
Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1229 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hormesis-Based Optimization (HBO) Algorithm: A

Biologically Inspired Computational Approach

Amit Malik1, Amita Rani2
1Department of Computer Science and Engineering, SRM University, Delhi-NCR, Sonepat, Haryana, India.

2Department of Computer Science and Engineering, DCRUST, Murthal, Sonepat, Haryana, India.

ARTICLE INFO ABSTRACT

Received: 18 Dec 2024

Revised: 10 Feb 2025

Accepted: 28 Feb 2025

The Hormesis-Based Optimization (HBO) algorithm is a new method designed to achieve

optimization while keeping computational cost and time low. It can be applied to areas such as

workload management, resource planning, and task scheduling. This method works by

converting the system’s performance parameters into a single value termed as “stress”. It is

inspired by the phenomenon of hormesis, where small doses of stress strengthen biological

systems, and ensures a dynamic distribution of stress to optimize system performance. The key

strength of HBO lies in its ability to quickly and effectively decide the optimal adjustment of

this ‘stress’ across various components, which is critical for achieving the best possible

performance and can be a NP-hard problem in multi-constrained system. To test this principle,

we applied the HBO algorithm to the system of machines, tasked with predictive-reactive

dynamic job shop scheduling (DJSS), with the aim of reducing the overall job completion time

and latency of the total number of jobs. The results show that the HBO algorithm

outperformed not only conventional techniques like Genetic Algorithm (GA), Simulated

Annealing (SA), and Tabu Search (TS), but also their adaptive methods such as Adaptive

Genetic Algorithm (AGA), Adaptive Simulated Annealing (ASA), and Adaptive Tabu Search

(ATS). Specifically, it improved the total job completion time (makespan) by an average of

4.15% and reduced latency by 4.79%, with time complexity of O(T∙n∙log⁡〖(n))〗, as compared

to best performing ATS technique which has time complexity of O(n^2) for the worst case.

Keywords: Hormesis-Based Optimization, Dynamic Job Scheduling, Resource Allocation

Efficiency, Biologically Inspired Algorithms, Computational Adaptability.

1. Introduction

Resource allocation and workload distribution are very critical for optimizing system performance in sectors like

computing, manufacturing, and real-time systems, as they directly affect task efficiency [1, 2]. In various real time

environments, the workloads can change unpredictably and efficient allocation helps systems adapt and avoid

delays [3]. Any system, without optimization, may suffer inefficiency, increased costs, and poor adaptability [4].

Therefore, it is an area of research with great interest. In this study, we found that the traditional optimization

methods, such as linear and integer programming, have been effective in simpler environments but struggles with

growing decision spaces and real-time adaptability due to the "curse of dimensionality" [5]. The heuristic methods,

on the other hand, are computationally efficient but can get stuck in local optima and are less effective in highly

dynamic settings [6]. The machine learning techniques, including neural networks and deep learning, offer

solutions but require large datasets, high computational power, and often lack transparency [7, 8 and 9]. Therefore

we need methods which can balance the solution quality, speed, and computational cost.

The Hormesis-Based Optimization (HBO) algorithm is designed to address the challenges and needs discussed

so far, such as, balancing performance, speed, and computational efficiency in changing environments [10]. We

derive this idea from natural or biological hormesis, depicted in Figure 1, in which an appropriate amount of stress

can help the biological system to improvise the performance [11, 12]. For example, the small stress from exercise

may help the muscles grow stronger and adapt to increased demands, or exposure to low dose of induced stress

may help our immune system to fight infections. To understand the working of HBO practically, we can say that it

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1230 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

works by carefully adjusting the workload on machines like we adjust the doses on biological systems to improve its

performance and resilience [11, 12]. If a machine is running well, HBO may increase its workload slightly to push

the overall system toward better performance. On the other hand, HBO improves the efficiency of overburdened

machines by reducing their workload. The amount of workload to be increased or decreased is quantified as “stress”

and is referred to as “doses” in this study. HBO works by converting the key performance parameters of a

mechanical system into a unified value of “stress”, which can be seen equivalent to natural or biological stress. This

approach of using a single unified value also enables the algorithm to tackle the NP-hard challenge of multi-

constrained optimization without exhaustive exploration of all possible solutions. Also, HBO uses a deterministic

rule-based framework to decide the optimal value of “stress” to be adjusted among the components. These two

qualities help HBO in avoiding the computational overhead associated with traditional optimization (e.g.,

exhaustive search) or machine learning methods (e.g., training on large datasets).

Figure 1: Hormesis Principle in Biological Systems

Next, we can summarize the key contributions of this work through following points:

1. Introduces a novel optimization algorithm applicable to a wide range of optimization problems,

including resource allocation, workload distribution, and dynamic scheduling.

2. Reduces Computational complexity of a multi-constrained NP-hard problem into a single-

objective, rule-based optimization framework with a time complexity of (𝑇⋅𝑛⋅log(𝑛)), making it

suitable for dynamic and large-scale systems, while preserving the original problem's NP-hard

nature.

3. Adapts the biphasic response principle of hormesis to balance workloads dynamically, ensuring

system stability and efficiency by preventing overutilization and underutilization of resources.

4. Evaluate the effectiveness of the HBO algorithm on the Dynamic Job Shop Scheduling (DJSS)

problem using a virtual machine setup and synthetic data.

Further, this paper is organized into following sections: Section 2 provides a review of related optimization

methods, the basic concepts of hormesis principle, and the key observations which motivated us to develop the

hormesis principle as optimization algorithm for computational problems. Section 3 explains the theoretical and

mathematical aspects of HBO framework. Section 4 introduces the problem statement for implementing HBO

algorithm in DJSS scenario, the pseudocode for implementation, the time complexity analysis, and about the

datasets used to evaluate the HBO algorithm. Section 5 outlines the experimental setup, as well as the results and

comparative analysis. Finally, Section 6 concludes the study and states the potential directions for future research.

2. Background

2.1 Related Work

 This section reviews research on addressing the challenges in optimization methods, particularly focusing on

mathematical models, heuristic techniques, machine learning (ML)-based models, and hybrid approaches. These

challenges include computational intensity, rigidity, local optima issues, scalability, and adaptability of the existing

approaches in dynamic environments [13, 14, and 15].

 Mathematical models, such as linear and integer programming, have been commonly used in resource allocation

due to their precision in solving well-defined problems [16, 17]. For example, Hou et al. [16] applied a discrete-

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1231 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

event mathematical model to optimize vehicle scheduling, showcasing its capability in structured environments.

Similarly, Laisupannawong et al. [17] explored Mixed-Integer Linear Programming (MILP) in short-term

scheduling for PCB manufacturing. However, these models struggle with real-time adaptability and scalability due

to the curse of dimensionality, as demonstrated by [18 and 19]. These challenges make such models

computationally intensive and inflexible in dynamic environments, rendering them less efficient for large-scale

optimization.

 Heuristic methods such as Genetic Algorithms (GA) [20], Particle Swarm Optimization (PSO) [21], and Tabu

Search (TS) [22, 23] provide more computational efficiency compared to mathematical models, offering near-

optimal solutions. For instance, Shao et al. [22] applied adaptive combinations of Tabu Search and Simulated

Annealing for scheduling tasks, while Sujitjorn et al. [23] enhanced Tabu Search with adaptive mechanisms to

improve convergence. However, Yang [24] and Ruan et al. [25] discussed, these methods still face challenges in

multi-modal and dynamic optimization scenarios, particularly with local optima issues. Additionally, Ruan et al.

[26] highlighted both the advantages and limitations of heuristic techniques in addressing dynamic changes,

particularly when they are hybridized with ML techniques.

 Machine learning models, particularly Neural Networks and Deep Learning, have become powerful tools for

optimization [27, 28]. Sijabat and Parodos [27] reviewed the application of ML models for scheduling and routing,

emphasizing their computational complexity. Wang et al. [28] and Jiang [29] also noted the black-box nature of

deep learning models, which can complicate decision-making and reduce transparency in critical real-time systems.

Although these models are highly effective in handling complex, high-dimensional problems, they require vast

datasets and substantial computational resources, limiting their applicability in resource-constrained environments

[30, 31].

 Hybrid approaches attempt to overcome these limitations by combining the strengths of heuristic and ML-based

models. Vega et al. [32] developed a hybrid framework combining regression analysis and metaheuristics, which

balanced exploration and exploitation. Tao et al. [33] applied reinforcement learning with heuristic methods in

distributed hybrid flowshop problems, showcasing potential benefits but also pointing out that such combinations

can introduce additional computational overhead. The review by Ruan et al. [26] and other studies, such as [34,

35], also underlined the pros and cons of hybrid models, noting how these approaches improve solution quality but

often add to the computational load, making them challenging for real-time applications.

 In response to these challenges, bio-inspired algorithms have emerged as promising methods for dynamic

optimization. Slime Mold Algorithm (SMO) [36], developed by Li et al., has been effectively applied in resource

allocation tasks, showing a strong ability to adapt to dynamic workloads while avoiding local optima. Wang et al.

[37] further demonstrated the success of SMO in load balancing within cloud computing environments. Likewise,

Harris Hawk Optimization (HHO) [38], as introduced by Heidari et al., and later applied by Farjallah et al. [39] in

job scheduling, demonstrated faster convergence and scalability in large-scale scheduling tasks compared to

traditional heuristics. Another bio-inspired method, the Whale Optimization Algorithm (WOA) [40], has also been

successfully integrated into job shop scheduling, providing a balance between computational complexity and

system adaptability. Nadimi-Shahraki et al. [41] reviewed improvements to WOA, emphasizing its scalability and

suitability for real-time dynamic environments.

 The role of nature-inspired algorithms has also extended into various applications, such as the Internet of

Things (IoT) and healthcare systems. Amiri et al. [42] conducted a systematic review of nature-inspired algorithms,

highlighting their adaptability and efficiency in handling complex real-world problems, such as those found in IoT-

based healthcare services. These algorithms are valued for their scalability and ability to manage optimization in

resource-constrained environments [43, 44].

 Although these bio-inspired methods provide adaptability and efficiency in complex systems, another category is

rule-based deterministic approaches, which offer the advantage of predictability and lower computational costs.

Ruan et al. [31] highlighted that rule-based strategies, while less flexible, provide robust, low-computation solutions

in real-time applications. This makes them an attractive option where reliability and speed are paramount.

 In conclusion, while traditional mathematical models, heuristic methods, and ML-based techniques have all

contributed significantly to optimization research, their limitations in handling dynamic environments,

computational intensity, and adaptability are clear as well. But, the Bio-inspired algorithms, such as SMO, HHO,

and WOA, have successfully addressed many of these challenges by introducing adaptive optimization mechanisms.

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1232 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Therefore, the Hormesis-Based Optimization (HBO) algorithm offers to solve optimization problems by combining

the flexibility of bio-inspired methods with the reliability of rule-based approaches. This means that HBO can adapt

to changing environments like bio-inspired algorithms but also maintains the predictability and low computational

cost of rule-based systems. As a result, HBO is particularly effective for managing resources in systems where

conditions are constantly changing, and quick decisions are needed. By using the principle of hormesis, which

involves small adjustments to improve performance, HBO can handle complex tasks that other methods struggle

with, ensuring steady and efficient operation even when conditions are unpredictable.

2.2 Basic Concepts of Hormesis

 After reviewing existing optimization algorithms and their limitations, we introduce the fundamental concepts

of hormesis, which inspired the development of the Hormesis-Based Optimization (HBO) algorithm.

 In nature, certain chemical, physical, or biological factors may exist, which when introduced, can trigger some

kind of responses in a biological system [11, 12]. These factors are referred to as stressors. Stressors can produce

either positive or negative impacts on the system, depending on their intensity or dose. The effect of a stressor

depends on its doses applied. At lower doses, stressors often activate beneficial response and at higher doses, the

same stressors may become harmful and cause damage. This phenomenon, known as hormesis, exists in nature and

is also utilized by scientists in experiments. For example, low doses of ionizing radiation enhance cellular repair

mechanisms and immune function, while higher doses cause harmful effects in chemical hormesis [45]. Similarly,

lifting extremely heavy weights can damage muscle tissue or even cause bone fractures. However, lifting smaller,

manageable weights over time can strengthen muscles and improve overall fitness. Weights will be the stressor in

this case and the amount of weights will be the doses.

When studied in controlled conditions, the results obtained in hormesis typically form a biphasic curve, which

shows two phases: a beneficial effect at lower doses and a harmful effect as the dose increases beyond a specific

threshold.

Figure 2: Visualization of Hormesis Effect and Biphasic Dose-Response Curve

 Figure 2 illustrates the general concept of biphasic dose-response curve. At low doses the stressor induces

beneficial effects, enhancing performance beyond the natural baseline established by a control group, which is

marked as the "natural performance" or "Control group" on the graph. This region of beneficial response is termed

as the "Hormetic Zone." As the dosage increases and crosses a lower threshold, it leads to optimum performance,

which is the peak of the curve, signifying the highest performance achieved under stress-induced stimulation.

Beyond this peak, as the dose continues to rise, it surpasses an upper threshold where the effects become

detrimental, leading to a decline in performance. This high dose area is characterized by stress-induced harmful

effects, marking the negative impact of excessive stress. This figure uses a parabolic curve to visually represent how

varying levels of a stressor doses can differently impact performance. The green vertical line marks the lower

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1233 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

boundary of effective dosage, and the red line indicates the upper boundary beyond which the effects are adverse

[45].

2.3 Motivation

 Further, the following points highlight the intrinsic properties of hormesis principle [46, 47, and 48] which

motivated us to develop it as an optimization algorithm:

i. Hormesis as a Mathematical Idea

 The concept of the biphasic dose-response curve, explained in Section 2.2, is evident in various studies

[49, 50 and 51] and has been generalized into mathematical equations. For instance:

• Chemical hormesis:

𝑹(𝑫) =
𝒂𝑫

𝟏+𝒃𝑫
 …(2.1)

Equation (2.1) captures initial stimulation and saturation at higher doses [49].

• Physical hormesis:

𝑅(𝐷) = 𝑅0+𝑎𝐷 − 𝑏𝐷2 …(2.2)

Equation (2.2) explicitly models a decline at higher doses [50].

• Biological hormesis:
𝑑𝐻(𝑡)

𝑑𝑡
= 𝛼𝑈(𝑡) − 𝛽𝐻(𝑡) …(2.3)

Equation (2.3) emphasizes on time-dependent adaptation [51].

These equations demonstrate the sensitivity of the response 𝑅(𝐷) to changes in dose ‘D’. Inspired by this

behaviour, a method can be developed to continuously monitor system metrics and recalibrate adaptively, ensuring

optimal performance while respecting the biphasic response.

ii. Homeostasis

 Homeostasis, in hormesis, is the tendency of a system to maintain balance when under stress. There

are various biological systems which naturally implements homeostasis through regulatory mechanisms and

studies have, directly or indirectly, exploited the mathematical aspects of these mechanisms. For example, Equation

(2.3) can be used to regulate this concept because it models adaptability. The parameters ‘𝛼’ defines the system’s

ability to adapt and ‘𝛽’ governs the rate of recovery, where, 𝑈(𝑡) represents the applied stress and 𝐻(𝑡) is response

to the stressor. As an instance, this model can be used in computational systems to regulate the response to varying

workloads.

iii. Overcompensation:

 It is the ability of the system to adapt and become stronger to handle increased stress. The biological

systems, when exposed to continuous optimal stress, attain a steady response state which can be derived from

Equation (2.4) as:

𝐻𝑠𝑡𝑒𝑎𝑑𝑦 =
𝛼

𝛽
 𝑈(𝑡) …(2.4)

However, they just do not return to 𝐻𝑠𝑡𝑒𝑎𝑑𝑦 but also retains a residual effect giving them increased potential to

handle the future stress. This can be expressed as in Equation (2.5):

𝐻𝑓𝑖𝑛𝑎𝑙 = 𝐻𝑠𝑡𝑒𝑎𝑑𝑦 + 𝐻𝑟𝑒𝑠𝑖𝑑𝑢𝑒 …(2.5)

It means that 𝐻𝑓𝑖𝑛𝑎𝑙 > 𝐻𝑠𝑡𝑒𝑎𝑑𝑦. This concept can be applied to systems beyond biology, modelling them to adjust to

changes and enhance performance over time.

iv. Threshold Dose and Hormetic zones

 It is the point on the curve where the shift from beneficial to harmful effects occurs. Idea of using this

threshold can be crucial for effective hormesis application. The threshold dose, 𝐷𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, is the point where
𝑑𝐻(𝑡)

𝑑𝑡
= 0, separating beneficial and harmful effects. This mathematical insight inspires to define "hormetic

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1234 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

zones (𝑍)" as ranges of stress where response 𝑅(𝐷) from dose 𝐷 remains optimal, and can be written as 𝑍 ∈

𝑍𝑚𝑖𝑛 , 𝑍𝑚𝑎𝑥.

v. Stressors

 In biological systems, hormesis is triggered by stressors which may be natural or externally induced.

These stressors act as signals stimulating adaptive responses. Similarly, in non-biological systems, certain

parameters can serve as triggers to activate an optimization process. For instance, in computational environments,

excessive workload can be treated as a stressor, initiating adaptive mechanisms in the system. By identifying and

defining such stressors, we can control and optimize adaptation, in a non-biological system as well.

3. HBO Framework

 From the discussions so far, we derive the fundamental steps of the HBO algorithm as a general problem-solving

framework designed to address diverse optimization challenges by continuously observing and fine-tuning system

performance through the allocation and balancing of stress across different components. The following explanation

describes the process involved in HBO optimization further.

3.1 The Workflow

 Imagine a system ′𝑀′ consisting of machines

{𝑀1, 𝑀2, … , 𝑀𝑛} each processing a subset from a set of tasks.

The tasks may be assigned to the machines randomly or using

a predefined strategy. The state of each machine is

represented by metrics such as utilization, queue length,

latency, and throughput, which are combined into a single

value called stress. This stress value indicates whether a

machine is overburdened, stable, or underutilized, reflecting

its current workload and task-handling efficiency. Ideally,

each machine operates within an optimal range of stress,

between overburdened and underutilized states, where the

machine’s performance is considered stable. This optimal

range mirrors the hormetic zone in the principle of hormesis.

The goal is to ensure that all machines stay within these zones

while optimizing the overall performance of the system.

 To achieve this goal, stress is dynamically transferred to

machines with lower stress levels. The amount of stress

adjusted from an overburdened to an underutilized machine

corresponds to the concept of a “dose” of stress in hormesis.

For instance, if 𝑀3 is overloaded, then its tasks are

redistributed to less stressed machines in ′𝑀′. When these

adjustments are made, the machines respond to the

adjustments by producing modified response values due to

the induced stress dose. This is analogous to a “dose-

response” in hormesis and is referred to as the “stress metric”

because the value produced signifies stress which is

characterized by the combination of system parameters.

These adjustments aim to improve the overall system

performance by balancing workloads, preventing some

machines from being overburdened while others remain

underutilized.

 The algorithm begins by defining the system’s stress

metrics and loading the necessary historical or real-time performance data to establish baseline configurations.

Figure 3: HBO
Flowchart

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1235 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Initial hormetic zones are defined for each machine, setting the lower and upper bounds for optimal stress levels.

The system is continuously monitored to ensure performance stays within these predefined thresholds. If any

machine exceeds the upper threshold or becomes overburdened, the algorithm recalibrates the hormetic zones and

calculates the necessary dose of stress to transfer. The adjustment is made dynamically, redistributing tasks to

underutilized machines to bring all components back into their optimal stress zones. These recalibrations continue

iteratively, with the algorithm verifying whether the adjustments have stabilized performance and brought all

machines within their hormetic zones. If the adjustments succeed or the maximum number of iterations is reached,

the process concludes.

 This approach ensures that the HBO algorithm dynamically adapts to fluctuating workloads while maintaining

system performance within optimal stress ranges. The iterative recalibration of hormetic zones and dynamic stress

adjustments forms the foundation for achieving efficient and balanced optimization in complex, dynamic

environments. Next, we present the mathematical formulation of the steps outlined in this example. The equations

provided are intended to illustrate the framework and may vary depending on the specific scenario or

implementation of the algorithm.

3.2 Mathematical Foundations

 The following steps outline the generic structure of the HBO framework, which can be adapted to

various domains.

i.Initialization

a. Define the system components and relevant performance metrics such as 𝑀 = {𝑀1, 𝑀2, … , 𝑀𝑛}

and 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛} where 𝑀𝑖 represents components of a system (e.g. resources, subsystem,

etc.) and 𝑆𝑖 represents the metrics (e.g. workload, latency, utilization, etc.) used to evaluate the

state of a component 𝑀𝑖.

b. Prepare or load data necessary for establishing baseline performances (if necessary).

ii.Unified Metric Calculation (Define “stress metric”)

 A core principle of the HBO algorithm is the transformation of multiple system parameters into a

unified metric 𝑅(𝐷), referred to as “stress metric”. This approach reduces the computational complexity and serves

as the basis for the algorithm's decision-making logic, enabling dynamic adjustments and optimizations. The

method for combining multiple metrics into a unified metric can vary depending on the specific requirements of the

application. For instance, as represented in Equation (3.1), a weighted sum approach can be used to aggregate

system metrics, with weights reflecting the relative importance of each parameter.

𝑅(𝐷) = 𝑤0𝑆0 + 𝑤1𝑆1 + ⋯ 𝑤𝑛𝑆𝑛 …(3.1)

In this equation, 𝑆𝑖 is the system parameter and 𝑤𝑖 is its corresponding weight.

iii.Performance Threshold (Define Hormetic Zones)

 Define the method for calculating “Hormetic Zones” for the system and find initial lower (𝑍𝑚𝑖𝑛) and

upper (𝑍𝑚𝑎𝑥) bound for the hormetic zones. The approach for establishing these bounds may vary depending on the

specific requirements of the system. For example, we can apply a percentile-based method to set the upper and

lower bound values. These values will set the definition of the acceptable performance for system 𝑀 and its

components.

iv.Activation function (Define Stressor)

 As already explained in section 3.2 stressor is an agent which acts as a trigger and activates the

hormesis effect which helps system optimize its performance. Any condition, parameter value, or situation which

may demand the optimization in the system can be used to define stressor function for that particular system. For

instance, if the components of the system are experiencing increased workload beyond upper bound 𝑍𝑚𝑎𝑥, then it

can be treated as a stressor and can be used to activate the optimization mechanism of the algorithm. The trigger

condition of the stressor ∆𝐷, calculated in Equation 3.2, can be stated as Equation 3.3:

∆𝐷 = 𝑅(𝐷) − 𝑍𝑚𝑎𝑥 …(3.2)

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1236 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

𝑖𝑓 (∆𝐷 > 0) …(3.3)

, i.e., if the current value of stress metric exceeds upper bound then activate homeostasis mechanism.

v. Adaptive mechanism (Homeostasis)

 Homeostasis is the tendency of the system to maintain balance when it is experiencing stress.

However, there is a limit of how much stress can be applied on the system at a given time so that it is able to

maintain its balance. Once the activation function triggers the adaptive mechanism, the system may try to remain

balanced by optimizing its performance. It can be achieved by adjusting the excessive stress to underutilized

components of the system. This adjustment will be analogous to inducing stress dose in biological systems. The

feature of homeostasis may be realized through following steps:

a. Recognizing the overloaded and underutilized system components through stress metric monitoring using

the condition given by equation 3.4 and equation 3.5:

 𝑅(D) > 𝑍max → Overload …(3.4)

 𝑅(D) > 𝑍min → Underutilized …(3.5)

b. Define the stress dose for underutilized system components using the equation, such as,

𝐷 = 𝜃 ∙ 𝑓w ∙ ∆𝐷 …(3.6)

, where,’θ’ is the redistribution factor, which controls the proportion of excess stress that is reallocated to

underutilized components to prevent system-wide imbalance.’ fw’ is the weight function, defining the relative share

of stress each underutilized component receives based on its current state and capacity to handle additional

workload, and ∆D is the excessive stress calculated in equation 3.6 in the overloaded system components.

c. Adjust the load to the underutilized components of the system after defining the corresponding stress

dose. This can be performed as given by equation 3.7:

𝑅(𝐷𝑖) ← 𝑅(𝐷𝑖−1) + 𝐷𝑖 …(3.7)

d. Remove the excessive stress from the overloaded components of the system using the mechanism which

can be modelled using the equation 3.8:

𝑅(𝐷𝑖) ← 𝑅(𝐷𝑖−1) − 𝑘. ∆𝐷 …(3.8)

The adjustment factor ′𝑘′ here controls the magnitude of the correction needed to bring the component’s metric

𝑅(𝐷) back to the target range [𝑍𝑚𝑖𝑛 , 𝑍𝑚𝑎𝑥].

The equation 3.4 to 3.8 presents generalized way in which a system is following an adaptive method to maintain its

performance under continuous and steady stress implementing the mechanism of homeostasis.

vi.Recalibrations (Overcompensation)

 Overcompensation in hormesis lets a biological system to adapt so that it can improve the performance

under the increased amount of stress for longer duration. It enhances the systems capability permanently. In non-

biological systems, the overcompensation step may be implemented through recalibration of hormetic zones. As an

example, equation 3.9 and 3.10 represents the procedure mathematically,

𝑍𝑚𝑖𝑛
𝑡+1 = 𝛾𝑍𝑚𝑖𝑛

𝑡 + (1 − 𝛾) ∙ 𝑓ℎ(𝑅(𝐷)) …(3.9)

𝑍𝑚𝑎𝑥
𝑡+1 = 𝛾𝑍𝑚𝑎𝑥

𝑡 + (1 − 𝛾) ∙ 𝑓ℎ(𝑅(𝐷)) …(3.10)

Here, ′𝛾′ is the recalibration factor which governs that how much the previous threshold values influence the new

threshold. Generally, ′𝛾′ close to 1 means past values will dominate more and the change will be gradual and value

close to 0 means dominance of recent values and faster change. ‘𝑓ℎ’ is the function that determines how the stress

metric influences the updated threshold.

vii.Convergence

 The final step in the HBO framework is to determine convergence. This involves evaluating the

stability of system metrics 𝑅(𝐷𝑖) and checking if they have stabilized within a predefined tolerance or if the

maximum number of iterations is reached.

 After the theoretical understanding of the HBO algorithm framework in this section, we validate its

effectiveness in the next section.

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1237 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

4. HBO Implementation

To evaluate the HBO algorithm in a real-time

scheduling environment, we apply it to the

Dynamic Job Shop Scheduling (DJSS) problem

[52]. This section presents the problem formulation

and details the algorithmic steps required for

implementation. It also includes Table 1 which lists

the symbols used in this work and their meaning.

4.1 Problem statement and

Formulation

 Dynamic Job Shop Scheduling (DJSS)

involves assigning a set of job 𝐽 = { 𝐽1, 𝐽2, … , 𝐽𝑛} to a

system of machines 𝑀 = { 𝑀1, 𝑀2, … , 𝑀𝑚} where

each job ′𝐽𝑖′ has a processing time ′𝑝𝑖 ′. Unlike static

scheduling, DJSS requires real-time adaptability as

new jobs may arrive unpredictably, and machine

workloads continuously change.

 In this work, we treat the set of machines,

capable of executing identical tasks, as a single

system 𝑀. A set of jobs 𝐽 is introduced into the

system 𝑀 the assignments { 𝐽1, 𝐽2, … , 𝐽𝑛}

to { 𝑀1, 𝑀2, … , 𝑀𝑚} are determined dynamically

using HBO algorithm. The scenario allows that the

jobs can be partially processed on multiple

machines, meaning that:
∑ 𝑥𝑖,𝑗 = 𝛼𝑖 , 0 ≤ 𝛼𝑖 ≤ 1, ∀ 𝑖 𝜖 𝐽𝑚

𝑗=1 …(4.1)

In Equation 4.1, 𝑥𝑖,𝑗 ∈ {0,1} is a binary variable

indicating whether job 𝐽𝑖 is assigned to machine 𝑀𝑗.

Also, each machine in the system 𝑀 is characterised

by stress metric which encapsulates parameters –

utilization, queue length, task latency, and

throughput. These stress components are combined

into a single function in equation 4.2:

𝑅(𝐷𝑗) = 𝑈𝑈𝑗 + 𝑄𝑄𝑗 + 𝐿𝐿𝑗 + 𝑇𝑇𝑗 …(4.2)

where 𝑈, 𝑄, 𝐿 , 𝑇 are weight factors that

determine the relative influence of each metric. The

goal is to optimize the schedule in such a way that

the system 𝑀 is able to minimize the total

completion time (makespan) and reduce the

average waiting time (latency). The makespan of

the system 𝑀 for a given set of jobs 𝐽, given by

equation 4.3 is:

𝐶 = 𝑚𝑎𝑥
𝑗∈𝑀

∑ 𝑥𝑖,𝑗 ∙ 𝑝𝑖𝑖∈𝐽 …(4.3)

The latency of such a system can be given as in

equation 4.4:

𝐿 = 𝑚𝑎𝑥
𝑗∈𝑀

{
1

 𝑡𝑛−𝑡0
∫ 𝑅(𝐷𝑗 , 𝑡)𝑑𝑡

𝑡𝑛

𝑡0
} …(4.4)

where, 𝑡𝑛 − 𝑡0 is the total time elapsed and the

integral computes the total stress (workload) by

machine 𝑀𝑗. The machine with maximum

Table 1: Parameter Symbol Description

Parameter Description : Parameter Symbol

Set of Machines : 𝑀 = {𝑀1, 𝑀2 , … , 𝑀𝑚}

Set of Jobs : 𝐽 = {𝐽1, 𝐽2 , … , 𝐽𝑛}

Processing time of job 𝐽𝑖 : 𝑝𝑖

Unified Stress Metric : 𝑅(𝐷𝑗)

Stress Metric for machine

𝑀𝑗 at time t
: 𝑅(𝐷𝑗 , 𝑡)

Integral Parameters set

(𝜇𝑗) for 𝑅(𝐷𝑗) for machine

𝑀𝑗
:

𝜇𝑗 = {𝑈𝑗 , 𝐿𝑗 , 𝑄𝑗 , 𝑇𝑗}

Machine

Utilization (𝑈𝑗)

Latency (𝐿𝑗)

Queue Length (𝑄𝑗)

Throughput (𝑇𝑗)}

Makespan machine 𝑀𝑗 : 𝐶𝑗

Set of weights for Stress

parameters
:  = {

𝑈
, 𝐿 , 𝑄, 𝑇}

Lower & Upper Hormetic

Bounds
: 𝑍 = {𝑍𝑚𝑖𝑛 , 𝑍𝑚𝑎𝑥}

Hormetic Bounds for

Machine 𝑀𝑗
: 𝑍𝑗 = [𝑍(𝑗,min), 𝑍(𝑗,max)]

Set of overloaded

Machines [𝑅(𝐷𝑗) >

 𝑍(𝑗,max)]
:

𝑀𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑

Set of underutilized

Machines [𝑅(𝐷𝑗) <

 𝑍(𝑗,min)]
: 𝑀𝑢𝑛𝑑𝑒𝑟𝑢𝑡𝑖𝑙

Excess stress

(𝑅(𝐷𝑗) − 𝑍(𝑗,max)) : ∆𝐷

Stress Dose (for

redistribution to an

underutilized machine 𝑀𝑗)
:

𝐷𝑗

Adjustment avoidance

threshold
: 𝜏

Time step : 𝑡

Recalibration factor : 𝛾

Adjustment factor : 𝑘

Redistribution factor : 𝜃

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1238 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

makespan and latency dictates the makespan and latency of the system 𝑀.

Instead of explicitly minimizing makespan and latency the HBO algorithm optimizes stress balancing across

machines, which indirectly influences both performance metrics by keeping the performance within hormetic

zones (𝑍𝑚𝑖𝑛 , 𝑍𝑚𝑎𝑥) given by equations (3.4) and (3.5). Hence, the objective function, Equation 4.5, can be written

in terms of stress metric as:

𝑚𝑖𝑛 ∑ |𝑅(𝐷𝑗 , 𝑡) − 𝑅(𝐷𝑗 , 𝑡 − 1)|𝑚
𝑗=1 …(4.5)

with the constraint of satisfying the Equation 4.6,

𝑍𝑚𝑖𝑛 ≤ 𝑅(𝐷𝑖, 𝑡) ≤ 𝑍𝑚𝑎𝑥 , ∀ 𝑖 ∈ 𝑀, ∀𝑡 …(4.6)

This objective function ensures that the workload across all machines remains balanced by minimizing the

deviation of machine stress from the optimal stress level [𝑍𝑚𝑖𝑛 , 𝑍𝑚𝑎𝑥]. By keeping each machine’s stress within an

optimal range, the system avoids overloading certain machines while others remain underutilized. The use of

absolute values ensures that both overburdened and underutilized machines are corrected equally, preventing

uneven adjustments. The indirect relationship between stress balancing and scheduling performance is expressed

by Equation 4.7:

𝐶 ≈ 𝑓(𝑅(𝐷)) , 𝐿 ≈ 𝑔(𝑅(𝐷)) …(4.7)

where, 𝑓(∙) and 𝑔(∙) represent the system's emergent response to stress regulation.

4.2 HBO pseudocode for DJSS

In this section we provide the explanation that how we

implement the HBO framework tailored for the DJSS

problem. The different algorithms presented here talks

about the different sections of the implementation with the

help of respective pseudocode.

Algorithm 1 is about the initial setup of the input

parameters, defining and evaluating the unified stress

metric, and defining the initial hormetic zones. The

algorithm proceeds by computing weights (𝑗) for each

system parameter using the Pearson-correlation method.

The weights reflect the relative importance of parameters

such as utilization, latency, queue length and throughput.

These weights are computed on the basis of historical data

collected for these parameters over multiple time-steps.

Using equation 4.2, we then calculate the non-normalized

stress metric 𝑅′(𝐷𝑗) for each machine as a unified value that

aggregates multiple system parameters through a weighted

sum as:

𝑅′(𝐷𝑗) = 𝑈𝑈𝑗 + 𝑄𝑄𝑗 + 𝐿𝐿𝑗 + 𝑇𝑇𝑗

 …(4.8)

 However, to make sure that no single parameter in the

stress metric dominates due to its large value, we apply

min-max normalization approach, equation 4.9, to ensure

consistent scaling across different metrics:

𝑅(𝐷𝑗) = 1 + 99 ∙
𝑅′(𝐷𝑗) −𝑅′(𝐷𝑗)𝑚𝑖𝑛

𝑅′(𝐷𝑗)𝑚𝑎𝑥−𝑅′(𝐷𝑗)𝑚𝑖𝑛
 …(4.9)

here, 𝑅′(𝐷𝑗)𝑚𝑖𝑛 and 𝑅′(𝐷𝑗)𝑚𝑎𝑥 are the minimum and maximum stress metric across all machines in the

system. Min-max normalization plays a crucial role in binding all machines together within a shared,

system-wide reference scale. Since the stress metric for each machine is derived from multiple system

parameters with varying ranges, normalizing these values ensures that no single metric

disproportionately affects the overall stress assessment. This collective reference also allows stress

Algorithm 1: Initialization and Setup

Input:

Machines 𝑀 = {𝑀1, 𝑀2 , … , 𝑀𝑚}

Jobs 𝐽 = {𝐽1, 𝐽2 , … , 𝐽𝑛}

Thresholds 𝛼, 𝛽 for hormetic zone

boundaries

Recalibration factor 𝛾

Adjustment factor 𝑘

Redistribution factor 𝜃

Adjustment avoidance threshold 𝜏

Output:

Initial correlation-derived weights 

Initial stress metrics 𝑅(𝐷𝑗)

Initial hormetic zones 𝑍𝑗 = [𝑍(𝑗,min), 𝑍(𝑗,max)]

1. for each machine 𝑀𝑗 ∈ 𝑀 do

2. Compute correlation-derived weights

𝑗

3. Compute initial stress metric 𝑅(𝐷𝑗)

4. Define initial hormetic zones:

 𝑍𝑗 = [𝑍(𝑗,min), 𝑍(𝑗,max)]

5. end for

6. Initialize global parameters: 𝛾, 𝑘,

𝜃 𝑎𝑛𝑑 𝜏

7. Return , 𝑅(𝐷𝑗) and 𝑍𝑗

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1239 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

adjustments and redistribution to happen relative to system-wide stress thresholds, mimicking

biological hormesis adaptation mechanisms. The unified stress metric 𝑅(𝐷𝑗) simplifies performance

evaluation by reducing multidimensional parameters into a single value. In the next step, the algorithm

defines the hormetic zone [𝑍(𝑗,min), 𝑍(𝑗,max)] for each machine using the percentile method, such as,

𝑍(𝑗,min) = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒({𝑅(𝐷𝑗 , 𝑡)|𝑡 = 1,2. . 𝑛}, 𝛼)

 …(4.10)

𝑍(𝑗,max) = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒({𝑅(𝐷𝑗 , 𝑡)|𝑡 = 1,2. . 𝑛}, 𝛽)

 …(4.11)

{𝑅(𝐷𝑗 , 𝑡)|𝑡 = 1,2. . 𝑛} used in equation 4.10 and

equation 4.11 represents a set of past stress

values over ′𝑛′ time steps for machine 𝑀𝑗. ‘𝛼’ and

‘𝛽’ are the percentile thresholds. The use of

percentile method on historic stress metric data

ensures the hormetic boundaries evolve over time,

preventing rigid or outdated stress limits. Finally,

the algorithm initializes the parameters such as

adjustment factor (𝑘) which determines the

magnitude of stress correction applied when

machines deviate from their hormetic zones, while

the redistribution factor (𝜃) proportionally

allocates excess workload from overloaded

machines to underutilized ones. The

recalibration factor (𝛾) balances stability and

adaptability by controlling how much influence

previous hormetic zones have on recalibrated

zones. The adjustment avoidance threshold (𝜏)

which prevents the overloaded machines to adjust minor stress to other machines.

After the initial calculations in Algorithm 1, Algorithm 2 and Algorithm 3 provide the pseudocode for

implementing the homeostasis mechanism in which we first categorize machines as overloaded, or

underutilized. Then, adjust the appropriate stress from overloaded to underutilized machines so that

system can maintain its performance within hormetic threshold under continuous stress. Algorithm 2

clearly states the conditions which compares the current stress metric 𝑅(𝐷𝑗) of a machine 𝑀𝑗with the

upper and lower hormetic bound to categorize the machine as overloaded or underutilized, and adds

them to set 𝑀𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 or 𝑀𝑢𝑛𝑑𝑒𝑟𝑢𝑡𝑖𝑙 accordingly. If the condition in Equation (4.12) is true, then the

machine 𝑀𝑗is added to set of overloaded machines.

𝑅(𝐷𝑗) > 𝑍(𝑗,max) …(4.12)

𝑅(𝐷𝑗) < 𝑍(𝑗,min) …(4.13)

If Equation (4.13) is true, then it is added to set of underutilized machine. Additionally, the

adjustment avoidance threshold (𝜏) is used as an extra condition, as states in Equation (4.14) and (4.15)

because it may not be effective to redistribute small amounts of stress and it may slow down the

adaptation process in the system.

|𝑅(𝐷𝑗) − 𝑍(𝑗,max)| > 𝜏 …(4.14)

|𝑅(𝐷𝑗) − 𝑍(𝑗,min)| > 𝜏 …(4.15)

If the stress metric is such that 𝑍(𝑗,min) ≤ 𝑅(𝐷𝑗) ≤ 𝑍(𝑗,max) then the machine is judged as functioning

optimally and does not adjust any extra load from overloaded machine. If there are no underutilized or

overloaded machines, then, the overcompensation mechanism, provided in Algorithm 4, is activated.

Meanwhile, Algorithm 3 implements the remaining aspects of homeostasis mechanism by adjusting the

Algorithm 2: Monitoring and Stress

 Evaluation

Input:

Machines 𝑀

Stress metric 𝑅(𝐷𝑗)

Hormetic zone 𝑍𝑗

Adjustment avoidance threshold 𝜏

Output:

𝑀𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 & 𝑀𝑢𝑛𝑑𝑒𝑟𝑢𝑡𝑖𝑙 sets.

1. Initialize {𝑀𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 , 𝑀𝑢𝑛𝑑𝑒𝑟𝑢𝑡𝑖𝑙}= ∅

2. for each machine 𝑀𝑗 ∈ 𝑀 do

3. if 𝑅(𝐷𝑗) > 𝑍(𝑗,max) then

4. if |𝑅(𝐷𝑗) − 𝑍(𝑗,max)| > 𝜏 then

5. Add 𝑀𝑗 to 𝑀𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑

6. else if 𝑅(𝐷𝑗) < 𝑍(𝑗,min) then

7. if |𝑅(𝐷𝑗) − 𝑍(𝑗,min)| > 𝜏 then

8. Add 𝑀𝑗 to 𝑀𝑢𝑛𝑑𝑒𝑟𝑢𝑡𝑖𝑙

9. end for

10. Return 𝑀𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 and 𝑀𝑢𝑛𝑑𝑒𝑟𝑢𝑡𝑖𝑙

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1240 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

workload from overloaded to underutilized

machines. For each overloaded machine the algorithm

first calculates and reduces the excess stress using

Equation (4.16) given in step 2 of the algorithm.

𝑅(𝐷𝑗) ← 𝑅(𝐷𝑗−1) − 𝑘. (𝑅(𝐷𝑗−1) − 𝑍(𝑗,max))

 …(4.16)

The mechanism implements the adjustment factor (𝑘)

in this step to control the amount of excess stress which is

redistributed to the underutilized machines because

uncontrolled and large amount of excess stress

adjustment may result into oscillatory pattern in the

system. In next step, it computes the excessive

stress (∆𝐷), using Equation (4.17) as per the current

boundaries of hormetic zones for the overloaded

machines in the system.

∆𝐷 = ∑(𝑅(𝐷𝑗) − 𝑍(𝑗,max))

 …(4.17)

The algorithm then calculates the stress dose 𝐷𝑖 which

is the amount of stress to be redistributed to each

underutilized machine in the set 𝑀𝑢𝑛𝑑𝑒𝑟𝑢𝑡𝑖𝑙 . The stress

dose for each underutilized machine, Equation (4.18),

is proportional to the remaining capacity of the

underutilized machine, which is the difference

between the upper hormetic bound (𝑍(𝑖,max)) and its

current stress metric 𝑅(𝐷𝑖), included as step 6.

𝐷𝑖 = 𝜃 ∙
 (𝑍(𝑖,max)−𝑅(𝐷𝑖))

∑(𝑍(𝑖,max)−𝑅(𝐷𝑖))
∙ ∆𝐷

 …(4.18)

The redistribution factor (𝜃) in this step determines how much of the calculated excess stress (∆𝐷) is

actually redistributed across the underutilized machines, ensuring a balanced redistribution of stress to

the underutilized machines. Step 7 shows that how the dose 𝐷𝑖 is added as additional stress to the

underutilized machines as per Equation (4.19).

𝑅(𝐷𝑖) ← 𝑅(𝐷𝑖) + 𝐷𝑖 …(4.19)

Hence, the mechanism provided in Algorithm 2 and Algorithm 3 tries to maintain balance in the

system without hampering the efficiency of non-overloaded machines and optimizes the performance

while adhering to the principles of homeostasis.

Algorithm 4 implements the overcompensation mechanism of hormesis by recalibrating the hormetic

zones. Overcompensation represents the enhancement in the capability of the system to manage

continuous stress. The algorithm adjusts the hormetic zones to better handle unattended excess

stress (∆𝐷) through the Equations (4.20) and (4.21) outlined in steps 2 and 3 of the algorithm:

𝑍𝑗,𝑚𝑖𝑛
𝑡+1 = 𝛾𝑍𝑗,𝑚𝑖𝑛

𝑡 + (1 − 𝛾) ∙ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑅(𝐷𝑗, 𝛼)) …(4.20)

𝑍𝑗,𝑚𝑎𝑥
𝑡+1 = 𝛾𝑍𝑗,𝑚𝑎𝑥

𝑡 + (1 − 𝛾) ∙ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑅(𝐷𝑗 , 𝛽)) …(4.21)

Algorithm 3: Stress Redistribution and

Adjustment

Input:

Machines 𝑀, 𝑀𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 and 𝑀𝑢𝑛𝑑𝑒𝑟𝑢𝑡𝑖𝑙

Stress metric 𝑅(𝐷𝑗)

Adjustment factor 𝑘

Redistribution factor 𝜃

Output:

Updated stress metric 𝑅(𝐷𝑗)

1. For each machine 𝑀𝑗 ∈ 𝑀𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 :

2. Compute and reduce excess stress:

𝑅(𝐷𝑗) ← 𝑅(𝐷𝑗−1) − 𝑘. (𝑅(𝐷𝑗−1) − 𝑍(𝑗,max))

3. Compute total excess stress

∆𝐷 = ∑(𝑅(𝐷𝑗) − 𝑍(𝑗,max))

4. End for

5. For each machine 𝑀𝑖 ∈ 𝑀𝑢𝑛𝑑𝑒𝑟𝑢𝑡𝑖𝑙 :

6. Compute Stress Dose for redistribution,

𝐷𝑖:

𝐷𝑖 = 𝜃 ∙
 (𝑍(𝑖,max) − 𝑅(𝐷𝑖))

∑(𝑍(𝑖,max) − 𝑅(𝐷𝑖))
∙ ∆𝐷

7. Apply stress redistribution:

𝑅(𝐷𝑖) ← 𝑅(𝐷𝑖) + 𝐷𝑖

8. End for

9. Return updated 𝑅(𝐷𝑗) ∀ 𝑀𝑗 ∈ 𝑀

Algorithm 4: Recalibration of Hormetic Zones

Input:

Machines 𝑀

Stress metric 𝑅(𝐷𝑗)

Recalibration factor 𝛾

Hormetic zone 𝑍𝑗

Output:

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1241 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recalibration occurs under the following specific

conditions in the scenario:
a. Excess stress is not fully adjusted by

underutilized machines: This may happen if the

capacity of underutilized machines is insufficient

to absorb the excess load (∆𝐷), requiring

recalibration to redefine stress thresholds and

redistribute workloads more effectively.

b. No more underutilized machines in the

system: If all machines are operating at or above

their minimum hormetic thresholds (𝑍(𝑗,min)),

there are no eligible machines to redistribute

excess stress, necessitating recalibration to

expand the capacity of hormetic zones.

c. No overloaded machines in the system: If no machine exceeds its upper threshold (𝑍(𝑗,max)),

recalibration ensures the system is dynamically adjusted to maintain balance and optimize

performance in the absence of stress triggers. These conditions are periodically evaluated by the

algorithm, ensuring that the system makes continuous effort to achieve optimal performance.

The HBO algorithm operates iteratively, dynamically balancing system stress metrics (Dj) within

predefined hormetic zones Zj. Convergence occurs when all machines operate within their respective

hormetic zones, ensuring balanced workload distribution. However, the algorithm terminates only when

all jobs in the system are completed, marking the end of task scheduling and resource allocation.

4.3 Asymptotic Time complexity of HBO for DJSS

 In this section, we analyse the time complexity of the HBO algorithm for DJSS scenario. We break

down the complexity of different components and then derive the overall complexity. The following

theorem proves the claim that the HBO algorithm worst time complexity is 𝑂(𝑇 ∙ 𝑛 ∙ log (𝑛)), where, ‘𝑛’

be the number of machines and ‘𝑇’ be the number of time steps or jobs and each machine have ‘𝑑’ data

points for intermediate adaptive calculations.

4.3.1 Lemmas for Individual Components

Lemma 1 (Data Loading and Pre-processing Complexity) Let ‘𝑛’ be the number of machines

and ‘𝑇’ be the number of time steps (jobs). The complexity of reading and pre-processing data is

𝑂(𝑇 ∙ 𝑛).

Proof: Each machine is associated with multiple parameters, such as utilization, throughput, queue

length, and latency. The pre-processing step involves handling missing values, normalizing data, and

computing statistical relationships among these parameters. Since ‘𝑛’ machines’ data is processed over

‘𝑇’ time steps, the total complexity of this step is 𝑂(𝑇 ∙ 𝑛).

Lemma 2 (Correlation and Composite Index Calculation Complexity) Let ‘𝑝’ be the number of

parameters per machine. The computation of correlation values and the composite index for ′𝑛′

machines has complexity 𝑂(𝑝2 ∙ 𝑛).

Proof: The correlation matrix requires pairwise correlation calculations among ‘𝑝’ parameters for ′𝑛′

machines. This results in 𝑂(𝑝2 ∙ 𝑛) operations. Since ‘𝑝’ is a small constant (e.g., 𝑝 = 4), this term

remains manageable.

Lemma 3 (Initial Hormetic Zone Calculation) The computation of hormetic-zones for each

machines involve percentile calculations, which require sorting. If there are 'n' machines and each

machine have ‘𝑑’ data points for percentile calculation, the worst-case time complexity is 𝑂(𝑛 ∙ 𝑑 ∙

log(𝑑)).

Proof: The process of determining hormetic zones, Equation (4.10) and Equation (4.11), involves

computing percentiles, which requires sorting operations over ‘𝑑’ data points. Since, sorting a list of size

Updated hormetic zones 𝑍𝑗

1. For each machine 𝑀𝑗 ∈ 𝑀 :

2. Compute new lower hormetic bound:

𝑍𝑗,𝑚𝑖𝑛
𝑡+1 =

𝛾𝑍𝑗,𝑚𝑖𝑛
𝑡 + (1 − 𝛾) ∙ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑅(𝐷𝑗 , 𝛼))

3. Compute new upper hormetic bound:

𝑍𝑗,𝑚𝑎𝑥
𝑡+1 =

𝛾𝑍𝑗,𝑚𝑎𝑥
𝑡 + (1 − 𝛾) ∙ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑅(𝐷𝑗, 𝛽))

4. Update hormetic zone bounds:

𝑍𝑗 = [𝑍(𝑗,min), 𝑍(𝑗,max)]

5. End for

6. Return updated hormetic zones 𝑍𝑗

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1242 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

′𝑑′ data points incurs a computation cost of 𝑂(𝑑 ∙ log(𝑑)) and this operation is performed for each

machine individually. Therefore, the overall complexity for the set of ′𝑛′ machines remains 𝑂(𝑛 ∙ 𝑑 ∙

log(𝑑)).

Lemma 4 (Monitoring, Stress Redistribution and Adjustment) The complexity of monitoring,

redistribution and adjustment of stress across ‘n’ machines and ‘T’ number of time steps is 𝑂(𝑇 ∙ 𝑛).

Proof: It constitutes following steps:

 Step 1: Identification of Overloaded and Underutilized Machines:

The algorithm determines which machines are overloaded or underutilized, using Equation

(4.12) and (4.13). Since this requires scanning all ′𝑛′ machines, this step has a complexity

of 𝑂(𝑛).

Step 2: Avoiding Redistribution for Minor Deviations:

The adjustment avoidance threshold, defined in Equation (4.14) and Equation (4.15), ensures

that small fluctuations do not trigger unnecessary reallocations resulting in a time complexity

of 𝑂(𝑛) for ′𝑛′ machines

Step 3: Redistribution of Excess Workload:

Once overloaded and underutilized machines are identified, the algorithm redistributes excess

stress using Equation (4.16) and Equation (4.17). The redistribution factor in Equation (4.18),

and Equation (4.19), ensures proportional stress adjustment to underutilized machines. This

involves iterating over all ′𝑛′ machines again, leading to an additional time complexity

of 𝑂(𝑛).

Hence, total time complexity across ‘T’ time steps is: 𝑚 ∙ (𝑂(𝑛) + 𝑂(𝑛) + 𝑂(𝑛)) ≡ 𝑂(𝑇 ∙ 𝑛)

Lemma 5 (Recalibration of Hormetic Zones) The complexity of dynamic hormetic zone

recalibrations, which involves recalculating stress thresholds periodically, is:𝑂(
𝑇

𝑘
∙ 𝑛 ∙ log(𝑑)), where ′𝑘′

represents the adjustment period, meaning the hormetic zones are recalculated every time steps.

Proof: The recalibration method in Equation (4.20) and Equation (4.21) uses percentile method which

gives the time complexity of 𝑂(𝑑 ∙ log(𝑑)) (lemma 3). Over total ′𝑇′ time steps, hormetic zone

recalibration occur once every ′𝑘′ number of step. Therefore, the total number of recalculations over ′𝑇′

time steps is
𝑇

𝑘
 . Since recalculations happen for each of the ′𝑛′ machines, the total complexity becomes:

𝑂(
𝑇

𝑘
∙ 𝑛 ∙ (𝑑 ∙ log(𝑑))) ≡ 𝑂(

𝑇

𝑘
∙ 𝑛 ∙ log(𝑑))

4.3.2 Overall Time Complexity

Theorem 4.1 Let ‘𝑛’ is the number of machines, T is the number of time steps (jobs), 𝑘 is the

adjustment period for recalibrations, and 𝑑 is the number of data points used in percentile calculations

of each machine. If the Hormesis-Based Optimization (HBO) algorithm computes stress metrics via

correlation and normalization (Lemma 2), determines hormetic zones via percentile-based sorting

(Lemma 3), performs task allocation and stress redistribution at each time step (Lemma 4), and

periodically recalibrates stress thresholds (Lemma 5), then its total computational complexity over 𝑇

iterations, in worst case, is:

𝑂(𝑇 ∙ 𝑛 ∙ log (𝑑))

Proof: The total time complexity for the HBO algorithm for DJSS can be computed as the sum of the

time complexities derived in Lemma 1 to Lemma 5, given by:

𝑂(𝑇 ∙ 𝑛) + 𝑂(𝑝2 ∙ 𝑛)+ 𝑂(𝑛 ∙ 𝑑 ∙ log(𝑑))+ 𝑂(𝑇 ∙ 𝑛)+ 𝑂(
𝑇

𝑘
∙ 𝑛 ∙ log(𝑑))

⇒ 𝑂(𝑇 ∙ 𝑛) + 𝑂(𝑛 ∙ 𝑑 ∙ log(𝑑)) + 𝑂(
𝑇

𝑘
∙ 𝑛 ∙ log(𝑑)) {⸫ 𝑂(𝑝2 ∙ 𝑛) is ignored as per lemma 2}

⇒ 𝑂(𝑇 ∙ 𝑛) + 𝑂(𝑛 ∙ 𝑑 ∙ log(𝑑)) + 𝑂(𝑇 ∙ 𝑛 ∙ log(𝑑)) {if 𝑘 = 1 i.e. recalibration after every step

(lemma 5)}

⇒ 𝑂(𝑇 ∙ 𝑛 ∙ log(𝑑)) {⸫ T>>d and 𝑘 = 1 in worst case}

 □

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1243 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The time-complexity analysis establishes that HBO algorithm achieves worst case time complexity

which is much faster than the exhaustive search based algorithm or the data intensive machine learning

algorithms.

4.4 Datasets Used

This study uses synthetic data to evaluate the proposed model. It allows controlled testing under

different workload conditions, ensures reproducibility, and enables scalability across various machine

setups, providing a structured way to analyze the algorithm’s effectiveness while mimicking realistic

scheduling challenges [53]. The dataset includes historical performance data, real-time operational

data, and job processing times for machines in a job scheduling system. The historical data captures

machine performance trends like utilization, queue length, throughput, and latency, while the real-time

data continuously updates as jobs are processed. The current real-time data becomes historical data for

future scheduling decisions, ensuring continuous adaptation in task assignments.

Figure 4 shows the job processing times of 500 jobs

which are used in executing the scenario. The

processing times vary significantly across different jobs,

ranging from short tasks requiring minimal machine

time to longer tasks that create bottlenecks in the

scheduling system. By incorporating this variability, the

dataset reflects real-world scheduling scenarios where

job durations are not uniform, influencing machine

workload distribution.

Table 2: Parametric Values Used

Parameter (Applicable

Algorithms)
:

Value or

Range

Number of Machines : 5 and 10

Adjustment Period (HBO) : 6 to 10

Adjustment Factor (HBO) : 1.3 to 1.9

Redistribution Factor

(HBO)
:

1.2 to 1.5

Threshold (HBO) : 0.3 to 0.6

Temperature (SA, ASA)
:

Initial: 1000,

Minimum: 1

Cooling Rate (SA, ASA) : 0.9

Tabu List Size (TS, ATS) : 100

Max Iterations (TS, GA,

ATS, AGA)
:

100

Population Size (GA, AGA) : 100

Crossover Rate (GA, AGA) : 0.8

Mutation Rate (GA, AGA) : 0.1

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1244 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

5. Results and Analysis

In this section, we present the results and analysis of the HBO algorithm's performance in optimizing the

makespan and latency in DJSS reactive-predictive scenario [52]. We evaluate the effectiveness of HBO by

comparing its ability with other well-known optimization methods. These include traditional approaches like Tabu

Search (TS), which has outperformed many newer algorithms, along with Simulated Annealing (SA), Genetic

Algorithm (GA), their adaptive versions ATS, ASA, AGA, and a baseline heuristic that uses a round-robin job

scheduling mechanism. By selecting these methods, we aim to compare HBO against a diverse set of established

optimization techniques, providing a clear understanding of its performance in complex scheduling and resource

allocation tasks.

5.1 Simulation setup
The simulation setup includes two different scenarios, with 5 machines and 10 machines system, for 50, 100,

150, 250 and 500 jobs. It allows us to evaluate the scalability and adaptability of the HBO algorithm. By analysing

systems of varying sizes, we can assess its performance in handling both smaller and larger job scheduling

environments, ensuring its effectiveness across different levels of complexity and resource availability.

Each algorithm used in this study was configured following the best practices recognized in the domain, which

ensures that the comparison framework is robust, aligning with guidelines that stress the importance of consistent

benchmarking conditions for a precise evaluation of algorithmic performance [54].

Key parameters set for the simulation are outlined in the Table 2, which includes an adjustment period for HBO

ranging from 6 to 10 iterations, adjustment factors between 1.3 and 1.9, redistribution factors from 1.2 to 1.5, and

thresholds between 0.3 and 0.6. These parameter values were chosen based on empirical testing to determine the

settings that maximize performance outcomes across different job counts and machine configurations.

For Simulated Annealing, we configured an initial temperature of 1000, cooling to 1, and a cooling rate of 0.9,

adhering to the thermal reduction strategy used in various studies as a standard [22]. This approach ensures that

the SA algorithm gradually transitions from exploration to exploitation, preventing premature convergence to

suboptimal solutions. The tabu list size for Tabu Search was set to recommended value of 100 to effectively navigate

the solution space [22], which is crucial for avoiding cycles and ensuring coverage of diverse solutions. Meanwhile,

the Genetic Algorithm was parameterized with a population size of 100, a crossover rate of 0.8, and a mutation rate

of 0.1, aligning with standard guidelines for achieving a balance between genetic diversity and convergence,

optimizing the algorithm’s ability to find optimal solutions efficiently [20].

The simulations were conducted using Python, allowing for a fair and accurate evaluation of their performance

[55]. Throughout the simulation, detailed logs of machine utilization rates, processing times, and queue dynamics

were maintained which are crucial for subsequent detailed analysis, providing a granular view of each algorithm's

operational impact and efficiency.

5.2 Results Obtained

In this section, we detail the performance outcomes of our comparative study between the HBO algorithm and

chosen conventional and adaptive scheduling methods. We present this data through a series of tables and charts,

highlighting the specific improvements in makespan and latency that the HBO algorithm achieved under various

job load and machine configurations. These results will help in understanding the practical impact of our approach

on job scheduling efficiency.

 Table 3 presents the makespan values for a 5-machine system across different job sizes, comparing HBO with

heuristic methods (TS, GA, SA, ATS, AGA, ASA) and a baseline scheduling approach. The results show that HBO

consistently achieves the lowest makespan across all job sizes, indicating its superior ability to optimize task

scheduling. For small workloads (50 jobs), the improvement over TS is around 9.46% and 3.37% over ATS, while

for larger workloads (500 jobs), HBO reduces makespan by 8.63% compared to TS and 8.23% compared to ATS.

The largest reduction is against the SA which is over 22%. These reductions confirm that HBO effectively balances

stress distribution, minimizing job completion time across machines.

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1245 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 3: Makespan Values for 5 Machines

Jobs HBO TS ATS GA AGA SA ASA Baseline

50.0 3666.68 4049.42 3794.59 4581.55 4129.05 4702.22 4366.45 4697.5

100.0 7635.63 7693.36 7790.35 9022.54 8930.88 9324.66 9379.97 9663.16

150.0 12045.93 12113.32 12164.31 14035.54 14017.05 14323.53 14506.24 14720.52

250.0 19586.66 20580.9 20399.97 22830.78 22931.09 23362.34 23703.13 23821.78

500.0 38917.02 42583.1 42410.17 45542.08 45572.94 46402.71 46724.3 46778.83

Table 4 shows the makespan values for a 10-machine system across different job sizes. In this case also, the

HBO algorithm consistently outperforms all other methods, demonstrating its scalability and efficiency in handling

larger machine configurations. For smaller workloads (50 jobs), HBO achieves a approximately 3.5% reduction in

makespan compared to both TS and ATS, around 20% improvement over ASA and improvement as high as 61%

against the baseline method. As the workload increases, HBO’s advantage becomes more pronounced. For 500

jobs, HBO reduces makespan by 11.03% compared to TS, 10.53% as compared to ATS, 17.88% compared to GA,

18.34% compared to SA, and 19.40% over ASA. These results indicate that HBO effectively distributes stress across

machines, preventing bottlenecks in high-demand scheduling environments.

Table 4: Makespan Values for 10 Machines

Jobs HBO TS ATS GA AGA SA ASA Baseline

50.0 3567.77 3700.82 3697.1 4374.62 4361.02 4410.7 4475.04 9349.15

100.0 7106.57 7576.8 7448.29 8860.86 8919.9 9170.48 9341.43 9349.15

150.0 11343.46 11270.44 11422.94 13325.43 13197.96 13283.42 13668.14 13767.93

250.0 18214.6 18986.34 18898.82 21553.42 21729.53 21948.84 21976.08 22382.38

500.0 36132.68 40607.51 40391.63 44004.99 44065.23 44243.69 44829.75 45038.48

Table 5 presents the mean latency values for a 5-machine system across different job sizes. HBO consistently

achieves lower latency compared to TS, GA, SA, ATS, AGA, ASA and the baseline. For 50 jobs, HBO reduces latency

by 21.6% compared to TS, 16.28% compared to ATS and 32.8% compared to GA. As the workload increases, HBO

maintains this advantage. For 500 jobs, it achieves a 8.5% reduction over TS, 8.14% compared to ATS and 14.4%

over GA, demonstrating its ability to maintain lower delays across varying loads. The results indicate that HBO

schedules tasks more effectively, preventing excessive queuing and maintaining system responsiveness.

Table 5: Mean Latency Values for 5 Machines

Jobs HBO TS ATS GA AGA SA ASA Baseline

50.0 63.53 80.99 75.89 91.63 82.58 94.04 87.33 93.95

100.0 75.18 76.93 77.9 90.23 89.31 93.25 93.8 96.63

150.0 80.39 80.76 81.1 93.57 93.45 95.49 96.71 98.14

250.0 78.96 82.32 81.6 91.32 91.72 93.45 94.81 95.29

500.0 77.91 85.17 84.82 91.08 91.15 92.81 93.45 93.56

Table 6: Mean Latency Values for 10 Machines

Jobs HBO TS ATS GA AGA SA ASA Baseline

50.0 72.56 74.02 73.94 87.49 87.22 88.21 89.5 93.49

100.0 72.81 75.77 74.48 88.61 89.2 91.7 93.41 93.49

150.0 76.48 75.14 76.15 88.84 87.99 88.56 91.12 91.79

250.0 74.06 75.95 75.6 86.21 86.92 87.8 87.9 89.53

500.0 72.57 81.22 80.78 88.01 88.13 88.49 89.66 90.08

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1246 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 6 shows the mean latency values for a 10-machine system across different job sizes. HBO continues to

achieve lower latency all other methods compared. For 50 jobs, HBO reduces latency by 1.97% compared to TS,

1.84% compared to ATS and 17.0% compared to GA. As the number of jobs increases, HBO maintains its edge, with

10.65% less latency than TS, 10.16% less than ATS and 17.0% less than GA for 500 jobs. These results further

demonstrate that HBO efficiently manages task delays, even in larger systems, keeping latency consistently lower

compared to the other algorithms

Table 7 and Table 8 provide another perspective on the results by presenting the improvements in makespan

and latency as percentage reductions, rather than absolute values, across all job set sizes. While Table 3 to Table 6

show the actual makespan and latency values, these tables highlight the relative performance gains of HBO over

heuristic and adaptive methods, making it easier to quantify the extent of improvement across different

configurations. The percentage values presented in these tables are an average of all the values achieved for

different set of jobs i.e. 50, 100, 150, 250 and 500 jobs.

One additional insight that Table 7 and Table 8 offer is the variation in percentage improvements across

different algorithms. For example, while GA and SA consistently show larger performance gaps when compared to

HBO, TS remains more competitive, with relatively smaller improvements in both makespan and latency.

Additionally, adaptive methods (AGA, ASA) close some of the gap with HBO, but the percentage improvements in

Table 8 confirm that HBO still maintains a significant advantage with the speed much quicker than the other

algorithms mentioned here, as explained in section 4.3. Notably, HBO's largest latency reduction occurs against

ASA i.e. 27.25% for 5 machines and 18.93% for 10 machines.

Table 7: Percentage reduction in Makespan and Latency by HBO as compared to TS, GA and SA

Algorithm No. of Machines
Makespan Improvement

(%)
Latency Reduction (%)

TS
5 4.84 7.38

10 4.85 3.45

GA
5 15.65 17.89

10 17.30 16.09

SA
5 17.67 19.84

10 18.31 17.12

Table 8: Percentage reduction in Makespan and Latency by HBO as compared to ATS, AGA and ASA

Algorithm No. of Machines
Makespan Improvement

(%)
Latency Reduction (%)

ATS
5 3.71 6.41

10 4.59 3.18

AGA
5 13.89 16.26

10 17.35 16.14

ASA
5 17.13 19.47

10 19.54 18.37

5.3 Discussion

The following discussion talks about the implications of our findings, analyzing how the HBO algorithm

enhances operational efficiencies and adapts to dynamic conditions. We explore the significance of adaptive

hormetic zones and the pattern of biphasic responses within the broader context of optimization theory and

practice. This section also compares our results to existing research, helping to frame future directions for this

innovative scheduling approach.

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1247 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

a) Adaptive Hormetic Zones of HBO

We analysed the dynamic adjustment of hormetic zones in the HBO algorithm over the execution of 500 time

steps across 10 machines. Figure 5 provides a detailed visualization of how these hormetic bounds evolve over time,

reflecting the algorithm’s real-time adaptation to workload variations. Each plot represents a specific machine,

capturing fluctuations in the upper and lower stress thresholds as HBO regulates task allocation. The observed

trends indicate that HBO continuously refines these bounds, responding to changes in system conditions to

maintain an optimal workload distribution. The horizontal gaps in the figure arise because hormetic zones are

updated only when the recalibration conditions mentioned in section 4.2 are met and those conditions are checked

at given intervals rather than continuously, meaning adjustments occur at specific time steps rather than in every

instance. This interval-based recalibration ensures that the system adapts efficiently without excessive oscillations

and providing the speed to algorithm without increasing the time complexity, as explained in Lemma 5 of section

4.3.1.

It can also be observed in Figure 5 that the stress across different machines become more similar over time by

gradually aligning, indicating that HBO is dynamically adjusting scheduling to maintain balance as job demands

fluctuate. Each machine’s upper and lower bound values fluctuate initially, reflecting variations in workload

distribution. However, as execution progresses, these fluctuations become more synchronized across machines,

suggesting that the hormetic adjustment mechanism is stabilizing the system over time which satisfies the objective

function, given by Equation 4.5 in conjunction with Equation 4.6, which advocates that the stress distribution

should minimize with time during execution This pattern highlights HBO’s ability to distribute tasks efficiently,

preventing overloading of specific machines while ensuring optimal utilization across the system.

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1248 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1249 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

b) Biphasic Nature of HBO

To evaluate the biphasic nature of the dose-response curve in our study, we analysed latency

differences of machines under varying operational stressors. First, we calculated the latency difference at

successive time steps for each machine, capturing the immediate impact of job allocations, using the

Equation (5.1),

∆𝐷𝑡 = 𝑅(𝐷𝑡) − 𝑅(𝐷𝑡−1) …(5.1)

We then smoothed these differences using a moving average to highlight underlying patterns using the

Equation (5.2):

 (𝑅(𝐷𝑡) =
1

𝑛
∑ 𝑅(𝐷𝑡−𝑖)𝑛−1

𝑖=0 …(5.2)

As shown in the first graph of Figure 6, peaks (x) and troughs (o) in the smoothed data were identified by

evaluating the first derivative of 𝐷𝑡 to detect points of rate change, indicative of oscillatory behaviour. We

further analysed periodicity through Fourier Transform using the Equation (5.3),

𝐹(𝜔) = ∫ 𝑅(𝐷𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
 …(5.3)

The purpose was to reveal the frequency components and periodic patterns in the latency fluctuations.

The second graph in Figure 6 depicts this periodic pattern and confirms the regular adjustments and

resilience in the system.

Subsequently, the data was fitted to a biphasic dose-response model using nonlinear regression, given

by the following Equation (5.4),

𝐿𝑖,𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑡) = 𝛽0 + 𝛽1𝑘(𝑡) + 𝛽2𝑘(𝑡)2 + 𝛽3𝑒𝛽4𝜃(𝑡) …(5.4)

 In this equation, 𝑘(𝑡) represents the adjustment factor for task allocation, 𝜃(𝑡) encapsulates the

redistribution factor for task balancing and 𝐿𝑖,𝑙𝑎𝑡𝑒𝑛𝑐𝑦(𝑡) is the performance metric. Also, 𝛽0 is the baseline

latency, 𝛽1 adjusts latency linearly with task allocation intensity, 𝛽2 captures non-linear effects of task

adjustments, and 𝛽3, 𝛽4 modulate latency exponentially based on task redistribution.

This model allowed us to quantitatively describe the biphasic nature of the response with respect to

both hormetic zone adjustments and stressor-induced changes in task dynamics which is shown in the

third graph of Figure 6 illustrating the biphasic model fit over the smoothed latency difference data. This

explanation also demonstrates how the model continuously monitors and adjusts workloads, resulting in

improved functionality and maintaining system performance within optimal stress levels. Lastly, The

biphasic model parameters obtained by applying the equations explained in this section, is

[6.57733699e-01, -1.36452318e+00, -7.05820785e-05, 1.21485163e-02, 1.00000003e+00]

Positive and negative coefficients in the model underscore an initial increase in latency followed by a

decrease, illustrating the biphasic response.

Figure 6: Evaluation of Biphasic Nature of the HBO Algorithm

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1250 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hence, we can say that the HBO algorithm follows the biphasic property found naturally in hormesis,

which enables it to handle stress by first reacting to it and then adapting. This dual-phase approach is

critical because it allows the system to initially respond to increase in stress by boosting performance, and

then stabilize by adjusting operations to prevent overload, thus maintaining overall system stability and

efficiency.

c) Performance Comparison

The line graphs shown, in Figure 7 and Figure 8, further illustrate the comparative performance of the

HBO algorithm against other algorithms. The graphs plot makespan and mean latency as functions of the

number of jobs for both 5-machine and 10-machine configurations. For the makespan versus number of

jobs graphs, the HBO algorithm consistently shows a lower makespan across different job sizes,

demonstrating its efficiency in managing and distributing tasks. The reduction in makespan is more

prominent as the number of jobs increases, highlighting HBO's ability to handle larger

Figure 7: Makespan and Latency comparison (HBO, TS, GA and SA)

workloads more effectively compared to other algorithms. The latency versus number of jobs graphs

reveals that HBO maintains a lower average latency, especially noticeable in scenarios with a high number

of jobs. This indicates that HBO not only balances the workload efficiently but also ensures that the

system responds promptly to task requirements, reducing delays. The comparative performance is

particularly notable in the adaptive versions, where HBO outperforms ATS, AGA, and ASA in terms of

both makespan and latency. The adaptive nature of these algorithms typically aims to improve

performance dynamically, yet HBO demonstrates superior adaptability and efficiency in workload

management. These findings confirm that HBO consistently outperforms both traditional and adaptive

optimization algorithms, demonstrating its robustness and effectiveness in dynamic scheduling and

resource allocation scenarios. The significant improvements in makespan and latency reduction

underscore the potential of HBO in enhancing overall system performance.

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1251 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 8: Makespan and Latency comparison (HBO, ATS, AGA and ASA

6. Conclusion & Future Scope

The Hormesis-Based Optimization (HBO) algorithm presented in this study uses the principles of hormesis as a

framework to improve resource allocation and system performance dynamically. By maintaining stress levels

within hormetic zones and leveraging adaptive responses, HBO ensures that system components operate efficiently

and effectively. The evaluation results demonstrated that HBO significantly reduces makespan and latency

compared to traditional and adaptive optimization algorithms. Specifically, HBO achieved an average makespan

improvement of up to 18.31% and a latency reduction of up to 19.84% compared to conventional algorithms, and up

to 20.27% improvement in makespan and 27.25% reduction in latency against adaptive variants. These substantial

improvements underscore the potential of HBO in optimizing dynamic workload management and resource

planning, paving the way for its application in various complex optimization scenarios. However, future research

could extend the HBO algorithm to sectors like logistics and healthcare to assess its adaptability across diverse

environments. Integrating machine learning for real-time prediction of optimal hormetic zones could enhance its

responsiveness and efficiency. Exploring multi-objective optimization that balances efficiency with energy and cost

considerations could lead to more sustainable practices. Long-term studies on the algorithm’s impact on system

maintenance and wear could provide insights into its sustainability and practical long-term benefits as well.

References:

[1] M. Del Gallo, G. Mazzuto, F. E. Ciarapica, and M. Bevilacqua, "Artificial Intelligence to Solve Production

Scheduling Problems in Real Industrial Settings: Systematic Literature Review," Electronics, vol. 12, Nov.

2023.

[2] N. Jennings and R. Stadler, "Towards efficient execution of large-scale scientific applications and

workflows on complex infrastructures," Journal of Cloud Computing, vol. 9, no. 16, Apr. 2020.

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1252 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[3] Gongada, T.N. et al. (2024) ‘Optimizing Resource Allocation in cloud environments using fruit fly

optimization and Convolutional Neural Networks’, International Journal of Advanced Computer Science

and Applications, 15(5).

[4] D. Lin, J. Zhao, F. Yu, W. Min, Y. Zhao and Y. L. Guan, "A Novel High-Precision and Low-Latency

Abandoned Object Detection Method Under the Hybrid Cloud-Fog Computing Architecture," in IEEE

Internet of Things Journal.

[5] V. P. Chassein, "Metaheuristics in Optimization: Algorithmic Perspective," INFORMS.

[6] D. T. Pham and S. O. Clark, "Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search,

Simulated Annealing and Neural Networks," Springer London, 2017. doi: 10.1007/978-1-4471-0721-7.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.

[8] H. Bouzary and F. F. Chen, "A classification-based approach for integrated service matching and

composition in cloud manufacturing," Robotics and Computer-Integrated Manufacturing, vol. 66, Article

ID 101989, 2020.

[9] V. K. Ojha, A. Abraham, and V. Snášel, "Metaheuristics in Neural Networks: A Comprehensive Overview,"

Neural Computing and Applications, vol. 31, no. 12, pp. 9053-9072, Dec. 2019.

[10] M. P. Mattson, "Energy Intake, Meal Frequency, and Health: A Neurobiological Perspective," The

American Journal of Clinical Nutrition, vol. 101, no. 5, pp. 1237S-1243S, 2015. DOI:

10.3945/ajcn.114.100320.J. W. M. van der Meer and A. S. W. de Jong, "Mathematical Models of Hormesis

in Toxicology," Environmental Toxicology and Chemistry, vol. 39, no. 5, pp. 1261-1270, May 2020. DOI:

10.1002/etc.4872.

[11] M. A. Murado and J. A. Vázquez, "The notion of hormesis and the dose–response theory: A unified

approach," Journal of Applied Toxicology, vol. 35, no. 6, pp. 620-634, 2015. DOI: 10.1002/jat.3078.E. J.

Calabrese and M. J. Baldwin, "Hormesis: The Dose-Response Revolution," Annual Review of

Pharmacology and Toxicology, vol. 43, pp. 175-197, 2003. DOI:

10.1146/annurev.pharmtox.43.100901.140223.

[12] K. Koyama, "Exercise-induced oxidative stress: A tool for 'hormesis' and 'adaptive response'," Japan

Physical Fitness and Sports Medicine, vol. 3, pp. 115-123, 2014. DOI: 10.7600/jpfsm.3.115.

[13] Singh, Harvinder, Anshu Bhasin, Parag Ravikant Kaveri, and Vinay Chavan. "Cloud resource

management: comparative analysis and research issues." International Journal of Scientific & Technology

Research 9, no. 06 (2020): 96-113.

[14] Ashawa, M., Douglas, O., Osamor, J. et al. “Improving cloud efficiency through optimized resource

allocation technique for load balancing using LSTM machine learning algorithm”. J Cloud Comp 11, 87

(2022). https://doi.org/10.1186/s13677-022-00362-x

[15] Radwan, K., Elhakeem, A. and Elbeltagi, E. (2024) ‘Resource assignment optimization in design firms’,

Ain Shams Engineering Journal, 15(4), p. 102612. doi:10.1016/j.asej.2023.102612.

[16] Hou, Y., Mao, Y., Zhang, Y., Li, Q., and Ji, Y., "A Discrete-Event Mathematical Model for Resource

Allocation Optimization: A Case Study of Vehicle Scheduling in a Signal-Free Intersection," MDPI

Mathematics, vol. 10, no. 22, 2022.

[17] Laisupannawong, T.; Intiyot, B.; Jeenanunta, C. Mixed-Integer Linear Programming Model and Heuristic

for Short Term Scheduling of Pressing Process in Multi-Layer Printed Circuit Board Manufacturing.

Mathematics 2021, 9, 653.

[18] Z. Zhao, S. Liu, M. Zhou, X. Guo and J. Xue, "Iterated Greedy Algorithm for Solving a New Single

Machine Scheduling Problem," 2019 IEEE 16th International Conference on Networking, Sensing and

Control (ICNSC), Banff, AB, Canada, 2019, pp. 430-435, doi: 10.1109/ICNSC.2019.8743328.

[19] Wang, X., Hu, H., Liang, Y. et al. On the Mathematical Models and Applications of Swarm Intelligent

Optimization Algorithms. Arch Computat Methods Eng 29, 3815–3842 (2022).

[20] D. E. Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning," Addison-Wesley,

Reading, MA, USA, 1989.

[21] J. Kennedy and R. C. Eberhart, "Particle swarm optimization," in Proc. IEEE Int. Conf. on Neural

Networks, vol. 4, Perth, Australia, 1995, pp. 1942-1948.

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1253 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[22] Shao, Xiaorui, Su Yeon Lee, and Chang Soo Kim. "A Novel and Effective University Course Scheduler

Using Adaptive Parallel Tabu Search and Simulated Annealing." KSII Transactions on Internet &

Information Systems 18, no. 4 (2024).

[23] S. Sujitjorn, J. Kluabwang, D. Puangdownreong, and N. Sarasiri, “Adaptive Tabu Search and Management

Agent”, ECTI-EEC, vol. 8, no. 1, pp. 1–10, Dec. 2009.

[24] Yang, Xin-She. (2018). Nature‐Inspired Algorithms. 297-321. 10.1002/9781119490616.ch14.

[25] G. Ruan, L. L. Minku, S. Menzel, B. Sendhoff and X. Yao, "Learning to Expand/Contract Pareto Sets in

Dynamic Multi-Objective Optimization With a Changing Number of Objectives," in IEEE Transactions on

Evolutionary Computation, doi: 10.1109/TEVC.2024.3375751.

[26] G. Ruan, H. Zhong, G. Zhang, Y. He, X. Wang and T. Pu, "Review of learning-assisted power system

optimization," in CSEE Journal of Power and Energy Systems, vol. 7, no. 2, pp. 221-231, March 2021

[27] R. R. M. Sijabat and Z. K. Parodos, “Machine learning-based multi-objective optimization for dynamic

scheduling and routing of heterogeneous instant delivery orders and scheduling strategies with real-time

adaptation”, emod, vol. 16, no. 2, pp. 59–70, May 2022.

[28] S. Wang et al., "Machine/Deep Learning for Software Engineering: A Systematic Literature Review," in

IEEE Transactions on Software Engineering, vol. 49, no. 3, pp. 1188-1231, 1 March 2023

[29] Jiang, W. Bike sharing usage prediction with deep learning: a survey. Neural Comput & Applic 34, 15369–

15385 (2022).

[30] G. C. Ruan, H. W. Zhong, J. X. Wang, Q. Xia, and C. Q. Kang, “Neural network-based Lagrange multiplier

selection for distributed demand response in smart grid,” Applied Energy, vol. 264, pp. 114636, Apr. 2020

[31] Xu, R., Cao, S., Kearns, S. K., Niechwiej-Szwedo, E., & Irving, E. (2024). Computational Cognitive

Modeling of Pilot Performance in Pre-flight and Take-off Procedures. Journal of Aviation/Aerospace

Education & Research, 33(4)

[32] Vega, E.; Soto, R.; Crawford, B.; Peña, J.; Castro, C. A Learning-Based Hybrid Framework for Dynamic

Balancing of Exploration-Exploitation: Combining Regression Analysis and Metaheuristics. Mathematics

2021

[33] X. -r. Tao, Q. -k. Pan and L. Gao, "An Iterated Greedy Algorithm With Reinforcement Learning for

Distributed Hybrid FlowShop Problems With Job Merging," in IEEE Transactions on Evolutionary

Computation, doi: 10.1109/TEVC.2024

[34] C. Wu, Y. Zhou and J. Wu, "Two-Layer Data-Driven Robust Scheduling for Industrial Heat Loads," in

Journal of Modern Power Systems and Clean Energy, doi: 10.35833/MPCE.2024.000105.

[35] Babatunde, Olubayo Moses, Josiah Lange Munda, and Yskandar Hamam. "A comprehensive state-of-the-

art survey on hybrid renewable energy system operations and planning." IEEE Access 8 (2020)

[36] Li S, Chen H, Wang M, Heidari AA, Mirjalili S. Slime mould algorithm: A new method for stochastic

optimization. Future Generation Computer Systems 2020; 111: 300–323.

[37] Wang, Zebin, Yu Li, Guodao Zhang, Xiaotian Pan, and Ji Li. "Multi-Objective Optimization of Solar

Resource Allocation in Radial Distribution Systems Using a Refined Slime Mold Algorithm." Heliyon

(2024).

[38] Heidari, Ali Asghar, Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah, Majdi Mafarja, and Huiling Chen.

"Harris hawks optimization: Algorithm and applications." Future generation computer systems 97 (2019)

[39] F. Farjallah, H. E. Nouri and O. B. Driss, "Harris Hawks Optimization Algorithm for Dual-Resource

Constrained Flexible Job Shop Scheduling Problem with Makespan Criterion," 2023 IEEE Afro-

Mediterranean Conference on Artificial Intelligence (AMCAI), Hammamet, Tunisia, 2023, pp. 1-8

[40] Guanjun, M. E. N. G., H. U. A. N. G. Jiangtao, and W. E. I. Yabo. "Hybrid Beluga Whale Optimization

Algorithm for Flexible Job Shop Scheduling Problem." Journal of Computer Engineering &

Applications 60, no. 12 (2024).

[41] Nadimi-Shahraki, M., Zamani, H., Asghari Varzaneh, Z. et al. A Systematic Review of the Whale

Optimization Algorithm: Theoretical Foundation, Improvements, and Hybridizations. Arch Computat

Methods Eng 30, 4113–4159 (2023).

[42] Amiri, Zahra, Arash Heidari, Mohammad Zavvar, Nima Jafari Navimipour, and Mansour Esmaeilpour.

"The applications of nature‐inspired algorithms in Internet of Things‐based healthcare service: A

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1254 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

systematic literature review." Transactions on Emerging Telecommunications Technologies 35, no. 6

(2024)

[43] Lei, Tingjun, Chaomin Luo, Simon X. Yang, Daniel W. Carruth, and Zhuming Bi. "Bio-inspired

intelligence-based multi-agent navigation with safety-aware considerations." IEEE Transactions on

Artificial Intelligence (2023).

[44] Zhao, Tianhao, Linjie Wu, Di Wu, Jianwei Li, and Zhihua Cui. "Multi-factor Evolution for Large-scale

Multi-objective Cloud Task Scheduling." KSII Transactions on Internet & Information Systems 17, no. 4

(2023).

[45] M. A. Murado and J. A. Vázquez, "The notion of hormesis and the dose–response theory: A unified

approach," Journal of Applied Toxicology, vol. 35, no. 6, pp. 620-634, 2015. DOI: 10.1002/jat.3078.

[46] E. J. Calabrese and M. J. Baldwin, "Hormesis: The Dose-Response Revolution," Annual Review of

Pharmacology and Toxicology, vol. 43, pp. 175-197, 2003. DOI:

10.1146/annurev.pharmtox.43.100901.140223.

[47] M. P. Mattson, "Hormesis defined," Ageing Res. Rev., vol. 7, no. 1, pp. 1-7, Jan. 2008

[48] K. Koyama, "Exercise-induced oxidative stress: A tool for 'hormesis' and 'adaptive response'," Japan

Physical Fitness and Sports Medicine, vol. 3, pp. 115-123, 2014. DOI: 10.7600/jpfsm.3.115.

[49] T. Yoshimasu, T. Ohashi, S. Oura, Y. Kokawa, M. Kawago, Y. Hirai, M. Miyasaka, H. Nishiguchi, S.

Kawashima, Y. Yata, M. Honda, T. Fujimoto, and Y. Okamura, "A Theoretical Model for the Hormetic

Dose-response Curve for Anticancer Agents," Anticancer Res., vol. 35, no. 11, pp. 5851-5855, Nov. 2015.

[50] K. Kino, "Calculations of the Radiation Dose for the Maximum Hormesis Effect," Radiation, vol. 4, no. 1,

pp. 69-84, 2024.

[51] E. L. Kendig, H. H. Le, and S. M. Belcher, "Defining Hormesis: Evaluation of a Complex Concentration

Response Phenomenon," Int. J. Toxicol., vol. 29, no. 3, pp. 235-246, 2010.

[52] Smith, A., Jones, D., and Roberts, S., "Dynamic Job Scheduling in Manufacturing and Service Systems,"

Journal of Manufacturing Systems, vol. 36, no. 4, pp. 216-229, 2020.

[53] V. Beiranvand, W. Hare, and Y. Lucet, "Best Practices for Comparing Optimization Algorithms,"

Optimization and Engineering, vol. 18, no. 4, pp. 815–848, Dec. 2017.

[54] Adams, R., "Using Synthetic Data in Simulation Studies," Journal of Simulation, vol. 14, no. 2, pp. 83-97,

2021.

[55] Lopez, M., "Advanced Data Analysis Techniques in Python," Data Science and Engineering, vol. 5, no. 1,

pp. 34-45, 2022.

