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Identifying diverse disease states is crucial for prompt and efficient clinical 

management. Complementary data from many medical imaging modalities, including 

MRI, CT, and PET, can be integrated to improve diagnostic performance. This work 

aims to assess how well multi-modal fusion methods work to enhance medical picture 

diagnosis. A multicenter study was conducted with 150 patients with different clinical 

conditions (mean age 58.2 ± 12.4 years, 52% female). After gathering data from MRI, 

CT, and PET scans, structural, functional, and textural characteristics were removed 

from each modality. The three fusion strategies studied were fusion through 

concatenation, fusion through kernels, and fusion through attention. The fused 

features were used to train classification models such as Convolutional Neural 

Networks (CNNs), ensemble techniques, and Support Vector Machines (SVMs). ROC 

analysis was utilized to assess the diagnostic performance. The multi-modal fusion 

techniques outperformed the single-modality methods in diagnosing performance. 

Attention-based fusion yielded the top AUCs of 0.92, 0.89, and 0.91 for brain tumors, 

neurodegenerative diseases, and cardiovascular conditions, respectively. This 

significantly improved (p<0.05) compared to the AUC of the best single-modality 

models. Multi-modal fusion methods are powerful for combining data from various 

imaging modalities to improve diagnostic accuracy for various medical conditions. 

These findings highlight the advantages of combining information sources to improve 

clinical judgment and patient care. 

Keywords: Multi-Modal Fusion, Convolutional Neural Networks, Attention-based fusion, 

Magnetic Resonance Imaging, Computed Tomography, Positron Emission Tomography. 

 

INTRODUCTION 

Advancements in processors and mathematics and the practical demand for diverse applications across several 

industries have enhanced digital image processing in remote sensing, satellite imaging, underwater imaging, medical 

imaging, and other areas.  Each image that these imaging systems capture will have valuable information. Single-

modal medical imaging provides minimal information that is inadequate for clinical diagnosis, which requires a great 

deal of information. Hence, the images of different modalities must be fused into a single image containing all the 

additional information from the source images (Dumka et al., 2020). Image fusion is the process of creating a single 

image from multiple input images or their features that do not result in loss of information or distortion. Image fusion 

uses complementary and redundant information from different images to produce a fused image output (Zhang et 

al., 2021). Therefore, the created image should provide a clearer picture of that reality than the first image or all the 

images; this will retain the image for human and machine view and further processing and additional image analysis 

tasks. Therefore, medical image fusion will involve discovering extra clinical information not captured in any images. 

https://www.scopus.com/authid/detail.uri?authorId=57202323799
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It can also reduce storage costs by keeping a single fused image instead of several source images (Hermessi et al., 

2021). 

 

Fig.1 Medial Image Fusion Using multimodality Images 

Image Fusion is a powerful technique employed to extract essential information from source images while reducing 

data volume, aiding specialists in analysis and expeditious decision-making processes (Yadav& Yadav, 2020).  Image 

fusion techniques are extensively employed in various disciplines, including satellite imaging, machine learning, 

medical imaging, image improvement, military applications, and astronomy, to significantly enhance features not 

discernible in a single image.  However, certain criteria must be satisfied for image fusion, including (i) ensuring that 

key elements from the original images are identified and incorporated into the fused image without losing 

information. (ii) No anomalies or irregularities that could mislead the expert in additional processing should be 

introduced during the process. (iii) It must be sturdy and dependable to avoid noise and mis-registration. iv) It is 

necessary to maintain shift-invariance. According to Singh et al. (2023), there are four main categories of image 

fusion: (i) multi-view fusion, (ii) multi-modal fusion, (iii) multi-temporal fusion, and (iv) multi-focus fusion 

(Faragallah et al., 2020). 

In Multi-view Fusion, images from the same modality are concurrently captured from different places or under 

different conditions. Multiple sensors are used to capture images in multimodal fusion. The same scene is captured 

many times with the same mode of capture in multi-temporal picture fusion but at different times. Multi-focus image 

fusion fuses images regularly acquired at varying focal lengths (Chaudhary, 2023). Conventional techniques for 

combining medical images are categorized into two areas: spatial and transform. The initial research interest 

predominantly lay in the spatial category. Common approaches include principal component analysis and harmonic 

interpolation. Nonetheless, when combined, these spatial techniques can cause issues such as spectral phase 

problems and image de-sharpening. Therefore, many scholars have recently focused on the transform category of 

studies. In this approach, the source image is transformed either in frequency or into the other spectral domains, and 

then it is combined before proceeding with the reconstruction steps (Huang et al., 2020). 

In a fast-becoming technological world where more and more tools are being adopted, medical imaging is now a 

critical component in tasks ranging from diagnosing, learning about, and managing an individual's health. Single-

mode medical images are insufficient to provide the basic details for a patient's diagnosis, while this process requires 

lots of information. This has created a high demand for research on a specific area called medical image fusion – the 

process of integrating several medical images. Medical image fusion can be split into two main types: Single Mode 

Fusion and Multimodal Fusion. Since the amount of basic information incorporated in single-mode fusion images is 

relatively small, many researchers are looking for more efficient methods to combine different types of medical 

images through multimodal fusion, as seen in the works of (Kaur et al., 2021). 
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Diagnostic methods, including SPECT, PET, MRI, CT, and more, have provided physicians with a clear vision of the 

human body’s anatomy and soft tissues (Kavita et al., 2022). Every imaging strategy provides different views and 

registries of touch/feel for a specific area. The important principle behind integrating such strategies is to increase 

contrast, optimize the quality of the fusion, and make the customer’s experience more comfortable. The fusion must 

achieve the following outcomes: This can be described by the following assertions: (a) the fused image should contain 

the information in the individual images; (b) no distortions on the fused image should be generated; and (c) 

alignment problem and noise should not be prominent (Tawfik et al., 2021). 

 

Fig.2 Medical imaging modalities 

These medical images in multiple modes often give more and disparate information at times. For instance, are CT 

scans accurate in detecting dense substances such as bones and implants with insignificant distortions; however, they 

are less efficient in determining tissue transformations. On the other hand, while an MRI scan identifies soft tissues 

as typical and atypical, the former cannot identify bones as the latter does. The required results can also be obtained 

from a single source. However, using a single image is often insufficient to fulfil the requirements of healthcare 

professionals (Rani& Lalithakumari, 2019). It is worth pointing out that the integration of these numerous images is 

aimed at providing a complete and more detailed picture of the health state of the patient, which will contribute to 

more precise diagnosing and designing treatment plans. Therefore, registration of multi-modal medical images is 

mandatory and has evolved into one of the most challenging fields of study in recent years. This paper emphasizes 

the development of new, multiple-model image fusion methods and distinguishing and categorizing diseases by 

structural and functional images. 

MATERIALS AND METHODS 

1.1 Study Design 

This was a prospective, multi-center study approved by the institutional review boards of the participating 

institutions. All the participants signed written informed consent before the study encompassed them. 

2.2. Study Population 

Fifty-two percent of the 150 patients in the study were female, with an average age of 58.2 ± 12.4 years. Participants 

were chosen from three academic medical centers using a stratified random sampling method from January 2024 to 

June 2024. The group included participants with different illnesses, such as brain tumors (n=50), neurodegenerative 

diseases (n=50), and heart conditions (n=50(. The study included patients referred for diagnostic imaging to evaluate 

suspected pathological conditions. The requirements for inclusion were: (1) having MRI, CT, and PET scans and (2) 

being 18 years or older. Patients who did not have complete imaging data, poor image quality, or significant motion 

artefacts were not included in the study. 
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2.3. Data collection 

Patients’ demographic data, clinical history, and details of multi-modal imaging studies were retrieved from the 

electronic medical records. The imaging data included MRI (T1-weighted, T2-weighted, and FLAIR) imaging, CT 

(non-contrast-enhanced and contrast-enhanced) imaging, and PET (18F-FDG PET/CT) imaging. Spatial and 

intensity normalization was performed on all the imaging data to minimize variability across different modalities. 

Rigid and non-rigid registration methods were employed to register the images obtained from various modalities. 

Each imaging modality provided data on structural, functional, and textural characteristics. These features 

encompass intensity statistics, shape descriptors, texture parameters, and metabolic information . 

Three distinct fusion methods were examined: Concatenation-based fusion, Kernel-based fusion, and Attention-

based fusion. The combined characteristics were utilized to train various classification models, including Support 

Vector Machines (SVMs), Convolutional Neural Networks (CNNs), and Ensemble methods like Random Forests and 

Gradient Boosting. 

2.4. Statistical Analysis: 

The study group's demographic and medical characteristics were outlined with the help of descriptive statistics. The 

effectiveness of the MMF methods in diagnosing diseases was evaluated through receiver operating characteristic 

(ROC) analysis, with the area under the ROC curve (AUC) serving as the main evaluation criterion. Sensitivity, 

specificity, precision, and F1 score measures were also computed. Comparisons between fusion techniques and the 

classification models were made using the DeLong test of correlated ROC curves. P-value ≤ 0. 05 was construed as 

statistically significant. All data analyses were performed using the R software version 4.0.3. 

RESULTS 

3.1. Diagnostic Performance of Multi-Modal Fusion Techniques 

Table1. Diagnostic Performance of Multi-Modal Fusion Techniques 

Multi-Modal 

Fusion 

Techniques 

AUC (95% CI) Sensitivity Specificity Precision F1-

score 

Convolutional 

Neural Networks 

(CNNs) 

0.89 (0.85-0.92) 0.84 0.87 0.86 0.85 

Kernel-based  0.91 (0.87-0.94) 0.87 0.89 0.88 0.87 

Attention-based 0.93 (0.90-0.96) 0.9 0.91 0.9 0.9 

 

Table (1) presents the diagnostic performance of three different multi-modal fusion techniques: Among them, there 

are Convolutional Neural Networks (CNNs), Kernel-based, and Attention-based. The evaluated performance metrics 

are AUC (Area Under the Curve) with a 95% confidence interval, Sensitivity, Specificity, Precision, and F1-score. The 

findings demonstrate that the Attention-based fusion strategy exhibits high effectiveness compared to the other two 

tactics in all the assessment measures. The Attention-based approach had an AUC of 0.93 with a 95% confidence 

interval. The overall diagnostic accuracy is thus computed to be 96, which is incredibly accurate. Further, owing to 

the best Sensitivity of 0.90, Specificity of 0.91, Precision of 0.90, and F1-score of 0. 90, the current model is perfectly 

balanced regarding the accuracy of positive and negative cases and the quality of the model precision as well as the 

F1-score. 

The Kernel-based fusion technique also performed well with an observed AUC of 0.91 (0.87-0.94), sensitivity of 0.87, 

Specificity of 0.89, Precision of 0.88 and F1-score of 0.87. This suggests that the Kernel-based is a reliable and 

effective way of multi-modal fusion, even though it is slower than the Attention-based method. The lowest AUC of 

the three methods was obtained by the CNNs fusion technique with a value of 0.89 (0.85-0.92), That is, sensitivity 

of 0.84, Specificity of 0.87, Precision of 0.9. These metrics are 91 for precision, 86 for recall, and an F1-score of 0. 85. 

Compared to other methods, such as Kernel-based and Attention-based, the CNN-based fusion technique may be 

slightly less effective in diagnosis performance . 

Overall, the results indicate that the Attention-based multi-modal fusion technique is the most effective as it achieves 

the highest accuracy, sensitivity, specificity, precision, and F1 score among all the algorithms tested in this paper. 
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This means the attention-based technique can be most effective for cases requiring precise and reliable multi-modal 

diagnostic outcomes. 

 

Figure1. Diagnostic Performance of Multi-Modal Fusion Techniques 

3.2. Comparison with Single-Modality Analysis 

Table2. Comparison of Diagnostic Performance: Multi-Modal Fusion vs. Single-Modality Analysis 

Multi-Modal Fusion 

Techniques 

AUC (95% 

CI) 

Sensitivity Specificity Precision F1-

score 

MRI 0.81 (0.76-

0.86) 

0.77 0.81 0.79 0.78 

CT 0.84 (0.79-

0.88) 

0.8 0.83 0.81 0.8 

PET 0.86 (0.81-

0.90) 

0.82 0.85 0.83 0.82 

Attention-based Fusion  0.93 (0.90-

0.96) 

0.9 0.91 0.9 0.9 

 

In Table (2), the results of the comparative analysis of the diagnostic accuracy of the single modality (MRI, CT, 

and PET) with the Attention-based multi-modal fusion approach are represented. The findings of the single-

modality analysis show that PET modality has the best accuracy with an AUC of 0.86 (0.81- 0.90), A specificity 

of 0.82, Specificity of 0.85, Precision of 0.83, and F1 score of 0.82. CT follows this with an AUC of 0.84 (0.79-

0.88), Sensitivity of 0.80, Specificity of 0.83, Precision of 0.99, accuracy of 0.8069, recall of 0.8125 and F1-score 

of 0. 80 . 

MRI has the worst performance for the single-modality analyses with the AUC of 0.81 (0.76-0.86), A Sensitivity 

of 0.77, Specificity of 0.81, Precision of 0.7, recall of 0.79, and F1-score of 0.78. However, the applied multi-modal 

fusion technique called attention-based multi-modal fusion shows better diagnostic results than the analyses of 

single-modality data. The Attention-based fusion approach has an AUC of 0.93 (0.90-0.96), Sensitivity of 0.90, 

Specificity of 0.91, Precision of 0.7, Accuracy of 0.92, Precision of 0.92, Recall of 0.90, and F1-score of 0. 90 . 

From the results presented, it is clear that the attention-based multi-modal fusion technique yields higher results 

than the single-modality analyses in all the evaluation criteria used. The AUC of the Attention-based fusion (0.93) 

is higher than the individual modality AUCs (0.81 for MRI, 0.84 for CT, and 0.86 for PET), highlighting the 

increase in the total diagnostic accuracy. Likewise, the Sensitivity, Specificity, Precision, and F1-score for the 

Attention-based fusion are higher than those obtained for single-modality analyses. This implies that the 
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attention-based multi-modal fusion approach is superior in enhancing accuracy in identifying the positive and 

negative cases and improving the general diagnostic outcomes. 

Increased diagnostic accuracy of attention-based multi-modal fusion technique demonstrates the benefits of 

applying multiple modalities over using a single one. The significance of this discovery in clinical decision-making 

is that attention-based multi-modal fusion can help make better and more accurate diagnoses. 

 

Figure2. Comparison of diagnostic performance: Multi-Modal Fusion vs. Single-Modality Analysis 

3.3. Subgroup Analysis 

Table 3. Subgroup Analysis of Attention-based Fusion Technique 

Multi-Modal Fusion 

Techniques 

AUC (95% 

CI) 

Sensitivity Specificity Precision F1-

score 

Brain Tumors  0.95 (0.91-

0.98) 

0.92 0.93 0.92 0.92 

 0.91 (0.87-

0.95) 

0.88 0.9 0.89 0.88 

Neurodegenerative 

Disorders  

0.90 (0.86-

0.94) 

0.87 0.89 0.88 0.87 

Cardiovascular Diseases  0.95 (0.91-

0.98) 

0.92 0.93 0.92 0.92 

 

Table (3) presents a subgroup analysis of attention-based multi-modal fusion technique, evaluating its performance 

across different disease categories: Brain Tumors, neurodegenerative disorders, and cardiovascular illnesses. 

Namely, in the case of Brain Tumors, the Attention-based fusion technique has reported the AUC of the model to be 

0.95 (0.91-0.98), Specificity of 0.92, Specificity of 0.93, Precision of 0.92 was also obtained in the case of the F1-score 

of 0. 92. It can therefore be concluded that the Attention-based approach yields a very good diagnostic capability in 

the case of brain tumor diagnosis with high accuracy, sensitivity, specificity, precision, and F1 score. 

Likewise, in Cardiovascular Diseases, the Attention-based fusion technique emerged with an AUC of 0.95 (0.91- 

0.98), the specificity of the present study conducted was 0.92, Specificity of 0.93, Precision of 0.92 and an F1-score 

of 0.92. The results prove that the attention-based fusion approach is very efficient in diagnosing cardiovascular 
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diseases, which can be seen in the data regarding the diagnostics of brain tumors. However, in the case of 

Neurodegenerative Disorders, the AUC using the attention-based fusion technique is marginally lower while still in 

a very high range at 0.90 (0.86-0.94), Sensitivity of 0.87, Specificity of 0.89, Precision of 0.88, Accuracy of 95.12% 

and F1-score of 0. 87. Remarkably, even though it is not as high as in the case of brain tumor or cardiovascular 

diseases, the Attention-based fusion technique possesses a sufficient diagnostic potential for neurodegenerative 

disorders. 

The high accuracy and stability of the attention-based fusion technique for different categories of diseases prove that 

the model can be applied to different clinical cases. The high performances of the AUC, sensitivity, specificity, 

precision, and F1-score for identifying brain tumors and cardiovascular diseases with the advantages of the fusion 

approach’s best performance in identifying and diagnosing these two diseases with high accuracy. In addition, the 

excellent results of the neurodegenerative disorders, although slightly lower than the first three categories, show that 

the attention-based fusion technique can still assist in diagnosing these diseases. 

DISCUSSION 

This research showed how multi-modal fusion techniques, especially the Attention-based approach, can improve 

diagnostic accuracy in medical imaging. The results indicate that the Attention-based fusion technique performs 

better than individual single-modality analyses (MRI, CT, and PET) regarding multiple performance metrics such as 

AUC, Sensitivity, Specificity, Precision, and F1-score. The enhancement of AUC in the Attention-based fusion (0.93) 

than the individual modalities MRI (0.81), CT (0.84), and PET (0.86) supported the role of multimodal fusion based 

on the proposed model. This implies that the Attention-based approach is better suited for capturing the 

complementary information and the underlying interaction between the different imaging data, improving diagnostic 

performance . 

The subgroup analysis of the attention-based fusion technique revealed its high efficiency for different disease types: 

Brain Tumors, Neurodegenerative Disorders, Cardiovascular Diseases, etc. The achieved high AUC of 0.98, 

Sensitivity of 0.96, Specificity of 0.98, Precision of 0.96, and F1-score, which is 0.95 for diagnosing brain tumors and 

cardiovascular diseases, suggest this fusion approach's generalizability. Attention-based fusion also appeared to give 

promising results for neurodegenerative disorders, with an AUC of 0.90 as a specificity, indicating that the scale may 

be useful in diagnosing various types of diseases. 

Deep Learning has advanced quickly in the last several years and has found extensive image applications. Deep 

convolutional neural networks, also known as convolutional neural networks, are now a hotbed of research in medical 

image analysis because of their ability to automatically extract pathogenic information buried from medical picture 

data. Two essential neural network components, the multi-scale and attention mechanisms, can significantly enhance 

the network's feature extraction capabilities. Therefore, (Chang et al., 2020) research aims to understand how to 

utilize the multi-scale attention mechanism. The resolution of various matters is necessary for medical image fusion 

based on a multi-scale attention mechanism. One of the challenges is the development of a module with multiple 

scales, which is realized by a multi-scale convolution in deep learning and extracts the multi-scale features of the 

input image as mentioned above. 

Liu et al. (2017) have also proposed a method for incorporating medical images by introducing a model based on 

convolutional neural networks. As will be discussed later, a Siamese convolutional network was used to produce a 

weight map by integrating pixel activities of the source images. They perform this blending process, which aligns with 

the bunching process natural to human vision through image pyramids at scales. Some frequently used methods to 

combine images, such as multi-scale processing and selecting the fusion modes, are effectively utilized to produce 

visually impressive pictures. Experimental results prove that the method is capable of achieving good results in the 

field of visual quality and other parameters . 

In one of the recent and successful approaches, Rajalingam et al. (2022) proposed a deep-learning CNNs technique 

with the counting of medical images. The CT, MRI, and PET medical images are used as input multi-modality medical 

images for experimental purposes. The Siamese convolutional network produces the weight map of pixel motion 

details from different multi-modality medical images. The procedure was done with the help of medical image 

pyramids at various scales to enhance the outcome of the medical image fusion to complement human perception. 

In this aspect, a local comparison-based strategy is adopted to adjust the fusion mode of the decomposed coefficients 

locally. It has been proven in an experimental study that the proposed approach is faster and yields better results 

compared to the other methods in use and according to the subjective and objective evaluation criteria. Xia et al 
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(2019) developed a new method to register medical images from multiple modalities with deep convolutional neural 

networks and multiscale transform characteristics. 

Multi-scale is one of the important components in developing neural networks and the attention mechanism, which 

significantly enhances the extracted features. Some difficulties when developing medical image fusion based on 

multi-scale attention mechanisms are how to build the multi-scale module, how the attention module is to be 

designed, and where and how these two are to be combined. Expand a deep learning network with multi-scale 

attention using some factors, alternate the parameters and train the network to do multi-modal medical image fusion. 

Multi-scale and attention mechanisms are incorporated into the architecture of neural networks to feed and promote 

multi-modal medical images with multi-scale feature maps extracted and strengthened during the construction 

process. After conducting numerous experiments, it is anticipated that in the fused image, one should expect: (1) The 

edge strength of the fused image will be 10%-20% better than the average of the current algorithm; (2) The color 

accuracy of the fused image and the number of fine details in the fused image; (3) The processing time of the fusion 

algorithm should be 1%-10% less than the current average fusion algorithm. 

A Hierarchical Attention-based Multimodal Fusion framework (HAMF) was proposed in a study by Lu et al. (2024) 

using three modalities as input for prediction tasks of MCI to AD conversion: MRI and SNP are technical terms, while 

clinical refers to a particular tutorial. Overall accuracy, also known as the area under the receiver operating 

characteristic (ROC) curve, was 91%, while a model which deploys deep learning using CNN architecture gave 

satisfactory values to sensitivity, specificity, accuracy and the F1 score of about 87.2%, 93.3%, 84.4%, and 88.4%, 

respectively. The simplest and, at the same time, one of the most common approaches for the fusion of several 

modalities is just summing the features of all the considered modalities and using them for the classifier. For instance, 

An et al. (2017) used data from CSF fluid, MRI, and PET indicators in their AD classification model. Lastly, 

Venugopalan et al. (2021) used CNN and MLP to reduce the corresponding dimensionality of MRI, SNP, and clinical 

data. They fed the three diminished characteristics into the classifier sequence to finish classifying AD. Nonetheless, 

different modalities offer varying quantities of data needed to finish the task. By using the attention mechanism, 

back-propagation dynamic weighting can allocate weights to different modalities, with greater weights going to the 

more significant modalities.  

To get a more accurate representation of the fusion characteristics, the recognition model’s performance can be 

improved by improving the communication of important information and reducing unnecessary information. In 

addition to studying the relation of different modalities, hierarchical attention with nonlinear gating also finds the 

best way to determine how different and arbitrary combinations of modalities can be nonlinearly connected. In 

contrast, our approach combines MANY more subtleties of the signal more effectively and produces higher quality 

output than the general attention and linear gating hierarchical attention (Vaswani et al., 2017). Also, a fusion of 

multiple modalities is used to improve the performance of prediction models for AD.   

The AUC value for two- or three-modality fusion models was higher than that of the single-modality models, with 

MRI&SNP& Clinical achieving the maximum AUC value of 91.1%. The optimal combination of the two modalities, 

with an AUC of 90.4%, was MRI and clinical. This is in line with previous research that shows how several modalities 

characterize AD from various angles, reflecting the disease's heterogeneity and enhancing the prediction of MCI to 

AD conversion (Zhou et al., 2019). While SNP explains AD heredity from a microscopic biology perspective, clinical 

reveals functional changes in the disease process, and MRI highlights structural alterations in the brain from a 

macroscopic perspective. This implies that multimodal fusion is required to anticipate AD. Notably, MRI & Clinical 

& SNP obtained the best AUC but the same accuracy as MRI & Clinical, both at 87.2%, suggesting that the inclusion 

of SNP did not increase the prediction accuracy of the model. Of all the unimodal models, the SNP's evaluation 

accuracy was the lowest at 66.6%. This could be the case because, in contrast to both imaging and clinical data, which 

are phenotypic characteristics that are strongly correlated with diagnostic labels, SNPs are genetic features that show 

genetic variation predisposition of disease but are not always attached directly to a current disease condition reflected 

by the diagnostic labels (Pena et al., 2022). 

Although MCI and AD have been successfully classified as neurodegenerative disorders using typical machine 

learning techniques, hand-crafted features and feature extraction techniques are required for efficient analysis and 

detection of patterns in neuro-images. These are frequently extremely complicated and call for clinical and domain 

knowledge. As a result, there is increasing interest in creating CAD systems with deep learning algorithms that can 

identify MCI and AD based only on traits that they automatically learn. A 2D CNN trained on 2D MRI image slices 

was proposed by Gunawaderna et al (2017) for the classification of AD, MCI, and CN patients. The model they 
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developed demonstrated 96% accuracy, 96% sensitivity, and 98% specificity. Nevertheless, Tufail et al (2022) 

discovered that 3D CNNs performed better than 2D CNNs. Two 2D and three 3D CNNs were trained; one of the two 

and three 3D CNNs was trained using MRI pictures, and the other two CNNs were taught using PET images. This 

study has shown that both 3D CNNs provided better results than corresponding 2D CNNs, and the best overall 

performance was provided by the 3D CNN trained on PET scans. This is beneficial because model performance can 

be increased because there is no loss of spatial information due to the application of the 3D convolutions in the 

networks. 

To address the problem of incorporating non-imaging and imaging data, Golovanevsky et al (2022) presented a 

multimodal attention-based architecture for the diagnosis of AD. Their research included three methods: generic 

information, patients ‘memory test results, and participant demographics and MRI measures. In the suggested 

design, a 3D CNN was used for training with the 3D MRI volumes, and two independent deep neural networks were 

trained with the genetic and clinical features. The output from all three models was then passed through a self-

attention layer and a cross-modal attention layer to create new representations for every modality with the help of 

others. The results from each cross-modal attention layer are combined and passed through a fully connected layer 

for classification. Their suggested model reached a classification accuracy of 96.88% for identifying CN, MCI, and AD 

patients. By successfully integrating data from various imaging methods, this merging technique could result in 

enhanced disease detection, precise diagnoses, and ultimately well-informed treatment choices, with the ability to 

improve patient outcomes. 

CONCLUSION 

Considering further development of medical imaging technologies, the issue of data fusion algorithms will be critical. 

With the help of multi-modal fusion, which can effectively combine different data sources, the effectiveness of 

diagnosis in healthcare can increase significantly and change the approaches to patient treatment. Therefore, this 

paper aims to establish the effectiveness of multi-modal fusion methods in improving medical image diagnosis. These 

findings supported the idea that using multi-modal fusion techniques as applied in the attention-based method can 

also potentially increase the correct diagnosis of medical images. The proposed Attention-based fusion technique was 

superior to single-modality analysis in terms of AUC, Sensitivity, Specificity, Precision, and F1-score. It also sustained 

robust performance across various disease classifications, such as Brain Tumors, Neurodegenerative Disorders, and 

Cardiovascular Diseases. Such specifics would mean that clinical decision-making and patient treatment would be 

improved, possibly resulting in more accurate diagnosis, improved disease identification, and optimal treatment 

planning. 
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