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Introduction: This study presents a control strategy for trajectory tracking of Hexacopter UAVs 

using sliding mode control. The Hexacopter's nonlinear mathematical model is first derived 

using Newton-Euler's formulation. A nonsingular fast terminal sliding mode controller 

(NSTSMC) is then developed to enable precise tracking of the flight trajectory, while 

accommodating variations in orientation angle. To evaluate the controller’s robustness, 

additional disturbances and chattering reduction techniques are introduced in the tests. The 

control system's performance, compared with a classical PID controller, is assessed using 

MATLAB-Simulink simulations. The results demonstrate that the Hexacopter, under the 

NSTSMC, effectively mitigates disturbances with minimal deviation from the planned trajectory, 

requiring less effort. 

Keywords: Hexacopter, Newton-Euler formalism, Nonsingular terminal sliding mode control, 

PID controller 

 

INTRODUCTION 

Research and development in the field of UAVs have witnessed a significant surge lately, owing to their wide-ranging 

applications in fields such as military operations, sports, weather, traffic, and search and rescue, among others. 

Initially, the focus was limited to quadcopters; However, due to the lack of redundancy of the rotor components of 

the quadrotor, researchers have now expanded their horizon to more multirotors and the various benefits they offer 

over Quadcopters[1] [2] [3]  [4]. For instance, Hexacopters exhibit better flight time, greater fault tolerance capacity 

due to the redundant actuators in the system [5] [6], higher stability, and higher load-carrying capability. But its 

benefits come at a cost: the Hexacopter has highly nonlinear dynamics, coupled and is underactuated. [7] [8] Under-

actuated systems have a smaller number of control inputs compared to the system's degrees of freedom. They are 

difficult to control due to the nonlinear coupling between the actuators and the degrees of freedom. [2] Hence, it is 

necessary to choose an adequate control law with certain robustness. Many controls have been proposed [9] [10] [11] 

[12]. Even though most common flight controllers are linear flight controllers, these can only be performed when the 

Hexacopter is hovering around; they suffer from huge performance degradation whenever the Hexacopter is outside 

the nominal conditions or performs aggressive maneuvers [13]. In this work, a nonsingular terminal sliding mode 

control is designed and compared in our case with a PID controller. The paper is organized as follows: First, the 

dynamic mathematical model of the Hexacopter will be formulated using the Newton-Euler method. Then, the 

proposed control will be presented and discussed in terms of dynamic performance and stability to prove its quality, 

the conclusion is drawn in the last section. 
 

 DESCRIPTION AND MODELING OF THE HEXACOPTER 

The mathematical representation of the Hexacopter must accurately depict its attitude based on the established 

geometric configuration. [14] This UAV is composed of a rigid body with a symmetrical structure with six propellers 

positioned orthogonally along the frame. When a drone moves in the air, various forces act on it. The resultant force 
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will decide its movement. The major forces acting on the drone are thrust, lift (the force against gravity), drag, and 

weight. Figure 01 gives the schematic structure of the Hexacopter. 

The configuration demonstrates three movements that encompass all possible attitude combinations: The Roll ϕ, 

which involves rotation around the X axis is achieved by adjusting the balance of rotors 1, 2, and 3 (or 6, 5, and 4) 

through speed changes. Lateral acceleration is attained by altering this angle; The pitch θ involves a rotation around 

the Y axis, and it is achieved by adjusting the balance of the speed of rotors 1 and 6 (or 3 and 4), changing this angle 

leads to longitudinal acceleration; Finally, the yaw ψ involves a rotation about the Z-axis and obtained by 

simultaneously adjusting the speed of motors 1, 3, and 5 or the motors 2, 4, and 6. 

  

 

 

 

 

Figure 1.  Schematic of the Hexacopter 

To drive the state space dynamic model for the position and orientation of the Hexacopter, Newton-Euler formalism 

is applied [8] [14], taking the inertial frame quantities as state variables, the position and the orientation of the vehicle 

in the inertial frame are given by the vector: Xp = [x, y, z, ϕ, θ, ψ]T  . This vector is obtained initially from the body 

frame using the following transformations: 𝑅𝑝𝐵
𝐸  for the position, and 𝑅𝑜𝐵

𝐸  for the orientation. 

                                 𝑅𝑝𝐵
𝐸 = [

cos𝜃cos𝜓 cos𝜓sin𝜃sin𝜙 − sin𝜓cos𝜙 cos𝜓sin𝜃cos𝜙 + sin𝜓sin𝜙
sin𝜓cos𝜃 sin𝜃sin𝜓sin𝜙 + cos𝜓cos𝜃 cos𝜙sin𝜓sin𝜃 − cos𝜓sin𝜙
−sin𝜃 sin𝜙cos𝜃 cos𝜃cos𝜙

]                                       (1) 

                                                           𝑅𝑜𝐵
𝐸 = [

1 0 −𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

]                                                       (2)  

The following equations give the model using the formalism [4]: 

                                                    [
𝑚𝐼3×3 03×3

03×3 𝐽
] [𝑉̇

𝜔̇
] + [

𝜔 × 𝜔𝑉
𝜔 × 𝐽𝜔

] = [
∑  𝐹
∑  𝑇

]                                                               (3) 

Where: F is the net force acting on the center of mass ; T is the resultant torque acting on the center of mass 

               m is the mass of the body ; V is the velocity of the center of mass, ω is the angular velocity of the body, 

               J is the Moment of inertia about the center of mass.    

For a symmetric UAV:                                         𝐽 = [

𝐽𝑥𝑥    0      0
0     𝐽𝑦𝑦   0

0     0     𝐽𝑧𝑧

]                                                                                 (4) 

The dynamic model of the Hexacopter is made by including the analysis of the following forces that affect the 

Hexacopter movements and their vectors in the body frame: gravity, thrust, rotor drag, and air friction.                          

1-The Gravity force:                                                 𝐹𝑔 = [0 0 𝑚𝑔]𝑇                                                                                       (5) 

Where: m is the mass of the Hexacopter, and g is the gravitational acceleration. 

2-The Thrust force along the z-axis:            𝐹𝑇 = 𝑅𝑝𝐵
𝐸 [0 0   𝑘𝑡 .∑ 𝛺𝑖

26

1
]
𝑇

                                                                          (6) 

Where: kt is the thrust factor, and Ωi is the angular velocity of propeller i 

3-The rotor drag :                                                 𝐹𝑟 = 𝐼3×3[𝑘𝑟𝑥  𝑘𝑟𝑦 𝑘𝑟𝑧]
𝑇
. 𝑋                                                                    (7) 

Where: diag [𝑘𝑟𝑥  𝑘𝑟𝑦  𝑘𝑟𝑧] is the vector of drag coefficient forces ;  kr is the drag factor 
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4-The Air resistance for each propeller                 Fai =   𝑘𝑟 𝛺𝑖
2                                                                                                (8) 

In addition, the main existent torques effects are: 

a. Actuator action 

              - Roll torque:                     𝑇X =   𝑘𝑡 𝑙
√3

2
(−𝛺1

2 + 𝛺5
2 +

1

2
(−𝛺1

2 − 𝛺3
2 + 𝛺4

2 + 𝛺6
2))                                                       (9) 

                 With: l  is the arm length  

              - Pitch torque:                             𝑇y =   𝑘𝑡 𝑙
√3

2
(−𝛺1

2 + 𝛺3
2 + 𝛺4

2 − 𝛺6
2)                                                                        (10) 

               - Yaw torque:                      𝑇z =   𝑘𝑟 (−𝛺1
2 + 𝛺2

2 − 𝛺3
2 + 𝛺4

2 − 𝛺5
2 + 𝛺6

2)                                                                   (11) 

The three torques angles are regrouped as :   𝑇𝑇 = [𝑇X 𝑇y 𝑇z]
𝑇

 

              - Reaction torque:                                   𝑇r = [0,0, 𝐽𝛺̇𝑟]
𝑇
                                                                                               (12) 

               With: 𝛺𝑟 = ∑ (−1)26

1
𝛺𝑖 

b. Torque aerodynamic resistance:           𝑇a = 𝑘𝑎𝜔
2 = [𝑘𝑎𝑥𝜙̇

2  𝑘𝑎𝑦𝜃̇2  𝑘𝑎𝑧𝜓̇
2]

𝑇
                                                                 (13) 

With: ka is the aerodynamic force constant. 

c. Gyroscopic effect:                                              𝑇𝐺 = [
𝜃̇𝐽𝛺𝑟

𝜙̇𝐽𝛺𝑟

0

]                                                                                                   (14) 

Translational and rotational dynamics 

Applying the forces and torques expressions, in the model (3) allows to obtain the equations that govern the 

translational and the rotational motion for the Hexacopter with respect to the body frame: 

                                                          𝐹𝑇 − 𝐹𝑔 − 𝐹𝑟 = 𝑚𝑋𝑝 ˙                                                                                         (15) 

                                                                 𝑇𝑇 − 𝑇𝑟 − 𝑇𝑎 − 𝜔 × 𝐽𝜔 = 𝐽𝜔̇                                                                   (16) 

Thus:                                          𝑥̈ = 1/𝑚(𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 − 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓)(∑  6
𝑖=1    𝐹𝑖) − 𝑘𝑟𝑥𝑥̇/𝑚                                        (17) 

                                                    𝑦̈ = 1/𝑚(𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓)(∑  6
𝑖=1    𝐹𝑖) − 𝑘𝑟𝑦𝑦̇/𝑚                                                (18) 

                                              𝑧̈ = 1/𝑚(𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃)(∑  6
𝑖=1    𝐹𝑖) − 𝑘𝑟𝑧𝑧̇/𝑚 − 𝑔                                                             (19) 

And                           𝐽𝑥𝑥𝜙̈ = 𝜃̇𝜓̇(𝐽𝑦𝑦 − 𝐽𝑧𝑧) − 𝑘𝑎𝑥𝜙̇
2 − 𝐽𝛺𝑟𝜃̇ +  𝑘𝑡 𝑙 (−𝛺2

2 + 𝛺5
2 +

1

2
(−𝛺1

2 − 𝛺3
2 + 𝛺4

2 + 𝛺6
2))                   (20) 

                                          𝐽𝑦𝑦𝜃̈ = 𝜙̇𝜓̇(𝐽𝑧𝑧 − 𝐽𝑥𝑥) − 𝑘𝑎𝑦𝜃̇2 + 𝐽𝛺𝑟𝜙̇ +   𝑘𝑡 𝑙
√3

2
(−𝛺1

2 + 𝛺3
2 + 𝛺4

2 − 𝛺6
2)                                      (21) 

                                        𝐽𝑧𝑧𝜓̈ = 𝜙̇𝜃̇(𝐽𝑥𝑥 − 𝐽𝑦𝑦) − 𝑘𝑎𝑧𝜓̇
2 +   𝑘𝑟 (−𝛺1

2 + 𝛺2
2 − 𝛺3

2 + 𝛺4
2 − 𝛺5

2 + 𝛺6
2)                                       (22)     

 The Hexacopter rotational speeds are related to the aerodynamic thrust force and torques. The system has 

four defined control inputs given by: 

                                                                            𝑈 = [𝑈1𝑈2𝑈3𝑈4]
𝑇                                                                                       (23) 

U1 is the control input for the altitude which causes the upward thrust force. U2 is the difference in rotors thrust 1,2,3 

and 4,5,6 which makes the roll movement. U3 is a control input that represents the difference of rotors thrust 1,6 and 

3,4 and it is responsible for the pitch rotation. Finally, U4 is the difference in rotors torque between the three clockwise 

rotating rotors and the three counterclockwise rotating rotors that generates the yaw rotation; then, the rotor 

velocities are calculated as: 

                                                

[
 
 
 
 
 
 
𝛺1

2

𝛺2
2

𝛺3
2

𝛺4
2

𝛺5
2

𝛺6
2]
 
 
 
 
 
 
𝑇

= [

𝑈1

𝑈2

𝑈3

𝑈4

]

𝑇

[
 
 
 
 

  𝑘𝑡   𝑘𝑡   𝑘𝑡   𝑘𝑡   𝑘𝑡   𝑘𝑡
−  𝑘𝑡 𝑙

2
−  𝑘𝑡 𝑙

−  𝑘𝑡 𝑙

2

  𝑘𝑡 𝑙

2
  𝑘𝑡 𝑙

  𝑘𝑡 𝑙

2

− √3 𝑘𝑡 𝑙

2
0

  √3𝑘𝑡 𝑙

2

 √3 𝑘𝑡𝑙

2
0

−  √3𝑘𝑡 𝑙

2

−  𝑘𝑟  𝑘𝑟 −  𝑘𝑟   𝑘𝑟 −  𝑘𝑟   𝑘𝑟 ]
 
 
 
 
−1

                                       (24) 
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Using relation (17) to (22), the position and orientation dynamical state-space model of a Hexacopter can be 

rewritten in the disturbed form; assuming that: 

The Euler angles are bounded as :  and θ ]- π /2  , π /2[ ; ψ ]-π ,π [ ,  fi and gi are smooth known ,  gi non singular, 

and the un-modeled dynamics and external perturbations are included in the bounded functions Δi (t) . 

 Hence:                                                
𝑋̇11 = 𝑋12

𝑋̇12 = 𝑓1(𝑋, 𝑡) + 𝑔1(𝑋, 𝑡)𝑈𝑎 + 𝛥1(𝑡)
                                                                    (25) 

                                               
𝑋̇21 = 𝑋22

𝑋̇22 = 𝑓2(𝑋, 𝑡) + 𝑔2(𝑋, 𝑡)𝑈𝑏 + 𝛥2(𝑡)
                                                                    (26) 

With:                                   𝑋11 = [𝑥 𝑦 𝑧]𝑇 = [𝑥1𝑥3𝑥5]
𝑇 , 𝑋11 =̇ 𝑋21 = [𝑥̇ 𝑦̇ 𝑧 ̇ ]𝑇 = [𝑥2𝑥4 𝑥6]

𝑇  

                                          𝑋12 = [𝜙 𝜃 𝜓]𝑇 = [𝑥7𝑥9𝑥11]
𝑇,    𝑋12 =̇ 𝑋22 = [𝜙 ̇ 𝜃̇ 𝜓̇]

𝑇
= [𝑥8𝑥10𝑥12]

𝑇 

                                𝑓1(𝑋, 𝑡) =

[
 
 
 
 −

𝑘𝑟𝑥

𝑚
𝑥2

−
𝑘𝑟𝑦

𝑚
𝑥4

−
𝑘𝑟𝑧

𝑚
𝑥6 − 𝑔]

 
 
 
 

  ;       𝑔1(𝑋, 𝑡) =

[
 
 
 
 

1

𝑚
[𝑐𝑜𝑠𝑥7𝑠𝑖𝑛𝑥9𝑐𝑜𝑠𝑥11 + 𝑠𝑖𝑛𝑥7𝑠𝑖𝑛𝑥11]

1

𝑚
[𝑐𝑜𝑠𝑥7𝑠𝑖𝑛𝑥9𝑠𝑖𝑛𝑥11 + 𝑠𝑖𝑛𝑥7𝑐𝑜𝑠𝑥11]

1

𝑚
[𝑐𝑜𝑠𝑥9𝑐𝑜𝑠𝑥11] ]

 
 
 
 

 

                                      𝑓2(𝑋, 𝑡) =

[
 
 
 
 (

𝐽𝑦𝑦−𝐽𝑧𝑧

𝐽𝑥𝑥
) 𝑥10𝑥12 − (

𝐽Ω𝑟

𝐽𝑥𝑥
) 𝑥10−𝑘𝑎𝑥𝑥8

2

(
𝐽𝑦𝑦−𝐽𝑧𝑧

𝐽𝑥𝑥
) 𝑥10𝑥12 − (

𝐽Ω𝑟

𝐽𝑥𝑥
) 𝑥10−𝑘𝑎𝑥𝑥8

2

(
𝐽𝑥𝑥−𝐽𝑦𝑦

𝐽𝑧𝑧
) 𝑥8𝑥10 − 𝑘𝑎𝑧𝑥12

2
]
 
 
 
 

     ;     𝑔2(𝑋, 𝑡) =

[
 
 
 
 

𝑙

𝐽𝑥𝑥

𝑙

𝐽𝑦𝑦

𝑙

𝐽𝑧𝑧 ]
 
 
 
 

 

Design of the controller 

Since the Hexacopter is a nonlinear under-actuated system, it depends on both the translational and the rotational 

state variables. Six control dynamics are needed to track the desired trajectories and to regulate roll and pitch angles 

at the same time.  The Sliding Mode Control is an appropriate technique to provide stabilization and tracking of the 

desired trajectory. The main advantage of Sliding Mode Control is that it has some robustness against model 

inaccuracies, parameter uncertainties, and disturbances [15] [16], although it suffers from the chattering 

phenomenon. This last will be reduced in our case , by replacing the signum function with the saturation function. 

The control scheme has two cascaded loops: 

    The outer loop is the X Y Z motions control, its control low is obtained from the subsystem in eq. (25), its output 

Ua (t) contain the desired Altitude U1 control as well as Ux and Uy to control translations in the X and Y axis, then, the 

desired roll d and pitch d  dynamics are generated from using a corrector block, this bloc is an analytical inversion 

and it is given by: 

                                              [
𝜙𝑑

𝜃𝑑
] = [

𝑠𝑖𝑛−1 (
−𝑐𝑜𝑠𝜓𝑈𝑦+𝑠𝑖𝑛𝜓𝑈𝑥

𝑈1
)

𝑠𝑖𝑛−1 (
𝑠𝑖𝑛𝜓𝑈𝑦+𝑐𝑜𝑠𝜓𝑈𝑥

𝑈1𝑐𝑜𝑠𝜙
)

]                                                                           (27) 

The inner loop is the orientation angles control, its output Ub (t) contain three control laws U2 ,U3,U4, to control the 

dynamics of the three rotations angles. Finally, the calculation of the speed of the Rotor is achieved through the 

inversion of eq (27). The proposed control diagram is given by: 

 

Figure 2.  NSTSMC Block diagram of the Hexacopter 

XYZ  motions controller 
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To control the X and Y motions in the presence of external disturbances Δ1 (t), the fellowing subsystem is  given: 

𝑋̇11 = 𝑋12

𝑋̇12 = 𝑓1(𝑋, 𝑡) + 𝑔1(𝑋, 𝑡)𝑈𝑎 + 𝛥1(𝑡)
 

With :  f1 (X,t) and g1 (X,t) are given in eq. (25) and eq. (26) 

Note that here : 𝑈𝑎 = [𝑈𝑥  , 𝑈𝑦 , 𝑈1]
𝑇  

Choosing the first Non-singular fast terminal sliding mode manifold for the XYZ movements:   

                                                      𝑆1  = 𝑒1̇ + 𝜆11𝑒1
𝛼1/𝛽1 + 𝜆12|𝑒1|

𝛾1𝑠𝑖𝑔𝑛 (𝑒1)                                                                         (28) 

Where : 𝑒1 = 𝑋11𝑑
− 𝑋11 and λ11  , λ12 are positives tuning parameters vectors for the three translations, and α1 and 

β1 are positive odd integers, which satisfy the following condition to avoid the singularity in U1 (t) : 

                                                                      1 < 𝛼1/𝛽1 < 2      and   𝛾1 > 1                                                        (29)                                    
The time derivative becomes : 

                             𝑆1̇  = 𝑒1̈ +
𝜆11𝛼1

𝛽1
𝑒1 

𝛼1
𝛽1

−1
𝑒1̇ + 𝜆12|𝑒1|

𝛾1−1𝑒1̇       

                                                  = (𝑋11𝑑
̈ − 𝑋11

̈ ) + (
𝜆11𝛼1

𝛽1
𝑒1 

𝛼1
𝛽1

−1
𝑒1̇ + 𝜆12|𝑒1|

𝛾1−1𝑒1̇)(𝑋11𝑑
̇ − 𝑋11

̇ )                                                 (30)                                   

Substituting the time derivate 𝑋11
̈   : 

                              𝑆1̇  = 𝑋11𝑑
̈ − 𝑓1(𝑋, 𝑡) − 𝑔1(𝑋, 𝑡)𝑈𝑎 +

𝜆11𝛼1

𝛽1
𝑒1 

𝛼1
𝛽1

−1
𝑒1̇ + 𝜆12|𝑒1|

𝛾1−1𝑒1 −̇ 𝛥1(𝑡)                                            

 Solving 𝑆1̇ = 0, then, the chosen feedback controller is obtained: 

                    𝑈𝑎(𝑡) = 𝑔1(𝑋, 𝑡)−1 (𝑋11𝑑
̈ − 𝑓1(𝑋, 𝑡) +

𝜆11𝛼1

𝛽1
𝑒1 

𝛼1
𝛽1

−1
𝑒1̇ + 𝜆12|𝑒1|

𝛾1−1𝑒1̇+𝑢1𝑑𝑦𝑛)                                                  (31) 

Where : Uadyn is given by the following low: 

                                                                𝑢𝑎𝑑𝑦𝑛  = −𝑘11|𝑆1|
1

2 𝑠𝑖𝑔𝑛( 𝑆1) − 𝑘12 𝑆1                                                                         (32) 

With : k11  , k12 are positives real numbers. 

Through the choice of the main parameters λ11, λ12 vectors and the gain rates k11, k12 vectors, the tracking error 

converges to zero in finite time; Robustness to bounded perturbations/uncertainties properties of standard sliding 

mode control is maintained, also, through the choice of γ1, the system will have a fast convergence speed when it is 

far from the equilibrium state. 
 

Stability analysis of the X and Y motions controller  

To verify the stability of the first controller, Lyapunov’s direct method is used. Let's first consider that the 

perturbation Δ1 (t) is bounded:  

                                                                                |Δ1(t)| ≤ b1                                                                                                     (33) 

Where : b1 denotes a bounded positive constant. 

The Lyapunov candidate function V1 (X,t) is : 

                                                                              𝑉1(𝑋, 𝑡) =
1

2
𝑆1

2(𝑡)                                                                                            (34) 

To achieve stability, the derivative of Lyapunov's candidate function must be negative, thus: 

                                                                              𝑉1(𝑋, 𝑡)̇ = 𝑆1𝑆1̇ < 0,  𝑆1 ≠ 0                                                                           (35) 

𝑉1(𝑋, 𝑡)̇ = 𝑆1[𝑋11𝑑
̈ − 𝑓1(𝑋, 𝑡) − 𝑔1(𝑋, 𝑡)𝑈𝑎(𝑡) +

𝜆11𝛼1

𝛽1

𝑒1 
𝛼1
𝛽1

−1
𝑒1̇ + 𝜆12|𝑒1|

𝛾1−1𝑒1̇ − 𝛥1(𝑡)] 

Obtained replacing the feedback control U1 (t) in closed loop form in the sliding surface dynamics 𝑆1̇, one obtains: 

𝑉1(𝑋, 𝑡)̇ = 𝑆1 [𝑘11|𝑆1|
1
2 𝑠𝑖𝑔𝑛( 𝑆1) + 𝑘12 𝑆1 − 𝛥1(𝑡)] = −𝑆1[𝑢𝑎𝑑𝑦𝑛 + 𝛥1(𝑡)] 

Therefore, the derivative of The Lyapunov function will be: 

                                               𝑉1(𝑋, 𝑡)̇ ≤ −𝑘11|𝑆1||𝑆1|
1

2−𝑘12𝑆1
2 + 𝑏1|𝑆1| ≤ 0                                                                           (36) 

This leads to: 

                                                                𝑘11|𝑆1|
1/2+𝑘12 |𝑆1| ≥ 𝑏1                                                                                             (37) 
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e.g., , the gain k11 will be constrained as: 

                                                                     𝑘11 ≥
1

|𝑆1|1/2 (𝑏1−𝑘12 |𝑆1|)                                                                                        (38) 

Hence, to ensure stability, one needs the closed loop feedback control Ua (t) given by eq (31) and eq (32), to be 

greater than the magnitude of the external bounded disturbance Δ1 (t). Finally, to reduce the chattering.  the 

signum function is replaced, by the saturation function: 

                                                               𝑠𝑎𝑡( 𝑆1) = {
𝑆1 if − 1 ≤ 𝑆1 ≤ 1

𝑠𝑖𝑔𝑛( 𝑆1)  else
                                                                                      (39) 

Orientation angles controller 

In the same way, the design of the Non-singular terminal controller that forces the sliding mode, for the orientation 

angles, to zero, is done considering the presence of |𝛥2(𝑡)| ≤ 𝑏2 

𝑋̇21 = 𝑋22

𝑋̇22 = 𝑓2(𝑋, 𝑡) + 𝑔2(𝑋, 𝑡)𝑈𝑏 + 𝛥2(𝑡)
 

Note that here : 𝑈𝑏 = [𝑈2 , 𝑈3, 𝑈4]
𝑇 

The second sliding manifold has the same form of S1: 

                                                                          𝑆2  = 𝑒2̇ + 𝜆21𝑒1
𝛼2/𝛽2 + 𝜆22|𝑒2|

𝛾2𝑠𝑖𝑔𝑛 (𝑒2)                                                      (40) 
 

Where : 𝑒2 = 𝑋21𝑑
− 𝑋21and the tuning parameters vectors  λ21, λ22 for the three angles control  are chosen to take 

the same conditions as S1 . The time derivative of the sliding manifold is : 

                                                   𝑆2̇  = 𝑋21𝑑
̈ − 𝑋21

̈ + (
𝜆21𝛼2

𝛽2
𝑒2 

𝛼2
𝛽2

−1
𝑒2̇ + 𝜆22|𝑒2|

𝛾2−1𝑒2̇)(𝑋21𝑑
̇ − 𝑋21

̇ )                                       (41)                                        

Replacing 𝑋21
̈  from the the hexacopter subsystem model, then Solving    𝑆2̇ = 0, the following controller is obtained: 

                                 𝑈𝑏(𝑡) = 𝑔2(𝑋, 𝑡)−1 (𝑋21𝑑
̈ − 𝑓2(𝑋, 𝑡) +

𝜆21𝛼2

𝛽2
𝑒2 

𝛼2
𝛽2

−1
𝑒2̇ + 𝜆22|𝑒2|

𝛾2−1𝑒2̇ + 𝑢𝑏𝑑𝑦𝑛 )                                 (42) 

With : Ubdyn is given by the following low: 

                                                                 𝑢𝑏𝑑𝑦𝑛  = −𝑘21|𝑆2|
1/2𝑠𝑖𝑔𝑛( 𝑆2) − 𝑘22 𝑆2                                                                      (43) 

Where : k11  , k12 vectors are positives real.  

Again, the signum function is replaced by the saturation function sat (S2) to reduce the chattering phenomenon.  

The parameters vectors λ21, λ22 k21, k22 are used to ensure the tracking error converges to zero in finite time; also, 

through γ2, the system will have a fast dynamic response when it is far from the equilibrium point. The robustness 

properties to bounded perturbations/uncertainties of the standard sliding mode control are maintained. 

Stability analysis of the Altitude and orientation angles controller 

The Lyapunov candidate function V2 (X,t) is : 

                                                                                           𝑉2(𝑋, 𝑡) =
1

2
𝑆2

2(𝑡) 

To achieve stability, the derivative of Lyapunov's candidate function must satisfy: 

                                                                                     𝑉2(𝑋, 𝑡)̇ = 𝑆2𝑆2̇ < 0,  𝑆2 ≠ 0                                                                   (44) 

In addition, by replacing the control U(t) by its expression in closed loop form in the derivative of sliding surface: 

                                                                                        𝑆2̇ = 𝑢2𝑑𝑦𝑛 + 𝛥2(𝑡)                                                                               (45) 

Therefore, the derivative of The Lyapunov function will be: 

𝑉2(𝑋, 𝑡)̇ = 𝑆2 [𝑘21|𝑆2|
1
2 sign( 𝑆2) + 𝑘22 𝑆2 − 𝛥2(𝑡)] = −𝑆2[𝑢𝑏𝑑𝑦𝑛 + 𝛥2(𝑡)] 

Thus:                                                𝑉2(𝑋, 𝑡)̇ ≤ −𝑘21(𝑡)|𝑆2||𝑆2|
1/2−𝑘22𝑆2

2 + 𝑏2|𝑆2| ≤ 0                                                        (46) 

And, the gains will be constrained as: 

                                                                              𝑘21|𝑆2|
1/2+𝑘22 |𝑆2| ≥ 𝑏2                                                                                  (47) 
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Therefore, one needs the closed loop feedback control Ub (t) to be greater than the magnitude of the external 

disturbance Δ2 (t). 

SIMULATION OF THE HEXACOPTER UNDER THE NSTSMC COMPARED TO THE PID CONTROL 

In this section the Hexacopter nonlinear model under the proposed control system is verified by simulation in 

MATLAB/Simulink, and compared to the results obtained by simulation using a classical PID control. The PID 

control bloc consists of 6 PID controller's blocs one for each state space variable [x, y, z, ϕ, θ, ψ]   

The tuning of the three parameters of each kpi, kii  ,kdi  with i[x,y,z,ϕ,θ,ψ]   is done initially using Cohen-Coon Method 

followed by extensive trial-error, The same procedure is done for the NSTSMC controller considering the conditions 

on the parameters. The parameters used to perform the simulation are: 

                                          α1 =0.6,  β1=0.4  , γ1=3 ,  λ12=0.1  , k11=1.5 , k22=0.01 

For the PID controllers:     kpi=4, kii=7.5,  kdi=1.2,   with  i  [x,y,z] 

                                                 kpi=3,  kii=1.5,  kdi=2.5,  with  i [ ϕ,θ,ψ] 

The considered Hexacopter parameters are given in the following table: 

 Table 1.  Parameters of the Hexacopter 

 

 

 

 

 

 

 

 

 

 

A trajectory was designed to test the NSTSMC controller; In the test trajectory, the Hexacopter tracks the trajectory 

from the origin (0,0,0); the simulated infinity trajectory is created at the same time with 𝑡 ≤ 30𝑠,,he equations of 

trajectory are as follows: 

                                                                          

𝑋𝑑(𝑡) = 2 − 2 cos (
𝜋

15
𝑡)

𝑌𝑑(𝑡) = 2 sin (
2𝜋

15
𝑡)

𝑍𝑑(𝑡) = 4 − cos (
𝜋

15
𝑡)

                                                                                     (48)                          

Fellow the yaw angle 𝜓𝑑(𝑡) in (𝑑𝑒𝑔) is set as fellow   

                                                                               𝜓𝑑(𝑡) = {
0 if 0 ≤  𝑡 < 20

30 else
                                                                             (49)                          

In addition, to test the system response robustness against bounded disturbances Δ1 (t), perturbation is added from 

t=15 s  to t=30 s in X,Y, and Z.    The simulation results are given in below: 

 

 

 

 

Parameter symbol Value Unit 

Mass of the body m 2.1 kg 

Length of the arm l 0.23 m 

Acceleration due to gravity g 9.81 ms 

Moment of Inertia-X axis Jxx 3.8·10-3 Kgm2 

Moment of Inertia-Y axis Jyy 3.8·10-3 Kgm2 

Moment of Inertia-Z axis Jzz 7.1·10-3 Kgm2 

Rotor inertia Jr 0.8·10-3 Kgm2 

Trust factor   𝑘𝑡  4.58·10-3 Ns2 

Drag factor   𝑘𝑟  1.037·10-3 Nms 
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Figure 3.  X position of the Hexacopter (with zoom) 

 

 

 

 

 

 

 

 

 
 

Figure 4.  Y  position of the Hexacopter (with zoom) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Z position of the Hexacopter (with zoom) 
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    Figure 6.  Roll () , Pitch () , Yaw () angles          Figure 7.  Hexacopter 3D trajectory under NSTSMC compared to PID 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 8.  X, Y, Z velocities (with zoom) 
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Figure 9.  Roll () , Pitch () , Yaw () velocities 

The presented figures illustrate the performance of the Hexacopter following the trajectory. In Figs. 3 (a,b,c), and 4 

the position and attitude can be analyzed. the desired flight path is followed by the Hexacopter, whose flight is slightly 

affected by the presence of XYZ disturbances (Fig.5).  It can be observed that the trajectory tracking in the three 

directions is minimal in the NSTSMC case compared to the PID, especially in the Z direction where the hexacopter 

takeoff from the origin (0,0,0), the response was faster and the tracking error is less. The error is less noticeable in 

the x direction due to slow variation and the initial value of the X reference.  

From t = 20s to t = 30s, the hexacopter changes its yaw angle (Fig. 4,) while moving to the point (0,0,4), the response 

of the PID is oscillatory which can affect the performance of the aircraft in a perturbed environment φ, and θ angles 

are regulated to 0 with negligible errors which indicate stability. According to Fig.6 and Fig.7.  The NSTSMC control 

is done without excessive translational and angular speeds which enhance the life span of the UAV.  

CONCLUSION 

The objective of this work is to propose a control scheme for Hexacopter UAV trajectory tracking based on the sliding 

mode control. Initially, the non-linear mathematical model of the Hexacopter was derived using Newton-Euler’s 

formulation. Then, a nonsingular fast terminal sliding mode controller is designed to make the system track the flight 

trajectory with a variation of the orientation angle.   To test the robustness of the flight controller, perturbations were 

added to the experiment.  The MATLAB-Simulink environment was used to evaluate the validity of the control and 

its performance compared to the classical PID controller. The results showed that the aircraft was able to reject 

perturbations that minimally affected the defined trajectory with no excessive effort in the case of the NSTSMC. 
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