rt + γVv st+1 −
Vv st

Step 9. Update center and width

Step 10. μi t + 1 = μi t + αuδt
∅i(1−∅i)ωji(st−μi(t)

σi
2

Step 11. σi t + 1 = σi t + ασδt
∅i(1−ωi)σji(st−μi t )

σi
2

Step 12. Update eligibility trace using Et =
jt−1( γλ)t−j∇v iVj st�

Step 13. Update weigh using vi t + 1 = vi t + αcδtzt

The Improved Squirrel Search Algorithm (ISSA) is used
to change the MF of the ANFIS model to improve how well
the ANFIS model works as a whole. At first, the ISSA tries to
make a population at a random rate that matches the
squirrel's location. A d-dimension vector in the ISSA
describes the locations of each squirrel. This method
considers the following for the location of 'n' squirrels in a
2D matrix given in EQU (18).

FS =
s11 … s1d
… … …
sn1 … snd

(18)

Where the flying squirrel in the ith position is indicated by
'si', and the squirrel in the jth dimension is indicated by sij. The
squirrel in the dimension is found at EQU (19).

sij = sl + Rand 0,1 ∗ (su − sj) (19)

Where the upper limit is indicated as 'su', the lower limit
is indicated as 'sl', and the random outputs are generated in
the range of 0 and 1. Every 'si' fitness value is determined in
EQU (20).

F =
F(s11) … s1d

… … …
F(sn1) … snd

,
F(s11) … s1d

… … …
F(sn1) … snd

(20)

Where 'F' displays the fitness function. Every 'Si' is given
a fitness value and then grouped in ascending order. The
squirrel is divided into three main classes, according to the
ISSA. Depending on predators, some squirrels randomly
choose the hickory nut tree, whereas others will go to the
acorn nut tree to meet their energy needs. The following
EQU (21) calculates how the flying squirrel will move from
the acorn nut tree to the hickory tree.
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sat
t+1 =

sat
t+1 + dg ∗ Gc sht

t − sat
t R1 ≥ Pdp

sat
t+1, Ent, Hye Otherwise

(21)

Where current iteration is shown by 't', distance of
gliding in a random movement is indicated as 'dg',
probability of predator existence is specified as Pdp, the flying
squirrel reaches the hickory tree is indicated as 'sht', the
arbitrary values R1, R2, and R3 lie in the range of [0, 1]. The
gliding constant (Gc) in the statical model is written in the
following EQU (22) to achieve the balance between
exploration and exploitation.

sat
t+1 =

snt
t+1 + dg ∗ Gc sat

t − snt
t R2 ≥ Pdp

snt
t+1, Ent, Hye Otherwise

(22)

Squirrels of a smaller size that live in regular trees may
periodically move to hickory nut trees in order to store their
nuts there. The following EQU (23) can be used to describe
the process.

sat
t+1 =

sat
t+1 + dg ∗ Gc sht

t − sat
t R3 ≥ Pdp

sat
t+1, Ent, Hye Otherwise

(23)

Where the measurement in the uncertainty is specified by
Ent, where the search radius is presented, and Hye indicates
the uncertainty value of hyper entropy. The value of Hye is
given as 0.1, and the search stability is shown with the
assistance of Ent. During the final generation, the location of
the population is nearer to the optimized value. Ent is
appropriate for tuning the outcome and the search
dynamically altered. In the fuzzification layer, every neuron
in the adaptive layer is modified with the crisp input. The
fuzzified node output value is estimated as:

OPi
l =

R1 sat
t+1 , ∀i = 1,2,

R2 sat
t+1 , ∀i = 1,2,

R3 sat
t+1 , ∀i = 1,2,

(24)

The MF of the fuzzy sets used in this research is bell-
shaped, and the value is optimized using the ISSA. The
optimized Gaussian function is given as:

f sat
t+1 = a. exp − (sat

t+1−b)2

2c2 (25)

If sat
t+1<0, Then congestion can be minimized.

If sat
t+1>0, Then congestion can be maximized.

Where the values of a, b, and c are premise parameters of
MF of ANFIS (Chopra et al., 2021). The predator probability
is assigned the values 0 and 1. The fuzzy rules are
formulated based on the above condition, and the rules are
determined as huge negative, medium negative, small
negative, zero, huge positive, medium positive, and small
positive. The following rules are generated from the fine-
tuned MF.

Rule 1: If is a huge negative, then congestion is a huge
negative.

Rule 2: If is medium negative, then congestion is medium
negative.

Rule 3: If is a small negative, then congestion is a small
negative.

Rule 4: If is zero, then congestion is zero.
Rule 5: If is a huge positive, then congestion is a huge

positive.
Rule 6: If is medium positive, then congestion is medium

positive.
Rule 7: If is small positive, then congestion is small

positive.
Based on the context of the simulation environment, the

MF value will be tuned using the ISSA, and diverse rules will
be generated.

LIMITATIONS AND ETHICAL
CONSIDERATIONS
In developing the SI-ANFIS methodology, there are some

limitations inherent. Integrating Deep Reinforcement
Learning (DRL) and Deep Neural Networks (DNNs) within
SI-ANFIS presents a complex computational challenge. This
complexity may impact the practicality of deploying our
system in real-time across large-scale network environments,
especially where computational resources are limited.
Additionally, while our model demonstrates encouraging
results in simulated SDN environments, its ability to
generalize effectively in diverse real-world IoT scenarios
remains to be rigorously tested.

From an ethical standpoint, a significant emphasis on the
responsible implementation of our AI-driven system has
been made to ensure the utmost privacy and security of data
traversing through IoT networks. The model implements
robust data protection measures to safeguard sensitive
information. Furthermore, maintaining algorithmic
transparency in the decisions made by SI-ANFIS is another
critical aspect we have considered.

RESULT AND DISCUSSION
The entire SDN is set up on an Intel i7 processor platform

with Windows 10 operating system and a virtual box of
Oracle VM with NVidia GeForce 940MX. The memory
allocation is 4 GB of RAM to the host version of 2.2.1
Minimet in 1.3 OpenFlow. The effectiveness of the proposed
method is known from its performance metrics, namely
Round-Trip Time (RTT), Accuracy, Bandwidth Overhead
(BO), Data Flow Rate, and Control Traffic Overhead (CTO).
The performance measures of the proposed SI-ANFIS are
compared with existing methods, namely NN-IHH, ICoAP,
and FICCS. The simulation setup is given in Table 2.

Table 2. Simulation Setup

Parameter Value

Area of Monitoring 200*200m2

Node Count 500

Queueing Method RED/Fuzzy

MAC Type IEEE 802.11

Data rate 0-200 kbps

Simulation Time 30 Sec.

Maximum Packet in
Queue Buffer

70
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Round Trip Time (RTT)
The RTT measured in milliseconds (ms) how long a

network requests to move from one location to another and
return the same. Network managers typically use RTT to
assess their networks' reliability and transmission rate to
diagnose connectivity issues on local networks and the wider
Internet. In the proposed SI-ANFIS, the RTT is highly
minimized compared to the existing method. The obtained
RTT for different packet counts of NN-IHH, ICOAP, FICCS,
and SI-ANFIS is given in Table 3 and Figure 2.

Table 3. The Comparative Analysis of RTT vs. Packet
Count
Packet
Count NN-IHH ICOAP FICCS SI-

ANFIS

100 0.63 0.59 0.56 0.441

200 0.67 0.62 0.59 0.471

300 0.69 0.64 0.62 0.492

400 0.73 0.65 0.63 0.51

500 0.75 0.67 0.65 0.516

Figure 2. Comparison of RTT vs. Packet Count

Figure 2 shows that the RTT is the minimum for SI-
ANFIS compared to the existing methods, namely NN-IHH,
ICOAP, and FICCS. A minimal RTT shows the success of the
proposed method and reaches PDR in a minimal amount of
time.

Accuracy: A master clock is used to broadcast a constant
stream of data bits. The number of start bits, stop bits, or
gaps is needed because the data transmitter and receiver
employ a synchronized clock frequency. Data moves faster,
and timing errors are less prevalent since the transmitter and
receiver are synchronized. Conversely, accurate device
timing synchronization is crucial for data accuracy. In the
proposed SI-ANFIS, the accuracy is high compared to
existing methods. The obtained accuracy for entire routing
across switches with NN-IHH, ICOAP, FICCS, and SI-ANFIS
methods is given in Table 4 and Figure 3.

Table 4. The Comparative Analysis of Accuracy

Algorithms Accuracy (%)

NN-IHH 82.18

ICOAP 83.27

FICCS 86.54

Proposed SI-ANFIS 93.58

Figure 3. Comparison of Accuracy

Figure 3 shows that the accuracy is highest for SI-ANFIS
compared to the existing methods, namely NN-IHH, ICOAP,
and FICCS. High transmission accuracy shows the
effectiveness of the proposed method and achieves PDR
without any loss.

Bandwidth Overhead (BO)
The absolute number of bits introduced along the route

corresponds to the BO. Encoding forwarding ports with the
prescribed number of bits can dramatically reduce the
bandwidth penalty. In the proposed SI-ANFIS, the BO is
minimal compared to existing methods. The obtained BO for
entire routing across switches with NN-IHH, ICOAP, FICCS,
and SI-ANFIS methods is given in Table 5 and Figure 4.

Table 5. The Comparative Analysis of BO vs Flow Arrival
Rate (FAR)

FAR NN-IHH ICOAP FICCS SI-ANFIS

0.2 0.41 0.26 0.27 0.19

0.4 0.632 0.46 0.53 0.41

0.6 0.721 0.74 0.9 0.63

0.8 0.991 0.83 1.2 0.62

1 1.2 1.1 1.5 0.76

1.2 1.25 1.12 1.6 0.83

1.4 1.42 1.42 1.7 0.9

1.6 1.8 1.51 1.91 0.98

1.8 2 1.751 2.2 1.11

2 2.1 1.9 2.5 1.1
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Figure 4. Comparison of BO vs. FAR

Figure 4 shows that SI-ANFIS does not use much more
bandwidth than the current methods, such as NN-IHH,
ICOAP, and FICCS. Minimal bandwidth overhead shows the
proposed method's effectiveness and effectively reaches PDR.

Control Traffic Overhead (CTO)
A packet is a unit of data that is sent through a network.

Every transmission encompasses overhead data, which is
necessary to route the data to the correct location. The CTO is
the entire bit count of control traffic generated by specifying
a flow. It is finding a collection of contact switches that
balances bandwidth usage, controls traffic usage, and
maximums flow table utilization. In the proposed SI-ANFIS,
the CTO is minimal compared to existing methods. The
obtained CTO for the entire routing across switches with
NN-IHH, ICOAP, FICCS, and SI-ANFIS methods is given in
Table 6 and Figure 5.

Table 6. The Comparative Analysis of Control Traffic vs.
FAR

FAR NN-IHH ICOAP FICCS SI-ANFIS
0.2 1.25 1.12 1 0.94
0.4 1.44 1.91 1.72 1.55
0.6 2.69 2.41 2.11 1.9
0.8 3.76 2.81 2.32 2.2
1 4.71 4.6 2.71 2.22
1.2 4.81 5.2 4.31 3.11
1.4 6.96 6.3 5.1 3.91
1.6 7.3 7.1 6.12 4.11
1.8 8.3 8.2 7.22 4.91
2 9.3 8.91 7.92 5

Figure 5. Comparison of CTO vs. FAR

Figure 5 shows that the CTO is the minimum for SI-
ANFIS compared to the existing methods, namely NN-IHH,
ICOAP, and FICCS. Minimal CTO shows the effectiveness of
the proposed method and reaches PDR effectively.

Data Flow Rate
The pace at which data enters a network is called the

arrival rate. The arrival rate measure indicates how many
packets are controlled or placed on hold in a certain period.
The obtained data flow rate for entire routing across different
switch comparisons is attained for the NN-IHH, ICOAP,
FICCS, and SI-ANFIS methods in Table 7 and Figure 6.

Table 7. The Comparative Analysis of Flow Rejection
Rate (FRR) vs. FAR

FAR NN-IHH ICOAP FICCS SI-
ANFIS

0 0 0 0 0
0.5 0.12 0.11 0 0
1 0.36 0.81 0 0
1.5 0.72 1.11 0 0
2 0.791 1.22 0 0
2.5 0.82 1.31 0.11 0.12
3 0.86 1.31 0.11 0.12
3.5 0.89 1.31 0.22 0.12
4 0.891 1.42 0.32 0.12
4.5 0.91 1.42 0.52 0.23

Figure 6. Comparison of FRR vs. FAR

For different FAR, Figure 6 illustrates the FRR of four
forwarding methods. The FRR of a HOMA-Greedy
forwarding method increases dramatically as a higher
proportion of flows are added to the network. This is
because flow entries must be added to each switch along the
forwarding routing paths. This phenomenon is commonly
referred to as flow-table overflow.

The comprehensive evaluation of the SI-ANFIS system
within a Software-Defined Network (SDN) environment has
demonstrated its superiority over existing methods like NN-
IHH, ICOAP, and FICCS across key performance metrics.
The system has achieved significantly lower Round-Trip
Time (RTT), indicating enhanced network responsiveness,
critical for real-time IoT applications. Additionally, its
accuracy, exceeding 93%, suggests exceptional precision in
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data transmission, which is vital for IoT system reliability.
The SI-ANFIS system's efficiency in resource utilization is
evident through its lower BO and CTO, showcasing its
capability to optimize network performance while also
reducing operational costs. Moreover, its ability to maintain
a low FRR across varying data flow rates underlines its
robustness in handling high volumes of data, an essential
attribute for large-scale IoT networks.

These results validate the effectiveness of the SI-ANFIS
approach in managing network congestion and enhancing
QoS in IoT environments. Integrating the Adaptive Neuro-
Fuzzy Inference System with the Modified Squirrel Search
Algorithm within the SI-ANFIS framework has proven to be
a formidable combination, adept at addressing the
complexities of modern network systems. The lower RTT,
improved accuracy, and efficient management of network
resources collectively contribute to a more reliable, efficient,
and scalable IoT ecosystem.

The implementation results of the SI-ANFIS system solve
the primary objective of enhancing congestion control and
QoS in IoT applications. The integration of ANFIS with
MSSA, leading to significantly lower RTT and higher
accuracy rates, directly addresses how this integration
optimizes congestion control. The reduced RTT and
enhanced accuracy support a more efficient and reliable
network, meeting the dynamic demands of IoT systems. The
findings indicate that SI-ANFIS effectively minimizes BO
and CTO while maintaining a lower FRR across different
data flow rates. This performance enhancement reflects the
system's enhanced capability in resource management,
thereby improving the overall QoS. The minimal BO and
CTO, coupled with the low FRR, ensure the network's
capability to handle large data volumes efficiently. The
results demonstrate a high global convergence rate and
adaptability to network changes.

In conclusion, the SI-ANFIS provide a highly effective
solution for congestion management in IoT networks,
highlighting the potential of integrating advanced AI
techniques, such as neuro-fuzzy inference systems, with
swarm intelligence algorithms to address the evolving
challenges in IoT network management. The success of SI-
ANFIS paves the way for further research and development
in this domain, potentially leading to more resilient, efficient,
and intelligent IoT.

CONCLUSION AND FUTUREWORK
Managing congestion remains a pivotal challenge in

communication networks, an issue that has gained renewed
focus recently, particularly concerning the IoT to foster
resource efficiency and enhance network performance.
Network congestion transpires when the influx of data
packet traffic exceeds the network's processing capacity.
Alongside addressing congestion, achieving a harmonious
balance of network resources, including energy, bandwidth,
and latency, is equally crucial. The study primarily revolves
around the QoS pertaining to IoT applications, given their
substantial reliance on adept congestion control mechanisms.
ANFIS is employed to oversee congestion, with

modifications to the MF being carried out through the
utilization of the MSSA. In this framework, ANFIS
amalgamates the strengths of ANN and FL.

Based on simulation findings, the proposed SI-ANFIS
exhibited promising results, reducing traffic overhead and
realizing a notable accuracy rate of 93.58%. This study
concludes that the SI-ANFIS system presents a promising
advancement in congestion control and network
management strategies for the evolving needs of the Internet
of Things. This study employed conventional traffic
scenarios for evaluation, where sensors transmit data to the
gateway either periodically or incessantly. A potential
avenue for enhancing this research could be the extensive
testing of the proposed algorithms under various real-world
traffic conditions, including wave-like traffic patterns. It
would indeed be intriguing to analyze the performance of
these algorithms across diverse traffic scenarios. Secondly,
testing the system's performance in different IoT
environments, such as smart cities, healthcare systems, and
industrial IoT, where each presents unique traffic challenges.
Thirdly, it focuses on scaling SI-ANFIS for larger IoT
networks, enhancing its efficiency and computational
feasibility for widespread application. Lastly, exploring the
integration of SI-ANFIS with emerging IoT technologies like
5G, edge computing, and blockchain (Alam, 2023b) could
open new possibilities for improving data processing speeds,
security, and decentralization in IoT networks. These future
directions are pivotal in advancing SI-ANFIS as a robust and
versatile solution for intelligent network management in the
IoT domain.
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