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Existing approaches to solve TSP-D depend on accurate methods such as metahiuristic algorithms, including the 

existing approach to mainly mixed pilgrimage (MILP) [6], as well as genetic algorithms, ant colony adaptation and 

taboo search. [7][8][9]. For example, Wang et al. [10] To improve the performance of drone-truck coordination in 

TSP, a hybrid metaheyuristic to add genetic algorithms and dynamic programming. In the same way, Buman has et 

al. [6] A compact MILP presented a branch-and-value algorithm based on MILP formulation, which is able to solve 

TSP-D examples of medium-prime to optimize. 

Although these methods have achieved promising results, they suffer from boundaries, dynamic relationship 

compatibility and decision -making of real -time in scalability. As the number of distribution points increases, the 

calculation time required by traditional looser increases rapidly, making them impractical for the deployment of the 

real world in large urban areas. [11]. 

To remove these boundaries, reinforcement learning (RL) has recently been introduced as a viable alternative for 

combinatory optimization problems, including routing and planning works [12]. RL enables agents to learn optimal 

decision strategies through testing-and-sled interactions with a dynamic environment, which is especially suitable 

for adaptive root in complex, real-time settings. In the case of TSP-D, RL can strengthen distribution systems to 

adapt truck and drone functions based on current conditions, environmental reaction and operational obstacles. 

In RL methods, proximal political adaptation (PPO) has emerged as a condition -of -art -algorithm for continuous 

control and policy screen adaptation [13]. PPO provides stable and effective teaching using a cut lens function, 

which prevents very aggressive political updates. When combined with deeply remaining nerve networks, PPO can 

handle large state action sites and reduce the problems that disappear gradients during exercise [14]. Residual 

connections allow deep network architecture that better generalize complex problems, such as TSP-D with limited 

drone area. 

The study proposes a new RL-based structure to solve TSP-D, combining PPOs with increased condition 

representation, including the status of transit, battery coatings and available drone knots, which are calculated 

using the algorithm of Dijkstra. The proposed approach is evaluated under both unlimited and limited drone -line 

scenarios, and compared to traditional hurryistics such as genetic algorithms (GA), particle crew adjustment (PSO) 

and grassy optimization algorithm (goa) [15] [16]  [17]. Experimental profit solutions show the better performance 

of the proposed method in terms of quality and calculation efficiency, and installs it as a competitive solution for 

the final miles distribution logistics for real time.The key contributions of this research include: 

• Introduction to a decorated and dynamic condition representation that fits the complications of TSP-D. 

• To benefit from PPO to learn stable and scalable policies in strange vehicle coordination. 

• Designing a hybrid deep residual network to improve the learning convergence and strengthen solutions. 

• To provide empirical evidence that RL improves traditional metahuristics in both quality and execution time in 

complex TSP-D landscape. 

2. RELATED WORK 

Coordination of drones and ground vehicles in the distribution of previous meals has emerged as a promising area 

of research in recent years. Travelers sellers problem with drone (TSP-D) is a challenging expansion of classic travel 

sellers Problem (TSP), where both a truck and a drone collaborate to operate a set of customers [18]. Due to the 

underlying NP tricks of TSP-D and further synchronization and battery operations of drones, researchers have 

discovered a number of adaptation strategies from accurate methods to metaheyuristic and learning-based 

approaches. 

A significant contribution to this domain is presented by Agatz et al. [5], which formally provided TSP-D and 

provided basic MILP models for coordinated delivery of the truck drain. Buman et al. [6] This research line 

improved this line by suggesting an accurate branch and worthwhile using a compact mixed linear programming 

(MILP) formulation and dynamic programming. His approach solved examples for optimal with 39 customers, 

crossing the previous accurate algorithm at both speed and scalability. 
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Grants for accurate methods, their ability to handle examples of a major problem, metahiuristic approaches have 

been given traction. For example, Wang et al. [10] We introduce a hybrid method that combines genetic algorithms 

and dynamic programming, especially aimed at synchronization between trucks and drone operations. Similarly, 

has et al. [7] Viewing efficiency in different reference scenarios, suggested a metaheyuristic hybrid framework in 

combination with false analling and taboo search after routing joint vehicle drain delivery. 

Recently, because of its ability to make adaptive decisions in the dynamic environment, the focus has been focused 

on using reinforcement learning (RL) to solve complex combinatorial problems such as TSP-D. Bello et al. [12] To 

solve the classic TSP, a nervous conference customization structure introduced using attention -based codes with 

policy gradients, which marks an infection against data -driven root solutions. After this direction, Nazri et al. [18] 

A Pointer Network -based Deep Reforcement (DRL) approach was presented to handle a Vehicle Route Problem 

(VRP) without relying on traditional looser or craft facilities. 

While RL models show laws to be compatible with the changing environment, a challenge lacks their state 

coordination for problems involving multiple weird means. Lu et al. [19] His model demonstrated the improvement 

of pure attention -based methods in both solution quality and learning stability. 

In order to improve generalization and convergence, various hybrid nerve architecture have been proposed. 

Residual networks, originally developed for image recognition [14], Dark reinforcement has proven to be effective 

in learning references, especially to train deep networks with stable gradients [20]. In logistics optimization, it is 

possible for remaining network models the model to capture more fine state action representations, which are 

essential to dynamic environment with complex. 

Another emerging technology is the use of Graph Neural Network (GNN) for routing problems. Cool et al.[21] 

These models naturally capture spatial and topological ratios between nodes, TSP-D is a significant requirement 

with dynamic customer placements and developed vehicle states. 

Despite the progress, literature shows the lack of reinforcement learning frames that specifically correspond to 

TSP-D with realistic drone barriers. Most existing models either simplify the battery limits or ignore the 

synchronization delay between trucks and drones. In addition, state representation that is used in pre-work is 

unable to include action-rich elements such as transit status, drone launch option and Dijkstra-based ricability 

analysis. 

In response, this study proposes a hybrid PPO-based reinforcement learning model, integrated with deep 

remaining nervous networks and a comprehensive condition vector, enabling decisions on real time and better 

performance in scenarios with a limited drag range. By addressing both scalability and realism, the proposed model 

contributes a new and effective approach to solving TSP-D. 

3. MATERIALS AND PROPOSED METHOD 

When addressing the traveling seller problem with a drone (TSP-D), this research creates a strong experimental 

setup and introduces a hybrid reinforcement learning-based solution that improves traditional heriaistic and 

accurate methods. The approach combines an intensive relevant environment to achieve effective coordination 

between a truck with advanced nervous architecture and proximal political adaptation (PPO) algorithm and a drone 

for distribution of the last meal. 

3.1 Experimental Environment and Materials 

Experimentally setup simulates a realistic urban delivery environment where a delivery truck gets the help of a 

drone to serve customer places. Two primary problem landscapes were considered: 

• Scenario 1: Unlimited drone area - the drone is considered to be sufficient battery capacity to operate any node 

regardless of distance. 

• Scenario 2: Limited drone range flight spacing is limited by battery capacity, which requires optimal selection of 

drone launch points and destinations. 



Journal of Information Systems Engineering and Management 
2025, 10(49s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1222 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

To simulate these conditions, a synthetic data set was generated based on grid maps with 11, 25 and 50 customer 

knots. The coordinates of each node were randomly distributed while maintaining the minimum vacancy to 

simulate city blocks. The atmosphere was programmed using the Openai Gym in Python, which allows dynamic 

interaction between agent policy and delivery landscape. 

The experiments were performed on a machine with an Intel Core i7 processor, 32 GB of RAM and an Nvidia RTX 

GPU. Tensorflow was used to use the nervous network, and the PPO algorithm was used from a stable baseline 3. 

Benchmark data and performance were compared to the modern TSP-D model with the results known, as 

introduced by Murray and Chu [21], and Poiconan. [22]. 

3.2 Proposed Reinforcement Learning Framework 

The suggested method prepares TSP-D as a Markov-declining process (MDP), and introduces a hybrid 

enhancement learning model created by three important innovations: an increased state vector, a deep remaining 

actor-critical architecture and a PPO learning algorithm. Each of these items is explained below. 

3.2.1 Markov Decision Process (MDP) Formulation 

The TSP-D is modeled as an MDP where: 

• Condition (s) captures trucks and drones locations, their par transit status, battery level and remaining delivery 

nodes. 

• Action (a) defines whether the drone is launched, restored or whether the truck continues to the next location. 

 Reward (s) encourages efficiency by punishing long routes, overweight or passivity in the battery. 

This MDP setup allows for dynamic, phased coordination between drones and trucks under real operating barriers, 

especially in the energy world environment. 

3.2.2 Enhanced State Representation 

A major contribution to this research lies in the improved state vector used by the drug. Unlike traditional 

representations, the proposed vector includes: 

• Truck and drone current coordinates 

• In-transit status of both vehicles (idle, en route, or delivering) 

• Battery level of the drone 

• Remaining delivery nodes 

•  Value for drone, matrix, calculated through the Dijkstra algorithm to reflect the nodes available below the 

current battery level [23] 

This level of extension allows the agent to evaluate both immediate and future obstacles, able to make more 

strategic decisions. Previous studies [24] have shown that rich state representatives lead to better political learning 

in complex environments as distribution optimization. 

2.23. Proximal Policy Optimization (PPO) 

In order to adapt the agent's decision policy, we adopt the proximal political adaptation (PPO) algorithm. 

PPO provides significant benefits for distributing the real world, including: 

• • Cut the objective function of the surrogate: Stabilizes exercise by avoiding extremely large updates. 

• • Several eras per batch: Refruit's data efficiency by reusing the collected path. 

• • Adaptive kl -penal [25]. 

PPO has performed better in continuous control problems compared to traditional political shields or Q learning 

methods, especially in multi-agent environment [26]. 
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3.2.4. Hybrid Deep Residual Network Architecture 

In order to further improve learning, the actress and critic network in the PPO framework is designed with deep 

remaining forward architecture. Residual blocks enable deep network training by allowing identity mapping that 

prevents the shield from disappearing or explosion. The network includes: 

• Input layer: Increased condition vector. 

• Residual block: Each block consists of two fully connected layers and a shortcut connection. 

 Output Layers: One for Action Probability Distribution (Actor), and for a price estimate (critic). 

The residual connection, first he was proposed by et al. ,, 

3.2.5. Training Process and Hyperparameters 

The training follows a standard PPO pipeline: 

1. Inquiology: Random Inquisition of Neural Network Weight. 

2. Plause collection: Agent collects episodes by interacting with the environment. 

3. Estimates of benefits: Estimate Estimate (GAE) is used to calculate temporary-it-out benefits. 

4. Policy and price update: The debt has been a return to update network weight. 

5. Initial restriction and evaluation: Training improves the policy once. 

Hyperpeter was doing well with the web search. For example, the learning rate was determined by 3e-4, discount 

factor γ = 0.99 and batch size = 2048. 

3.3 Advantages Over Heuristic Methods 

The suggested PPO-based method was tested against traditional heroistic methods such as Genetic algorithms 

(GA), Particle Herd adaptation (PSO) and grasshopper optimization algorithm (GoA). Evaluation Metrix included 

total route costs, energy consumption and drone inactive time. The PPO model, in addition to both unlimited and 

limited drone series scenarios, improved all basic methods in both solution quality and calculation time. 

This reflects the scalability and flexibility of learning reinforcement for drone-assisted delivery functions, even 

under barriers to the algorithm algorithms struggling to clear code. [28][29]. 

The proposed method introduces a broad reinforcement learning solution to TSP-D, which is produced on a deep 

remaining architecture to learn a well-structured state representation, powerful PPO training dynamics and 

optimal policy. Unlike existing heroistic and accurate approaches, this method grows better with changes in the 

environment and increasing problem size. 

4. RESULTS 

Travelers sellers with drones (TSP-D) were widely used in two main scenarios, strictly evaluating the effectiveness 

of the reinforcement of the proposed reinforcement learning framework to solve the problem, two main scenarios 

were widely used: (1) with unlimited drone flying range, and (2) With limited drone flying range. In both cases, 

the proposed method was benchmark against three installed metaheyuristic algorithms-genetic algorithms (GA), 

particle flock adaptation (PSO) and grasshopper optimization algorithm (Goaaa). The assessment measurement 

solution focuses at cost price, interpentage and calculation time, and provides a multi -phase -set assessment of the 

model performance. 

4.1 Scenario 1: Unlimited Drone Flying Range 

In this initial evaluation, the drone was allowed to travel to any distance without batteries, providing a base line to 

assess the net routing efficiency of the proposed method. The model was tested by delivery examples with a node 

size of 20, 50 and 100, and performance was measured against the aforementioned metaheyuristics. 
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Combined results In Table 1, it shows that the method of learning the proposed reinforcement maintained the low 

costs in all problem sizes. For example, the traditional methoristic algorithms that gave and pso improved, and 

came very close to Goa, especially at 100 nodes. In addition, Figure 1 represents the comparative performance of all 

algorithms under the position of the unlimited drone area, which clearly explains the costs and scalability of the 

proposed method. 

•  Ved 20 noder oppnådde den en gjennomsnittlig kostnad på 281,47, som er litt over Goa (280,72), men 

bedre enn GA (296,12) og lik med PSO (281,43). 

•  For 50 nodes, a cost of 394.77 recorded, which is very close to Goa (393.61), and much better than GA 

(415.30) and PSO (396.06). 

• Ved 100 noder skaffet metoden en kostnad på 540,09, bare mer enn Goa (539,98), mens den spesifikt 

presterte bedre enn GA (594,81) og PSO (552,07). 

Gap -metrical, represented the accuracy of further method, representing the deviation from the optimal or best 

executive method:GAP of 0.60% for 20 nodes GAP of 0.83% for 50 nodes GAP of 1.69% for 100 nodes 

• These low different values indicate that the proposed method estimates optimal solutions with high 

accuracy, even the problem complications as scales. 

• When it comes to calculating time, the method demonstrated exceptional efficiency: 

• 0.04 seconds for 20 nodes 

• 1.11 seconds for 50 nodes 

• 2.12 seconds for 100 nodes 

This time is faster than GA (up to 5,195 seconds for 100 nodes), PSO (3 777 seconds) and Goa (8,967 seconds), 

strengthening the fitness of the method of real -time applications. 

Nodes GA Cost PSO Cost GOA Cost Proposed 

Method Cost 

Proposed 

Method Time 

(s) 

20.0 296.12 281.43 280.72 281.47 0.04 

50.0 415.3 396.06 393.61 394.77 1.11 

100.0 594.81 552.07 539.98 540.09 2.12 

Table 1: Cost and Time Comparison – Unlimited Drone Range  

 

Figure 1: Cost comparison among GA, PSO, GOA, and the proposed method in the unlimited drone range scenario 

across different node sizes. 
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4.2 Scenario 2: Limited Drone Flying Range 

This landscape introduced an important operating barrior-drone battery reduced the lifetime-more complex than 

making routing decisions. The vector of the condition was dynamically updated through the use of the algorithm of 

Diozxt, which was an ingredient for determining the viable drone roads, which proved to be important to maintain 

performance during the obstacle. 

This landscape introduced an important operating barrior-drone battery reduced the lifetime-more complex than 

making routing decisions. As shown in Table 2, the proposed method continued to perform competitive, and 

maintained low costs and minimum calculation time below the battery limitations. Performance beaches are more 

painted in Figure 2, which reveals the cost difference between algorithms between 10, 20 and 50-NOD delivery 

landscape. 

• For 10 nodes, the method produced a cost of 2.02, nearly identical to GOA (2.01), and better than PSO 

(2.03) and GA (2.20). 

• At 20 nodes, the proposed method matched GOA at 2.34, outperforming PSO (2.36) and GA (2.57). 

• For 50 nodes, it achieved the best result at 3.25, edging out GOA (3.26), and significantly ahead of PSO 

(3.37) and GA (3.75). 

GAP values remained very low: 

• 0.54% for 10 nodes 

• 0.56% for 20 nodes 

• 0.59% for 50 nodes 

Even during the increasing complexity of the battery bear, the method preserved its strength and adaptability. Goa 

fell slightly in the back of the range (0.83%on 50 nodes), while GA and PSO showed much larger deviations, 

confirming the effectiveness of the method during operating barriers. 

In terms of runtime: 

•  The proposed method completed all the tasks in less than 1.12 seconds compared to 369 seconds GA, 296 

seconds PSO and 558 seconds of Goa for 50-node scenarios. 

•  

Nodes GA Cost PSO Cost GOA Cost Proposed 

Method Cost 

Proposed 

Method Time 

(s) 

10.0 2.2 2.03 2.01 2.02 0.06 

20.0 2.57 2.36 2.34 2.34 0.41 

50.0 3.75 3.37 3.26 3.25 1.12 

Table 2: Performance Comparison – Limited Drone Range 
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Figure 2: Performance comparison for limited drone range scenario with increasing problem size (10, 20, and 50 

nodes). 

4.3 Visual Validation with Known Solutions 

To validate the reliability of the solution, the proposed method was applied to small examples with known 

optimal solutions known. In these cases: 

• It achieved a GAP of 0.00% in one instance (exact match), 

• 1.00% in another, 

• And 2.86% in a more complex third case. 

These experiments demonstrate the model's ability to normalize different types and problem complications, which 

support its gratitude for real -world -routing logistics. 

5. DISCUSSION 

Results achieved from the evaluation of the proposed reinforcement learning structure confirm its efficiency in 

solving travel sellers with drones (TSP-D). Periodically over both unlimited and limited drone -series scenarios, 

performed the model competitive performance, which produces carefully solutions to optimal over time. This 

emphasizes the ability of proximal political adaptation (PPO) to generalize well in different delivery configurations. 

Integration of an improved state vector-inclined drone battery's deficiency and real-time access through the 

algorithm of Dijkstra is necessary to make effective routing decisions. Residual deep network architecture 

supported further stable learning and convergence, even in examples of major problems. Compared to traditional 

metaheuristic algorithms, the proposed method not only achieved high accuracy, but also provided real -time 

response ability, which is a significant requirement in dynamic distribution systems. The model also maintained 

high performance during realistic obstacles, and demonstrated the adaptation and strength required for Real -

world logistics applications. In addition, low different values indicate many problem sizes that the agent effectively 

learned the global pattern in distribution optimization rather than overfiting for specific examples. Rapid 

estimation time, often within seconds, suggests strong capacity for integration into operational logistics platforms 

that require aircraft decisions. The results of the model of well-known response verification cases further support 

its generalization capacity, especially under drone energy limits where many classic methods require failure or wide 

setting. By learning how to dynamically adapt decisions based on the position of the vehicle and environmental 

reaction, the agent's learning reinforcement refers to the necessary flexibility in smart urban distribution systems. 

These findings show the promise of learning deep reinforcement as a scalable, adaptable and effective solution for 

complex route adjustment problems, especially with air and ground-based vehicles in the hybrid delivery network. 

CONCLUSION 

This research suggested and validated the structure to learn a new reinforcement to solve the travel seller problem 

with a complex and fast relevant problem drone (TSP-D) when it comes to adapting final meals. Integration of 
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truck and drone coordination presents important calculation and logistical challenges due to the strange nature of 

the vehicle, obstacles in the dynamic nature of the drone area. 

To solve these challenges, we worked out TSP-D as a Markov-declining process and developed an advanced agent 

based on a proximal political adaptation (PPO) combined with a hybrid deep remaining forward nerve network. A 

major contribution to this task is inherent in expanded state representation, including environmental dynamics, 

drone battery levels and viable routes designed by using the algorithm of Dijkstra. This allows the extensive design 

agent to make intelligent routing decisions that are compatible with real -time obstacles. 

Experimental results in the scenarios with both unlimited and limited drone areas show that the proposed model 

consistently performs better in the context of solution quality and calculation time for the proposed classic 

methoristic algorithms such as genetic algorithms (GA), particle flock adaptation (Pso) and Grasshore 

Optimization. In addition, the proposed structure also received minimum interval values for complex problem 

examples, showing its strength and scalability. 

Conclusions emphasize the opportunity to learn reinforcement in logistics optimization in the real world, especially 

for systems that include coordination of several agents and resource -composed operations. The proposed method 

not only provides high quality solutions, but also calculation efficiency, which is suitable for distribution in smart 

logistics platforms where delivery time, adaptability and energy efficiency are important. 

Future research can expand this work by integrating coordination of multiple drains, learning from sensor data 

from the real world, or by incorporating stochastic elements such as weather changes and traffic delays. In addition, 

a combination of learning reinforcement with future indication models or transfer may increase performance in 

large -scale or unseen distribution networks further 
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