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ARTICLE INFO ABSTRACT

Received: 18 Aug 2024 Real-time applications such as smart transportation systems require minimum response time to

Accepted: 30 Aug 2024 increase performance. Incorporating edge computing, processing units near end devices, achieving
fast response time. The collaboration between edge servers and cloud servers is beneficial in achieving
the lowest response time by using edge servers and high computational resources by using cloud
servers. The workload allocation between edge—cloud servers is challenging, especially in a highly
dynamic system with multiple factors varying over time. In this paper, the workload allocation
decisions among the edge servers and cloud are considered for autonomous vehicle systems. The
autonomous vehicle system generates multiple tasks belonging to different AI applications running on
the vehicles. The proposed method considers allocating the tasks to edge or cloud servers. The cloud
servers can be reached through a cellular network or a wireless network. The proposed method is
based on designing a neural network model and using a high number of features that contribute to the
decision-making process. A huge dataset has also been generated for the implementation. The
EdgeCloudSim is used as a simulator for implementation. The competitor's methods considered for
the comparison are random, simple moving average (SMA) based, multi-armed bandit (MAB) theory-
based, game theory-based, and machine learning-based workload allocation methods. The result
shows an improvement in the average Quality of Experience (QoE), ranging from 8.33% to 28.57%,
while the average failure rate achieved enhancement up to 50%.

Keywords: Vehicular Edge Computing, Cloud Computing, Workload Allocation, ATl Application,
Neural Network.

INTRODUCTION

Given the rapidly expanding Internet of Things (IoT) users, Zhang, Cao and Dong (2020) argue that edge
computing significantly pushes real-time computing near the end devices. The three-layer hierarchical
architecture framework has recently been used for distributed workloads among cloud servers, edge servers, and
end devices. This architecture achieves better user experience and performance acceleration by incorporating
artificial intelligence (AI) technology at the network edge, as presented by X. Wang et al. (2018). The majority of
edge Al applications, like self-driving cars, have strict end-to-end response time requirements and are sensitive to
latency. In this context, end-to-end response time, as defined by L. Liu, Chen, Pei, Maharjan and Zhang (2021),
refers to the whole length of time needed —including processing time across multiple layers—from the time an
end device generates a task until receiving the response. Thus, it is imperative to determine ways to accelerate
these edge AI applications' response times (Biswas & Wang, 2023).

In the context of an autonomous car, a system functioning in real time interacts with many other vehicles,
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people, and traffic signals. This calls for accurate and dependable run-time response, even in the event of failure
or unanticipated circumstances. Furthermore, Koulamas and Lazarescu (2018) emphasize that in certain real-
time systems, accuracy and response time may be vital to safety. Therefore, the system must guarantee task safety
overall. Task safety includes a guarantee of the appropriate execution time and its proper schedulability during
decision-making, particularly in safety incidents. Addressing the uncertainty in such a highly dynamic system
resulting from their operational environment is mandatory in order to make safe and accurate decisions about the
workload these systems must handle. As a result, these systems frequently have to react to unexpected
circumstances, which results in the generation of tasks that require immediate processing. Additionally, the
increased workload that results from this entire process must be assigned to one or more servers. The usage of
cloud infrastructure was one of the solutions, taking into account some of the system constraints, such as mobility,
bandwidth, and latency. The cloud enables on-demand services and resource scalability (Naha et al., 2018). The
need for low-latency, high-mobility data processing and resource sharing led to the development of the Multi-
Access Edge Computing (MEC) concept. To further reduce request latency, MEC's primary goal is to deploy
computing resources closer to end users. Processing and storage are thus carried out closer to the origin location.

The execution of workloads is impacted by the restricted processing and storage capacity of edge devices. The
amount of data that has to be processed also has a great impact. The choice of whether to run an Internet of
Things (IoT) application's workload in the cloud or on edge servers influences how quickly requests are handled
for each application. One of the most important factors affecting user QoE is the allocation of the workload, as
presented by Hao, Zhan, Hwang, Gao and Wen (2021). To improve the program's performance, the AI application
expanded and interacted with edge computing systems in various ways. For example, it suggested workload
distribution strategies and lightweight AT models.

Several methods are proposed to enhance the performance of AI Applications by proposing workload
allocation decision methods. The methods presented are mainly based on a mathematical approach or Al
approach. Mathematical approaches such as heuristic algorithms and fuzzy logic are mathematically complex and
computationally intensive in high-dimensional problems (Ammar & Dawood, 2024). The workload allocation
decision problem in highly dynamic environments is considered an np-hard problem, as presented by H. Wang,
Peng and Pei (2020). They also mentioned that the AI approach is more suitable for reducing complexity and
adjusting to varying environments that lack certainty.

The rest of this paper presents the literature review section followed by the proposed method for workload
allocation. The performance evaluation section is also presented. Finally, the conclusion section is presented as
the final section of this paper.

LITERATURE REVIEW

Long, Luo, Zhu, Luo and Huang (2020) suggested the Computation Offloading scheme Through mobile
Vehicles (COTV) system, which enabled the sensor devices to transmit their tasks to the cars. Next, the
autonomous car determined whether the task was carried out locally, via the edge server, or in the cloud. The
COTV scheme's system architecture, which was made up of the cloud centre layer, MEC server layer, mobile
vehicle layer, and sensing device layer, was examined. Sensor-generated tasks were processed at cloud centres,
MEC servers, or mobile vehicles. The authors used reinforcement learning to reduce energy usage and delay time
for IoT devices with limited resources. The outcome showed that the suggested strategy outperformed the baseline
strategy in terms of delay time. The main drawback and limitation is that the authors mainly take into account the
tasks created by the sensor devices; if an 10T sensor's speed is less than the vehicle's speed, this could result in a
task failure. Also before the task is completed, the car can drive out of the edge server's and the sensor's coverage
area. Nevertheless, the work did not take the devices' speed into account.

H. Wang et al. (2020) provided MEC with a method that made use of underutilized resources at edge servers
to facilitate cooperation between edge servers. When the primary edge server was unable to meet the task's delay
requirement, the device's created task could be sent to the assisted edge server. The authors demonstrated the
complexity of the workload allocation problem and classified it as an np-hard problem. A heuristic algorithm was
applied based on the priorities of mobile devices and the MEC servers. The suggested method was contrasted with
one that was entirely executed at the edge or locally executed on a mobile device. The findings demonstrated that
the suggested method enhanced system reliability and decreased latency. Since the approach relies on a heuristic
algorithm, the rise in mobile devices and/or edge servers may complicate the model and reduce performance. The
authors considered a limited amount of mobile and edge devices.

Sonmez, Tunca, Ozgovde and Ersoy (2021) suggested a two-phase machine learning strategy for vehicular
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edge computing (VEC). Classifying the task as successful or unsuccessful on the edge, in the cloud through RSU,
or in the cloud through CN was the initial step. If a task was deemed effectively completed on a particular layer,
the service time during execution was estimated using the regression model. Ultimately, the task was completed
on the layer with the shortest service time. Three regression models and three classification models were used.
The suggested model was tested on EdgeCloudSim. The suggested model achieved better results than its
competitors in terms of average job failure rates and service time, hence improving the overall QoE. The main
drawback of this model is that it requires multiple AT models - six different AI models. Each model has different
features, causing effort to train each of these models. Moreover, this will increase system complexity and overhead.

Dos Anjos et al. (2021) suggested the TEMS algorithm and dynamic cost model. The suggested work aimed to
select a layer for job execution to reduce execution time and energy usage. The authors took into account a
number of parameters, including energy, processing time, data transmission costs, and idle device energy
consumption, in order to optimize the energy consumption and task processing time for IoT devices in MEC
environments. The cloud, edge server, and end device layer were the layers taken into consideration. The
experiment demonstrated how the suggested method lowered wait times and energy consumption. The authors
only took into account a limited selection of mobile and edge devices. As noted by the authors, the algorithm's
O(n”2) complexity could raise the model's complexity for large input sizes, causing performance issues.

Nguyen et al. (2021) suggested a method for allocating workloads between edge servers and the cloud that
used fuzzy reasoning. Numerous factors were taken into account, including WAN bandwidth, task duration, and
edge utilization delay. The output presented the execution location. In order to reduce latency, the authors also
suggested a method for dividing up the tasks to be completed between edge and cloud computing. The
EdgeCloudSim simulator was used to implement the suggested approach. The outcome indicated that the
suggested strategy outperformed competitors in terms of failure rate and service time. The author noted that
minimizing delay times in highly dynamic circumstances was a challenge that required attention. The authors
proposed adding additional features in future work to shorten task completion times. It can get challenging to
grasp the decision-making process when more features are added to fuzzy logic models as the complexity of the
fuzzy rules rises as well.

Dai, Liu, Mo, Xu and Huang (2022) used a reinforcement learning (TODQN) strategy for an application for
VEC. The suggested approach considered carrying out the workload on cars, the edge server, or the cloud. The
suggested approach balanced the exploitation and exploration processes to find the best workload distribution
schemes using deep Q-learning in a highly dynamic environment. During the issue formulation phase, the authors
employed tasks, cars, wireless channels, MEC servers, and the available computing and communication resources
as measurements. When it came to delay time, the suggested strategy outperformed the baseline technique. The
primary drawback is that the authors employ a limited number of tasks and treat one edge server as a DQN agent
that makes decisions. The authors also discussed the model's Q(n3) complexity in the absence of the deep neural
network's complexity. Because the O(n”3) complexity of the technique may not scale well in complex
circumstances, the runtime increases noticeably as the input size increases.

Yang, Lee and Huang, (2022) suggested a deep learning-based strategy for resource allocation and task
allocation (DSLO). In order to address the allocation choice problem, the authors took into account both the
convolution neural network and the deep neural network also utilized convex optimization to allocate resources as
well. The binary decision was either carrying out the task locally or forwarding it to the cloud. The main limitation
is that the authors consider one edge server and a small number of devices reached 15 devices. Also, the simplicity
of the dataset could be the reason for the fast convergence of the model since it contains a small number of
features.

Z. Liu, Jia, and Pang (2023) considered how to allocate resources and workload in light of multi-user VEC.
They proposed a hybrid technique (HTCO) for decision-making that used DRL to choose the execution locally.
The primary constraint is that the method solely examines the offloading approach for multiple vehicle users
under a single-edge server, which is incapable of extending task offloading outside the server's coverage. The
network characteristics are not considered, such as channel congestion not reflecting the real environment.

Ullah, Lim, Seok and Han (2023) chose whether to carry out the tasks on the edge server or in the cloud by
using the Double Deep Q-Network (DDQN) algorithm for edge-cloud (DDQNEC). For additional advancement,
the author suggested investigating more sophisticated machine learning and AI techniques. In order to maximize
job offloading, taking additional elements into account might have also improved the algorithm's performance
and end devices' capabilities. Because the approach might not scale effectively in complex circumstances, the
runtime grows dramatically as the input size increases.

Peixoto and Azim (2023) provided a system for task orchestration in very high mobility scenarios. The system
was designed for VEC and was based on machine learning. The technique used three layers: edge, cloud RSU, and
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cloud through the cellular base station. A sensitivity analysis was used to determine which features were more
impacted by the model's choice. The main drawback of the method is that using the host ID as one of the five
features in the Machin learning models to predict service time in each layer is inaccurate because the host ID is
known only after the execution location has been identified and cannot feed to the model as input. Also, the
authors train the model on a large dataset using the random forest algorithm, which generates a large-size model
for inference.

Chen, Fan, Yuan and Hao (2024) suggested using reinforcement learning to relocate some of the work to the
edge server or the collaborative vehicle. The suggested methodology reduced the failure rate and overall delay
compared to the baseline approaches. Due to the very small number of cars taken into consideration, the task
failure rate and network conjunction effect were inaccurate. Prior to deciding where each portion was conducted,
the task had to be given to the edge. The edge decided which parts were executed at the edge, in the vehicle, and in
the collaborative vehicle. Due to the vehicle's high mobility, the tasks ultimately failed after the results were
gathered by the edge and given to the vehicle that created it in the first place. This reduces the possibility of
offloading at high speeds.

Wu, Jia, Pang and Zhao (2024) developed an RL-based workload and resource allocation technique named
(TOLB). The suggested strategy was to choose places for task execution between cars or edges. Additionally, it
offered load balancing and work splitting through task migration between edge servers. The task-splitting strategy
works well because the implementation takes into account a small number of cars and a comparatively large
number of edge servers in comparison to the number of vehicles that may give very high coverage. The car could
discontinue gaining coverage from the edge server before getting the remaining portion of the task if there was
less coverage. A large number of vehicles may also cause the model's complexity to rise.

Sun, Chen and Li, (2024) proposed a system for allocating workloads amongst cars, edge servers, and the
cloud known as L-MADRL, which mixed deep learning and reinforcement learning. Reinforcement learning was
used to choose edge servers, while deep learning was utilized to predict the location of vehicles. The agent's
excessive preference for long-term returns, which is brought on by larger discount factors, could lead the learning
process to progress and compromise the stability of the learning outcomes sluggishly.

In this work, a neural network model is designed to allocate the workload generated by the vehicles. The
three-layer architecture is considered in this work. The options for allocation are either the edge or the cloud with
two paths. The allocation to the cloud is through a cellular network (CN) or through a wireless network.
Incorporating the CN offered high coverage that is needed in high-speed vehicles.

The main contributions of the work are:

Propose a workload allocation method based on AI technology in the form of a neural network to achieve
generalization, minimize complexity, and balance resource load to meet Al application requirements and provide
a high Quality of Experience (QoE).

A dataset created to train the model, the dataset contains more than a million records with 21 features.

18 features are considered that affect the allocation performance. Four features contribute to the dataset
creation, while 14 features are used as input to the neural network model.

A comparison with the other workload allocation methods has been presented by conducting extensive
simulation tests. The competitor's methods are random, simple moving average (SMA) - based, multi-armed
bandit (MAB) theory-based, game theory-based, and machine learning-based workload allocation methods.

THE PROPOSED SYSTEM MODEL

Vehicular System Architecture

In the Internet of Vehicles (IoV), the three-layer architecture is considered as presented in Figure 1. The first
layer represents the vehicles generating tasks that need to be executed. The second layer represents the RSU. Each
RSU is equipped with an edge server. The third layer is the cloud centre. The vehicles have three options to
transmit their task to the edge server to the cloud through RSU or to the cloud through a cellular network.

The vehicle transmits its task to the edge server through a wireless connection (WLAN). The WLAN
represents the vehicle-to-road connection (V2R). And use cellular networks as vehicle-to-infrastructure (V2I)
communication. Vehicle tasks can also be sent to the cloud through an internet connection (WAN). A
metropolitan area network (MAN) is also connected to the RSUs. Task migration is one way that MAN connection


https://orcid.org/0009-0000-4220-7374
https://orcid.org/0000-0001-5457-8973

Rafea S. A. et al. /JINFORM SYSTEMS ENG, 9(3), 30380 5/19

enables RSUs to share their computational resources.

If the connected vehicle leaves the serving RSU's range before the offloaded task is completed, the result is
sent to it in a multi-hop manner through the other RSUs. The vehicle must be out of the serving RSU's range for
the handover process. The tasks are considered failures if the vehicle moves out of the coverage area during data
uploading or downloading.

Cloud
Layer

Cloud Servers
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Server ()] () A (te)
Layer = Edge % Edge /* Edge
= Server A=) Servel ) Server
RSU RSU y RSU
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Figure 1. Vehicular Edge Computing Architecture

Problem Formulation

As previously mentioned, IoT devices work in resource-constrained environments in many aspects, such as
communication resources, computation resources, and storage. These systems can leverage remote servers to
handle their data processing. In this regard, a workload management system is considered to make allocation
decisions between edge servers and the cloud since the onboard processing is neglected and not affected by the
proposed system.

The proposed model manages task offloading at runtime. It uses different types of features to predict the
location of execution. Task processing options include cloud-based cellular base stations (CBS), cloud-based
roadside units (RSU), and edge servers.

Each vehicle generates task t, which needs to be processed on server S.
S={sE1, sRSU1, sCBS1...., sEF, sRSUF, sCBSF}.

Notation sE represents the edge node, sRSU represents the cloud node through RSU, and sCBS represents
the cloud node through CBS. Hence, the objective is to specify a neural network-based model that assigns task t to
n, which belongs to S, in order to minimize the service time R of autonomous vehicle V that made the task t
processing request. This is done by training the model based on minimum service time for executed tasks.

In light of this, this work suggests a simple, one-stage, one-model neural network task orchestrator to address
the issue of limited onboard processing capability and reduce response times for intelligent vehicles. The
proposed model relies on NN support to predict the location of execution for the autonomous agents' workloads to
be completed at the edge in the cloud through RSU or in the cloud through CBS. The model selects the target
device based on this prediction. Furthermore, the proposed model relies on stand-alone features and uses
dependable features to customize the dataset. In this context, the stand-alone features refer to the features that
can be known before executing the tasks, such as vehicle location. The dependable feature refers to the features
that depend on the task execution to be known, such as service time.

Al Proposed Model

As presented earlier, the tasks generated by vehicles are sent to edge servers or the cloud through two options.
The selection of task execution location is considered in this work. The proposed model optimizes the workload
allocation process by considering multiple features related to the resources, communication, and application
characteristics.

The model presented in Figure 2, consists of the input layer, hidden layer, and output layer. The input layer
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consists of 14 neurons while one hidden layer is composed of 7 neurons. The output layer contains 3 neurons with
a softmax activation function. The model output is represented as a vector of 3 values. Each value of the vector
represents one execution location. The model uses a fully connected layer. The model parameter is presented in
Table 1.

Vehicle Location ——»
Task Length —»

Task Input ——»

WAN Upload Delay ——»
WAN Download Delay —»-
WLAN Upload Delay —» — Edge

WLAN Upload Delay ——» — Cloud via RSU

Avg. Edge Utilization ——» — Cloud via CN

Avg. Cloud Utilization ——
CN Upload Delay ——»-

CN Download Delay —

No. of Offloaded Task to Edge ——»
No. of Offloaded Task to RSU ——»

No. of Offloaded Task to CN ——»

Figure 2. The Proposed Model Architecture

Table 1. Proposed Model Specification

Parameter Specification or Value
Neural Network Layers 3 (1-Input, 1-Hidden, 1-Output)
Activation Function Layer 1,2 -Relu, 3-Softmax
Optimizer Adam
Dataset Size 1,306,812 Records (80% Training, 10% Validation, and 10% Testing)
Epoch 20
Patch Size 32
Learning Rate 0.001

The features selected as input parameters presented in Figure 2 are all considered as standalone features.
The standalone features are vehicle length, task length, task input, WAN upload delay, WAN download delay,
WLAN upload delay, WLAN download delay, average edge utilization, average cloud utilization, cellular network
(CN) upload delay, CN download delay, number of offloaded tasks to the edge, number of offloaded tasks to the
cloud through RSU, and number of offloaded tasks through CN.

Dataset Creation

The model proposed has been trained using a pre-generated dataset. The dataset has been created by
collecting the data from the EdgeCloudSim simulator. Figure 3 presents the main steps required for dataset
creation. Preprocessing the dataset is carried out by selecting the successfully executed task on a certain layer. In
case the task is executed successfully on more than one option, the option with minimum service time is selected.
Hence, each task should be recorded with minimum service time and successfully executed.
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Figure 3. Flowchart for Generating the Dataset

Twenty-one features are recorded for each task. As presented in Table 2, the features recorded are Decision,
Result, ID, ServiceTime, ProcessingTime, VehicleLocation, SelectedHostID, TaskLength, TaskInput, TaskOutput,
WANUploadDelay, = WANDownloadDelay, = CNUploadDelay, = CNDownloadDelay, = WLANUploadDelay,
WLANDownloadDelay, AvgEdgeUtilization, AvgCloudUtilization, NumOffloadedTaskE, NumOffloadedTaskRSU,

NumOffloadedTaskCN.
Table 2. The Dataset Features with its Specification
Features Specification
Decision Location of Execution (Edge, Cloud through RSU, and Cloud through CN)
Result Results of Execution (Success or Fail)
ID Number of Tasks
ServiceTime Time Required to Execute the Task and Get the Result Back to the Vehicle
ProcessingTime Time for Executing the Task on Edge or Cloud through RSU or Cloud through CN
VehicleLocation Location of the Vehicle when Generating the Task
SelectedHostID The ID of the Server Selected for Execution
TaskLength Length of Task
TaskInput Input Size of Data
TaskOutput Output Size of Data
WANUploadDelay Delay Time of Upload Link for WAN Network
WANDownloadDelay Delay Time of Download Link for WAN Network
CNUploadDelay Delay Time of Upload Link for CN Network
CNDownloadDelay Delay Time of Download Link for CN Network
WLANUploadDelay Delay Time of Upload Link for WLAN Network
WLANDownloadDelay Delay Time of Download Link for WLAN Network
AvgEdgeUtilization Average Edge Utilization
AvgCloudUtilization Average cloud Utilization
NumOffloadedTaskE Number of Tasks Sent to the Edge for the Last 5 Seconds
NumOffloadedTaskRSU Number of Tasks Sent to the Cloud through RSU for the Last 5 Seconds

NumOffloadedTaskCN

Number of Tasks Sent to the Cloud through CN for the Last 5 Seconds
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The dependable features such as service time, results, and decision considered important features contribute
to the prediction accuracy. However, these features can not be fed to the model as input because they can not be
known before task execution. Hence the dependable features are used in the dataset generation process.

The usage of dependable features makes sure that the model selects the location of execution that provides
less service time, ensures stability and generalization of the mode, and decreases the failure rate of tasks, hence
maintaining the QoE required by the application.

Vehicles Application

The vehicle transmits tasks belonging to different applications with different requirements for each
application. The applications considered are navigation, danger assessment, and infotainment.

All those applications belong to autonomous vehicle systems. Each application sends its task at different
interarrival times, with different time sensitivity requirements and different task sizes. Table 3 presents the
application characteristics.

Table 3. Vehicle’s Application Characteristics

Parameters Danger Assessment Infotainment Navigation
Generating Task Percentage 35 35 30
Task Interarival Time (sec) 5 15 3
Maximum Delay Requirement (sec) 1 1.5 0.5
Delay Sensitivity Requirement (sec) 0.8 0.25 0.5
Download Data (KB) 40/20 20/80 20/20
Task Length (GI) 10 20 3
Edge/Cloud Utilization 20/4 40/8 6/1.6

PERFORMANCE EVALUATION

The effectiveness of the suggested workload allocation method is assessed by an extensive set of tests. The
simulations are run on EdgeCloudSim (Sonmez, Ozgovde, & Ersoy, 2018), a program that can mimic mobile
vehicles as well as computational and networking resources. Five well-known methods are used for the purpose of
comparison. The game theory-based, SMA-based, MAB-based, ML-based, and random methods are considered.
The specification and algorithm for all these approaches are presented in (Sonmez et al., 2021). The vehicles
moved at different speeds. The density of the vehicles is presented in Figure 4. The x-axis represents the ID
location of the vehicles. The location of the vehicle is identified by the location of RSU that the vehicle is in their
coverage. The y-axis represents the number of vehicles on the road. The colored bar indicates the number of
vehicles in each color. Each location covers around 10 to 20 vehicles in low number of vehicles. While in a very
high number of vehicles, some RSU coverage around 9o vehicles and other location coverage around 30 vehicles.
This diversity, varying speed segments, is achieved to emulate the actual road.

Mean number of vehicles per places

#Vehicle in simulation

200 20
400 80
600 70
800 60
1000 50
1200 40
1400 30
1600 20
1800 0

SYN XH 0ATIJIJIIEDL LD TP AP AP A ARD DD D AR DD
PlachDs

Figure 4. Vehicles Density

Performance Evaluation of the Proposed Model

Figure 5 presents the model’s accuracy. The model converges fast and is stable at around 94% accuracy after
20 epochs. The validation accuracy is nearly the same as the training accuracy curve, indicating that the model
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converges well and there is no overfitting.

The loss of the model is presented in Figure 6. The model converged fast until it reached 0.16% loss after 15
epochs. The loss of validation is nearly the same as the training loss.

Model Accuracy

0.95 1 :

0.90 4

0.85 4

Accuracy
o o
~ =]
w o

(=]
~
o

0.65

0601
—— Training Accuracy

0.55 Validation Accuracy

0.0 2.5 5.0 7:5 10.0 12,5 15.0 17.5
Epoch

Figure 5. Average Model Accuracy
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Figure 6. Average Model Loss

The confusion matrix of the model presented in Figure 7 predicts a categorical label for each input. The
confusion matrix presents the number of true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN) produced by the model on the test data. In multi-class classification, the rows of the confusion
matrix demonstrate the data points' accurate classifications while the columns indicate the class’s model
predicted. The percentage of tasks that were accurately identified as being a part of the first class is 9.2%. The
percentage of tasks that belong to the second class but were mistakenly assigned to the first class is 1%. The
percentage of that should have been in the third class but was mistakenly assigned to the first class is 0%. 2.24%
of tasks in the test dataset should have been in the first class but were mistakenly assigned to the second class. The
percentage of data points that were accurately categorized as being a part of the second class is 41.23%, while 1%
of tasks were mistakenly assigned to the second class when they should belong to the third class. 0.09%
represents the percentage of tasks that belong to the first class but were mistakenly assigned to the third class.
1.4%, although adequately assigned to the second class, were mistakenly classified as belonging to the third class.
Finally, the percentage of tasks accurately identified as part of the third class is 43.7%. Generally, high diagonal
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values (12032, 53887, and 57055) reflect the model's ability to predict the location of execution correctly. Hence,
the confusion matrix indicates that the classification model is predicting the correct classes with a high degree of
accuracy. The evaluation metric for the proposed model includes average accuracy, average loss, precision, recall,
F-score, Macro avg., and weighted average. They are presented in Table 4. The average accuracy is 94.2%, the
average loss is 0.16. The model size after training and saving is 17.5 KB, while the training time is 7.08 minutes.

12032 1392 (0]
9.2% 1% 0%
2935 53887 1430
2.24% 41.23% 1%

13 1938 57055
0.09% 1.48 43.7

Figure 7. Confusion Matrix of the Proposed Model

Table 4. Evaluation Metric for Proposed Model

Precision Recall F1-Score Support
Class-0 0.80 0.90 0.85 13424
Class-1 0.94 0.93 0.93 58252
Class-2 0.98 0.97 0.97 59006
Macro avg. 0.91 0.93 0.92 130682
Weighted avg. 0.94 0.94 0.94 130682
Accuracy 94.2%
Loss 0.16%
Model Size 17.5 KB
Training Time 7.08 min

The proposed neural network model is compared to other well-known algorithms. The algorithms considered
are the Random Forest, Naive Bayes, and Support Vector Machine (SVM). The Random Forest is an ensemble
learning that enhances accuracy and decreases overfitting by combining several decision trees with tagging and
random feature selection. Naive Bayes is a Probabilistic approach that provides effective classification based on
probabilities. SVM is a supervised Learning method that uses support vectors to find the best hyperplane that
maximizes the margin between classes. The evaluation metrics for Random Forest, Naive Bayes, and SVM are
presented in Table 5, Table 6, and Table 7, respectively.

Table 5. Evaluation Metric for Random Forest

Metric Values
Correctly Classified Instances (Accuracy) 94%
Incorrectly Classified Instances 5.3122%
Mean Absolute Error 0.0544
Root Mean Squared Error 0.1622
Model Size 542.6 MB
Training Time 25 min and 14 sec

Table 6. Evaluation Metric for NaiveBayes

Metric Values
Correctly Classified Instances (Accuracy) 90.0686%
Incorrectly Classified Instances 9.9314%
Mean Absolute Error 0.0665
Root Mean Squared Error 0.2538
Model Size 5 KB

Training Time 13 sec
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Table 7. Evaluation Metric for SVM

Metric Values
Correctly Classified Instances (Accuracy) 93.6716%
Incorrectly Classified Instances 6.3284%
Mean Absolute Error 0.2364
Root Mean Squared Error 0.2971
Model Size 8 KB
Training Time 1 day, 7 hours, 24 min, 58 sec

The highest accuracy achieved with the neural network model reached 94.2%, followed by Random Forest,
SVM, and NaiveBayes, achieving 94%, 93.6716 %, and 90.06%, respectively—the worst case in accuracy presented
by NaiveBayes. The lowest training time achieved with NaiveBayes reached 13 seconds, while the others took 14
sec, 7.08 min, and 31.4 hours for Random Forest, neural network model, and SVM. The lowest model size
achieved with NaiveBayes is 5KB, while the SVM, neural network model, and Random Forest model sizes are 8KB,
17.5KB, and 542.6MB, respectively. Hence, the proposed neural network model achieved the highest performance
in terms of accuracy while achieving the lowest loss compared to the Root Mean Squared Error of another method.
The Random Forest algorithm achieved performance close to the proposed model in terms of accuracy and loss,
but the model size of Random Forest is significantly high compared to the proposed model. The increase in model
size is due to the fact that the Random Forest algorithm is a tree-based algorithm that produces large complexity
with a large dataset. The neural network model only saved the weight and structure, so the model size did not
increase as the dataset increased.

Performance Evaluation of the Model Inference

The proposed neural network model is trained using Python programming language, TensorFlow library, and
Keras. The proposed model is used for inference in the EdgeCloudSim simulator. The proposed model is
compared to several approaches, which are the random, simple moving average (SMA) based, the multi-armed
bandit (MAB) theory-based, game theory-based, and machine learning-based vehicular edge allocation decision.
The random approach selects the execution location with equal probability for each execution layer. The SMA is a
time series forecasting technique that predicts future results using recent, short-term historical data. The time
series data is recorded by this technique using a fixed-length list, where each element of the list includes the data
for a particular time period. By giving the data, which has been gathered more recently, a higher weight, the
average success rate of each alternative is determined. Next, it chooses the target machine with the best success
rate. MAB is a reinforcement learning approach that aims to maximize the expected gain. The game theory-based
technique modifies the offloading probability of vehicles to maximize utility by using a multi-user, noncooperative
computation offloading game. The machine learning (ML) based strategy proposed a two-stage machine learning
model. The first stage is predicting whether the tasks will be successfully executed or fail. Then, if the tasks are
executed successfully, then the service time is estimated for each location of execution to select the location with
minimum service time. The features used for each model are also different.

The performance evaluation measures the average QoE, the average QoE for each application, the average
failed task, and the reasons for failed tasks. The simulation settings are presented in Table 8.

The QoE is measured by considering the service time and failure tasks as in Eq. (1).

0 it T, = 2R,
QOE = ((1 ~I8) (1 - si)) ifR, < T, < 2R, @)
1 it T, < 2R,

Where Ti represents the service time, Ri represents the application's delay requirement, and Si represents
delay sensitivity.

Table 8. Simulation Parameters

Parameter Values
Simulation Time / Warm-up Period 60 / 3 Minutes
Network Delay Model MMPP/M/1 Queue Model
No. of VMs per Cloud/Edge 20 /40 (2 Per Edge)
Capacity of Cloud/Edge VM 150 / 20 GIPS
Range of RSU (WLAN) 200 m
MAN / WLAN Bandwidth 1000 /10 Mbps

Bandwidth of WAN/WAN over LTE 50 / 20 Mbps
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Parameter Values

Propagation Delay of WAN/WAN over LTE 150 / 160 ms

Figure 8 presents the average QoE. The proposed method achieved the highest QoE compared to the other
approaches considered with a high number of vehicles and a small number of vehicles, while the MAB-based
approach achieved better performance in a medium number of vehicles. The MAB-based approach achieved
better performance for a specific number of vehicles. However, its performance dropped quickly in a high number
of vehicles since the complexity of the algorithm increased.
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Figure 8. Average QoE

The proposed approach increased the average QoE by 28.57%, 11.9%, 23.8%, 19.04%, and 8.33%, compared
to random, SMA-based, Game-based, MAB-based, and ML-based approaches, respectively.

Figure 9 represents the average QoE for the danger assessment application. The proposed methods achieved
the highest performance in a relatively high number of vehicles compared to its competitors. The characteristics of
this application reflect the model behaviour for medium inter-arrival time and the highest delay sensitivity
application. The lowest QoE reached 80% and presented as the highest value achieved with 1800 vehicles.
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Figure 9. The QoE of Danger Assessment Application
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Figure 10 presents the QoE for the Navigation application. The navigation application generates a task every
3 seconds, hence the lowest inter-arrival time, while the maximum delay requirement is the smallest. The
proposed methods achieved the highest QoE for all vehicle numbers, reaching 94% for a large number of vehicles.

Figure 11 presents the QoE for the infotainment application. The app's best performance was achieved using
an MAB-based algorithm for all vehicle numbers except the 1800 vehicles. The app's requirement allows the
highest delay while generating the tasks every 15 seconds. The app generates the tasks with the highest
interarrival time compared to the other application’s interarrival time.

The average failed tasks are presented in Figure 12. The lowest failure tasks were achieved with the
proposed methods and game-based approach. While the game-based approach achieved the lowest average failure
rate, it exhibited the worst case in QoE for all applications at longest with the random approach. According to this,
the comparison will be against the ML-based approach for average task failure.
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Figure 10. The QoE of the Navigation Application
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Figure 11. QoE for Infotainment Application

Only the ML-based approach with the proposed approach balances the QoE and failure rate. The proposed
methods achieved nearly stable failure tasks among the other approaches, reaching 50% enhancement compared
to the ML-based approach.

Failure tasks for infotainment, navigation, and danger assessment are presented in Figures 13, 14, and 15,
respectively. The lowest failed task was achieved with a navigation application, reaching 7%. The lowest failure
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rate has been achieved by the proposed method. The danger assessment has achieved the second lowest failure
tasks, reaching 9% as a maximum value. In the small number of vehicles, lower than 700 vehicles, achieved no

failure rate for all approaches considered. The highest failure rate has been achieved with infotainment
applications.
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Figure 12. Average Failed Tasks
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Figure 13. Failed Tasks for Infotainment Application
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Figure 15. Failed Tasks for Danger Assessment Application

The failed task percentage caused by the VM Capacity is presented in Figure 16. The tasks that are assigned
to the edge, cloud through RSU, or cloud through cellular network could fail in case there are no resources to
process the tasks in that server.

As the number of vehicles increases, the Game-based method performs noticeably worse than the other
algorithms, with a high increase in the percentage of unsuccessful tasks. The proposed methods achieved the
lowest failed tasks for small and medium numbers of vehicles and slightly increased for a high number of vehicles
indicating its superior performance. While the ML-based, MAB-based, SMA-based, and random algorithms
exhibit comparable performance patterns, the proposed approach has a little greater percentage of failed
assignments in around 1300 vehicles.

—#—Proposed
—®— ML-based
—&— MAB-based
—¥— Game-based
—*— SMA-based q
4 random

3

-

(=38

—

Failed Task due to VM Capacity (%)
w I

(%]

I4llll 1600 1800

or——4— ¢ o000
200 400 600 800 1000 12

Number of Vehicles

Figure 16. Failed Tasks Due to VM Capacity

The tasks failed because of the high mobility of vehicles presented in Figure 17. The tasks were considered as
failed in case the vehicle moved out of the RSU range while uploading or downloading tasks. In case the vehicle
moves out of RSU range, the server will send the results to the next RSU in the vehicle's direction of movement to
finally get the results of tasks. The proposed model managed to achieve no failure due to mobility in a small
number of vehicles, while the failure rate increased in high vehicle numbers. The proposed methods achieved the
lowest failed rate compared to other methods. In the high number of vehicles, 1400 to 1800 vehicles, the ML-
based methods achieved better performance than the proposed methods with a small difference.
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Figure 17. Failed Tasks Due to Mobility

The percentage of tasks that failed due to CN is presented in Figure 18. The tasks that are allocated to the
cloud through the CN, but there are not enough resources, are considered failed. The proposed approach and
game-based approach perform better than any other technique in terms of stability in all numbers of vehicles. It
shows a relatively low percentage of tasks that fail even when the number of vehicles rises dramatically compared
to the random method, which achieved the worst failure rate, reaching 35%.

The failed tasks due to WLAN limitation (bandwidth and congestion) are presented in Figure 19. The
proposed model achieved a worse case primarily on the high number of vehicles reaching 0.15%. The lowest
failure rate have been achieved by the random approach, which reached 0.01. Other approaches considered varied
between the proposed method and the random method with small differences.
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Figure 18. Failed Tasks Due to CN

A failed task caused by the WAN channel is presented in Figure 20. The proposed model achieved no failure
task for vehicle numbers as the other methods in a small number of vehicles, less than 900. From 900 to 1300
vehicles, the proposed model achieves the highest failure rate while achieving a nearly stable failure rate in a high
number of vehicles. The MAB-based approach failure rate rises fast — from 1400 to 1800 vehicles - to reach 17.9%
as the maximum value. The proposed model achieves 6.1%, which is the highest failure rate in 1800 vehicles.
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The proposed method achieved the highest performance in navigation applications in terms of average failure
rate and QoE compared to other applications. This is because of the application characteristics and requirements.
The smallest task length, and upload/download data minimize the burden of the network. On the other hand,
navigation requires a strict maximum delay requirement of 0.5 seconds. The proposed model achieves low latency
and fast data processing, which makes it appropriate for real-time navigation requirements. The navigation
application is considered a lightweight application with rapid task generation.

The infotainment application has achieved the lowest performance. The highest task size and
upload/download data requirements may experience increased failure rates and decreased QoE. Potential
bandwidth and resource limitations cause degraded performance. Regardless of the flexibility and tolerance in the
delay sensitivity requirement (0.25) and maximum delay requirement (1.5), the high upload and download data
(20/80 KB) could lead to cognition when the number of vehicles increases. The infotainment application is
considered the most tolerant compared to other applications with heavy data transferred. Also characterized by
the longer task interval time (15 seconds).

Applications with stricter requirements (like navigation and danger assessment) benefit more from the
proposed method, which is designed to minimize delays and handle rapid data processing. The lower failure rates
in these applications indicate that the method is well-suited to meet their critical performance needs. The
proposed model tends to achieve no failure rate and maximum QoE for a small number of vehicles while
performing better than its competitors, especially in high vehicle numbers. The effectiveness and robustness of
the neural network model are achieved by several metrics such as its architecture, parameters used, and, most
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importantly, the dataset. The model is trained using a big dataset that contains only successfully executed tasks on
certain layers. The success of the task couples with minimum service time. Hence, the model tends to send the
task to the location that generally achieves successfully executed tasks with minimum service time, taking into
account 14 input features.

CONCLUSION

Workload allocation is an online problem, and because its inputs are changing so quickly, formal
optimization techniques are unable to address it effectively. To enhance system performance, workload allocation
methods offer to transfer incoming tasks to the best processing unit. The location of execution must guarantee
that the QoE meets the application requirements. Especially in highly dynamic systems, such as vehicular systems,
safety on the road is inevitable. A neural network-based workload allocation method for multi-access, multi-layer
VEC architectures is presented in this paper. The proposed method is capable of managing and efficiently
handling unpredictable nonlinear systems by taking into account several factors. The effectiveness and robustness
of the neural network model are achieved by the dataset used and the high number of input features that affect the
decision accuracy. Hence, the model sends the task to the location that generally achieves successfully executed
tasks with minimum service time. In order to compare the suggested model, five methods are considered which
are random, SMA, MAB theory, ML, and game theory. The proposed methods achieved better results regarding
QoE and average task failure rate. The proposed methods achieved 8.33% to 28.57% enhancement compared to
other methods considered in terms of QoE and 50% enhancement in average failure rate compared to the best
earlier methods, the ML-based approach. While the proposed model achieves stability and scalability by handling
a high number of vehicles and providing efficient real-time decisions, several issues, such as data privacy and
security, need to be addressed for real implementation. In future work, optimization methods will be considered
for optimizing the features used as input to the model. The vehicle on-board processing tasks will be considered,
and vehicle-to-vehicle communication will also be investigated to enable sharing of resources of other vehicles
and reduce transmission costs.
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