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As quantum machine learning (QML) continues to evolve, it promises unparalleled 
computational advantages in processing complex data. However, the rise of QML also 
introduces critical concerns regarding data security and privacy, particularly in sensitive 
domains such as healthcare, finance and defense. Classical cryptographic methods fall 
short in addressing threats that arise in quantum communication and computation 
environments. To bridge this gap, this paper presents a hybrid framework that 
integrates quantum cryptography—specifically Quantum Key Distribution (QKD) with 
QML pipelines, ensuring end-to-end quantum-secure machine learning operations. We 
first construct a theoretical model that outlines how QKD can be effectively embedded 
into a typical QML workflow to mitigate adversarial threats such as eavesdropping, 
model inversion, and poisoning attacks. We then implement this framework using IBM’s 
Qiskit and a simulated QKD environment via QuNetSim, applying it to a quantum 
support vector machine (qSVM) classifier. The integration is evaluated based on 
accuracy, computational overhead, and communication latency. Our results indicate 
that quantum-secured QML systems can maintain robust model performance while 
significantly enhancing data confidentiality. This work lays the groundwork for future 
developments in secure quantum artificial intelligence infrastructures. 

Keywords: Quantum Machine Learning (QML),Quantum Cryptography, Quantum 
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1 INTRODUCTION 

The advent of quantum computing has triggered a paradigm shift in machine learning, giving rise to QML an 

interdisciplinary field that leverages quantum algorithms to perform learning tasks more efficiently than classical 

methods [19]. From classification and clustering to optimization and pattern recognition, QML is anticipated to 

become a cornerstone of future artificial intelligence systems. However, as QML systems are increasingly deployed 

in practical applications, a parallel challenge emerges: ensuring the security and integrity of quantum data 

pipelines. Conventional cryptographic protocols, while effective in classical systems, are not inherently suited for 

quantum networks or quantum-classical hybrid models [1][2]. Threats such as quantum channel eavesdrop-ping, 

model inversion attacks, and data poisoning can severely compromise the trustworthiness of QML-driven solutions 

[7][15][6].Quantum cryptography, particularly QKD[21], provides a promising path forward. QKD enables the 

secure exchange of cryptographic keys over quantum channels, ensuring theoretically unbreakable encryption 

based on the principles of quantum mechanics. When integrated with QML, QKD has the potential to secure data 

transmission, protect model parameters, and ensure privacy-preserving learning in quantum environments. 
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1.1 Quantum Machine Learning (QML) 

QML represents the convergence of quantum computing and classical machine learning, leveraging quantum 

parallelism to enhance algorithmic efficiency. QML models [16] aim to exploit unique quantum phenomena such as 

superposition, entanglement, and quantum interference to solve learning problems with exponential or polynomial 

speedups. Several foundational QML algorithms have been proposed, including:  

• Quantum Support Vector Machines (qSVM): These utilize quantum feature maps and kernel estimation 

techniques for classification tasks. 

• Variation Quantum Circuits (VQC): Hybrid models that combine classical optimization with parameterized 

quantum circuits for supervised and unsupervised learning. 

• Quantum Neural Networks (QNN): An emerging class of models inspired by classical neural architectures, 

implemented on quantum hardware. Despite rapid progress, QML remains at an early stage, often constrained by 

noisy intermediate scale quantum (NISQ) devices [20], limited qubit connectivity, and data encoding bottlenecks. 

Furthermore, most current implementations operate in simulation, with practical deployment on quantum 

hardware still evolving. 

 

1.2 Quantum Cryptography 

Quantum Cryptography is a field of secure communication that applies quantum mechanical principles to 

guarantee the confidentiality and integrity of transmitted information. The most mature application of quantum 

cryptography is QKD, particularly the BB84 and E91 protocols. QKD enables two parties to generate a shared, 

secret key that is provably secure against any eavesdropper, even one with quantum computational capabilities. 

Any attempt to intercept or measure the quantum channel introduces detectable disturbances due to the no-

cloning theorem and the principle of wave function collapse. Modern QKD systems have been tested in terrestrial 

and satellite-based settings, with increasing integration into classical network infrastructure. Emerging simulation 

frameworks, such as QuNet- Sim and imulaQron, allow experimentation and protocol development in quantum 

networking environments. In this context, quantum cryptography offers a natural solution for securing QML 

systems [17], particularly against threats that emerge from quantum-classical hybrid infrastructures [10][11][13]. 

 

1.3 Related Work 
 

While both QML [4] and quantum cryptography are growing fields, few studies have explicitly addressed their 

intersection. Notable related efforts include: Quantum Private Queries and Blind Quantum Computing protocols, 

which aim to perform computations [9] on remote quantum servers without revealing input data. Proposals for 

quantum homomorphic encryption to enable computation on encrypted quantum data, though these remain 

largely theoretical. Initial works combining QML with secure multiparty computation or differential privacy, 

though these typically rely on classical cryptographic assumptions. To date, practical implementations of quantum-

secure QML pipelines remain scarce. This paper distinguishes itself by proposing a concrete integration of QKD 

with QML and demonstrating its feasibility through simulation. Algorithm 1 outlines the security aware workflow 

for QML enhanced with Quantum Key Distribution and error mitigation in QKD [8].In the algorithm initiates with 

BB84-based key generation, ensuring confidentiality and resistance to eavesdropping through quantum channel 

verification. Input data is encrypted using the derived QKD key, enabling protection against both passive 

(eavesdropping) and active (data poisoning, inference) threats. Encrypted inputs are mapped into quantum Hilbert 

space, where a qSVM model performs secure inference. By incorporating quantum-encoded masking and 

adversarial robustness, the algorithm preserves prediction integrity without compromising data privacy. 

 

1.4 Quantum Key Distribution (BB84) 

The BB84 protocol is employed for quantum key generation between two parties (Alice and Bob).The protocol uses 

two non-orthogonal bases (Z and X) for preparing and measuring qubits. Letbi ∈ {0, 1} be the random bit value and 

θi∈ {0, π/2} the basis angle selected by Alice. She prepares a qubit as:  
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Bob measures using his own basis θ′i and retains the bit if θi= θ′i. The resulting shared bit string forms the 

encryption key used in secure communication. 

Table 1 Comparative Overview of Related Work and Proposed Approach 

 

Work/ Study Focus Area 
QML 

Used 

Quantum 

Crypto 

Implement

ed 

Security 

Integration Uniqueness/ Limitation 

Rebentrost et 

al.(2014) [5] 

Quantum 

SVM 
Yes No Simulated None 

Introduced qSVM; no 

security considerations 

Dunjko&Brie

gel (2017)[7] 

Secure QML 

Concepts 
Yes 

Theoretical 

Only 
No 

Conceptual 

Only 

Proposes secure QML in 

theory, no practical 

realization 

Broadbent et 

al. 2009) [5] 

Blind 

Quantum 

Computing 

No Yes Partially 
Privacy 

Preserving 

Not applied to QML or 

learning scenarios 

Ouyang et 

al.(2020) 

[18] 

Quantum 

Homomorphi

c 

Encryption 

Limite

d 
Yes No 

High 

(Theoretical) 

Currently impractical 

for real-time QML 

Schuld et al. 

(2019)[22], 

Beer et al. 

(2020)[3] 

VQC, QNN 

Models 
Yes No Simulated None 

Focus on QML 

architectures; lacks 

security integration 

1.5 Quantum Support Vector Machine (qSVM) 

Quantum SVM models map classical input data to quantum Hilbert spaces using quantum feature maps ϕ(x). The 

decision function in kernelized SVM is expressed as: 

 

                                                𝑓( )   ∑   
 
      (    )                                                                                                             (2) 

  

Where    𝑒 𝑕𝑒  𝑔   𝑔𝑒    𝑖  𝑖𝑒          *    +   𝑒    𝑖 𝑖 𝑔    𝑒 ,  (    )= |⟨ (  )| ( )⟩|
  is the quantum 

kernel 

 
Fig. 1 Visualization of proposed algorithm 

 

In our implementation, we use a variation quantum feature map   (・) constructed via arameterized quantum 

circuits. Fig 1 illustrates a secure quantum communication framework integrating a QKD protocol with a quantum-

enhanced machine learning model, specifically a qSVM classifier. The protocol begins with the generation and 

distribution of entangled quantum states via QKD to establish a shared secret key among communication parties. 
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This key undergoes classical post processing comprising error correction and privacy amplification to ensure key 

consistency and secrecy. The resulting key is then employed within a QOTP encryption scheme to secure the input 

quantum state ρin. The encrypted state   (ρin) is transmitted through a secure quantum channel to the qSVM 

classifier, where quantum kernel estimation and parameter synchronization are performed to enable accurate 

classification in the encrypted domain. The output of the classifier,  (ρout), is subsequently decrypted using the 

same QOTP scheme, recovering ρout. A final measurement step is conducted for result verification. The framework 

ensures data privacy, model confidentiality, and communication integrity through a seamless integration of 

quantum cryptography and quantum machine learning. 

 

2 OBJECTIVES 

 

 In this paper, we propose and evaluate a secure QML framework that leverages quantum cryptography. Our 

primary contributions are as follows:  

• We present a threat model for QML pipelines and propose a quantum-secure architecture based on QKD. 

• We implement the secure framework using a qSVM classifier trained on encrypted quantum data. We evaluate 

the impact of QKD integration on the performance, latency, and resource utilization of the QML system By unifying 

the strengths of quantum computation and quantum cryptography, this work takes a pivotal step toward realizing 

secure, scalable, and future-proof quantum  AI systems. 

 

2.1 Threat Model 

 

Algorithm 1 Threat Model and Mitigation in QKD-Enhanced Quantum Machine Learning 

Input: Classical feature vector x ∈  n, BB84 key generation protocol, QSVM model fθ 

2: Output: Secure prediction y ∈  m 

3: {Step 1: Key Distribution (BB84 Protocol)} 

4: Generate quantum STATEs |ψi⟩ for random bits bi 

5: Transmit |ψi⟩ over quantum channel 

6: Receiver measures in random bases, performs basis reconciliation 

6: if error rate Pe > δ then 

7: Abort protocol (eavesdropping suspected) 

7: else 

8: Derive shared secret key kQKD 

8: end if 

{Step 2: Data Encryption} 

9: Encrypt input features: xenc = x ⊕ kQKD 

{Step 3: Threat Handling} 

9: if Adversary injects δx then 

10: Tampered input: x′ = x + δx 

11: Encrypted: x′ enc = x′ ⊕ kQKD 

12: Mitigation: QSVM model trained for robustness against small ∥δx∥ 

12: end if 

12: if Adversary performs inference attacks then 

13: Mitigation: Key-masked input ensures model outputs are decorrelated from x 

13: end if 

{Step 4: Secure Inference} 

14: Apply quantum feature mapping: ψ(xenc) 

15: Predict output: y = fθ(ψ(xenc)) 

16: return y =0 
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3 Methodologies 
 
3.1 Secure Inference via Quantum-Generated Keys 

The key derived from BB84 is used for symmetric encryption of both inference queries and prediction output. We 

define the encryption and decryption as: 

𝑐   𝜀𝑘( 𝑞𝑢𝑒𝑟𝑦), ̂  𝑓(𝐷𝑘(𝑐))                                                                 (3) 

 

Where𝜀𝑘 𝐷𝑘  𝑑𝑒 𝑜 𝑒     𝑒  𝑖𝑐 𝑒 𝑐    𝑖𝑜  /𝑑𝑒𝑐    𝑖𝑜    𝑖 𝑔 𝑘𝑒  𝑘,  𝑞𝑢𝑒𝑟𝑦  is the input vector, 

𝑓(. )𝑖  𝑕𝑒   𝑖 𝑒𝑑𝑞𝑆𝑉𝑀 𝑜𝑑𝑒 ,  ̂ is the final predicted label. This cryptographic layer ensures privacy of both the 

input and model output without impacting the quantum model’s decision boundaries.  

 

3.2 Security Assumptions 

 

We assume an adversarial model where: 

• The quantum channel may be observed but cannot be cloned (no-cloning theorem). 

• The classical channel is insecure unless protected by keys established through QKD. 

• The adversary does not have access to quantum resources needed to fully intercept and replicateBB84 states. 

 

Algorithm 2 Integration of QC-QML 

1: Input: Dataset D, Quantum Feature Map   (・), BB84 QKD Channel 

2: Output: Secure prediction ˆy, or flag insecure 

3: Step 1: Quantum Key Distribution (BB84) 

4: Generate bitstream bi ∈ {0, 1} and basis θi ∈ {0, π/2} 

5: Prepare qubit: ψi =  
    𝑠(

  
 
)  (  )     (

  
 
)                                              ( )

2 

6: Transmit qubit, receive response, and derive key k 

7: Step 2: Encrypt training data and inference query using k 

8: c = Ek(xquery) 

9: Step 3: Train Quantum SVM 

10: Compute kernel:  (    )= |⟨ (  )| ( )⟩|
  

11: Train: 𝑓( )   ∑   
 
      (    )     

12: Step 4: Perform Secure Inference 

13: ˆy = f(Dk(c)) 

14: Step 5: Security Checks and Critical Viewpoints 

15: if composability of SQKD, ∈ k, f(・) not proven then 

16: Flag: insecure {Composability violation} 

17: end if 

18: if key refresh rate τk > τm then 

19: Flag: inefficient {Key update too infrequent} 

20: end if 

21: if adversary can estimate ∇f(x) then 

22: Flag: leakage {Gradient-based key leakage possible} 

23: end if 

24: if quantum resources exceed practical limits then 

25: Flag: resource overhead {Infeasible on NISQ hardware} 

26: end if 

27: return ˆy if no flags raised, else report flags =0 

 

 

This hybrid framework allows the integration of provable quantum security into QML without significantly 

impacting inference latency or classification accuracy. Algorithm 2 presents a structured, step-wise depiction of the 
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proposed integration between QKD and QML, specifically in the context of quantum-enhanced classification. The 

procedure begins with secure key generation via the BB84 protocol, followed by data encryption using the 

quantum-derived key, training of a qSVM, and secure inference execution. Crucially, the algorithm embeds 

conditional logic to assess critical vulnerabilities including composability issues, timing misalignments between 

key refresh and model retraining, and adversarial leakage via input gradient approximations.  

By formalizing these checks, the algorithm emphasizes the practical limitations and theoretical risks inherent in 

merging cryptographic protocols with learning algorithms on quantum hardware. This structured evaluation 

highlights potential security bottlenecks and informs future work toward provably composable and resource-

efficient quantum-ML systems. Table 2 compares several influential quantum machine learning and cryptographic 

frameworks with our proposed integration algorithm. While prior works such as Rebentrost et al. (2014) and 

Schuld et al. (2019) introduced foundational learning architectures, they lack a dedicated quantum cryptographic 

layer, making them vulnerable to data interception in practical deployments. Approaches grounded in classical 

security assumptions (e.g., Dunjko&Briegel) offer limited protection in a quantum adversarial setting. Quantum 

homomorphic encryption, while theoretically robust, introduces prohibitive overhead for current NISQ-era 

devices. In contrast, our proposed integration model incorporates real-time BB84-based quantum key distribution 

with data and inference encryption, layered into a secure quantum SVM pipeline. Moreover, it includes algorithmic 

checks for compos ability, adversarial gradient leakage, and temporal synchronization between key updates and 

model refresh cycles features not comprehensively addressed in previous methods. Table 3 presents estimated 

numerical benchmarks for a variety of QML security frameworks. Existing learning-centric models (e.g., qSVM, 

VQC) operate efficiently on NISQ hardware with relatively low qubit requirements and moderate gate depth, yet 

lack cryptographic integration. In contrast, protocols like blind quantum computing and quantum homomorphic 

encryption require extensive resources, including upwards of 100 logical qubits and high-fidelity (.0.99) gate 

execution, making them unsuitable for near-term devices. Our proposed integration balances these extremes: it 

maintains a moderate qubit footprint (40–60), tolerable gate complexity (400–600), and achieves secure key 

distribution throughput exceeding 1 kbps rendering it feasible for hybrid cloud-based quantum learning 

environments with encrypted inputs and intermediate states.  

 

Table 2 Comparison of Existing Quantum ML Security Models Vs Our Proposed QKD-QML Integration 

 

Approach Security Mechanism Limitations Addressed in Our Work 

Rebentrost et al. 

(2014) SVM 

No integrated cryptographic 

layer 

Vulnerable to data leakage during 

transmission or cloud-based inference 

Schuld et al. (2019) 

VQC 

Implicit noise robustness, 

butno key-based encryption 

Susceptible to adversarial inputs 

and tampering 

Dunjko&Briegel (2017) 
Classical cryptographic 

assumptions applied to QML 
Lacks quantum-resilient key management 

Broadbent et al. 

(2009)Blind Quantum 

Computing 

Delegated computation with 

input hiding 

Does not support secure communication 

or key generation 

Ouyang et al. (2020) 

Quantum 

Homomorphic 

Encryption 

Full computation on encrypted 

data 

High resource overhead, less practical 

for near-term devices 

Proposed Algorithm: 

QKD-Enhanced QML 

Integration 

BB84-based QKD, 

quantumsecureddata 

exchange, 

compositionalvulnerability 

checks 

Combines secure key exchange,QML 

kernel learning, and runtimesecurity 

diagnostics with attention 

to NISQ constraints 
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Fig. 2 Comparative analysis 

 

Algorithm 3 QKD-Secured Quantum SVM Protocol 

Require: Input data {ρi}N
i =1, security parameter s 

Ensure: Classified outputs {yi} N
i =1 

Phase 1: Quantum Key Distribution 

0: Alice & Bob generate EPR pairs:  + = 
 

  
(00 + 11) 

0: Perform Bell measurements to establish raw keys KA, KB 

0: Apply error correction and privacy amplification to get final keys: 

˜KA, ˜KB ← QKD(KA,KB, s) 

Phase 2: Quantum One-Time Pad Encryption 

0: for each input state ρi do 

0: Alice encrypts using Pauli gates: 

𝜀(ρi) =  𝑘   𝑘 , ρi  𝑘   𝑘  (k1, k2) ∼ ˜KA 

0: end for 

Phase 3: Secure qSVM Classification 

0: Map encrypted data to feature space: 

Uϕ (𝜀 (ρi)) = exp(−i∑    Pj) 𝜀 (ρi) exp(∑    Pj) 

0: Compute kernel matrix elements: 

Kij = Tr[𝜀 (ρi) 𝜀 (ρj )] 

0: Solve dual problem classically: 

Max ∑      -  
 

 
 ∑                 

   

Phase 4: Quantum Decryption & Verification 

0: for each output 𝜀 (ρout) do 

0: Bob decrypts using his key: 

ρout =  𝑘   𝑘   , 𝜀  (ρout)  𝑘   𝑘  , (k1, k2) ∼ ˜KB 

0: Verify results via classical hash: 

Hash(yi) 
 

 
 Hash(Dec(yi)) 

0: end for 

0: return Decrypted classifications {yi} N
i =1  = 0 
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4 Results and Conclusion 
 
To evaluate the performance of the proposed QKD-enhanced Quantum Machine learning framework, we 

implemented a binary classification task using a synthetic two-dimensional dataset generated via Gaussian 

clusters. A simulated BB84 quantum key distribution mechanism was used to encrypt the test data, thereby 

simulating secure data inference under quantum-safe conditions. We employed a QSVM classifier using a 

ZZFeatureMap-based quantum kernel executed on the state vector simulator backend provided by QiskitAer. The 

dataset was normalized and split into a 70-30 training and testing ratio, and the encryption added a slight 

perturbation to the test features based on the QKD key. The classification results show a consistent accuracy of 

approximately 92%, despite the introduction of encrypted perturbations, indicating the robustness of the quantum 

classifier under minor encryption-induced noise [12]. Fig 2 presents a comparative analysis of resource 

requirements across several quantum machine learning (QML) security approaches, including the proposed 

QKDenhanced QML integration. The figure simultaneously plots four key metrics: qubit count (range), average 

gate depth, fidelity requirements, and key throughput (kbps), providing a holistic view of computational and 

communication demands. 

 

The qubit count and gate depth are represented as bars with distinct textures, highlighting the range of physical 

resources required for each method. Notably, classical QML approaches such as Rebentrost et al. (qSVM) and 

Schuld et al. (VQC) exhibit relatively moderate qubit requirements (20–40 and 10–30 qubits respectively) and gate 

depths (200–500 and 150–300 gates), making them feasible for near-term quantum devices. However, these 

methods lack integrated security mechanisms. In contrast, cryptographic protocols like Broadbent et al. (Blind 

Quantum Computing) and Ouyang et al. (Quantum Homomorphic Encryption) demand significantly higher 

resources, often exceeding 800–1000 gates and requiring over 100 logical qubits, limiting their near-term 

practicality. Fidelity requirements, shown via a connected green plot, indicate the need for highly error-tolerant 

devices, particularly for cryptographic models. While standard QML models operate acceptably at85–92% fidelity, 

secure quantum protocols such as QHE demand fidelities close to 99.9%, which is challenging with current NISQ-

era hardware. Key throughput, depicted by a brown bar, measures the efficiency of secure key generation. While 

approaches like QHE offer limited throughput (0.05 kbps), the proposed QKD-QML integration demonstrates the 

highest throughput (1.2 kbps), balancing security and operational feasibility.  

 

Table 3 Performance Comparison of QML Security Approaches 

 

Approach 
Qubit 

Count 

Gate 

Depth 

(Avg) 

Fidelity 

Requirement 

Key 

Throughput 

(kbps) 

Rebentrost et al. 

(2014) qSVM 
20–40 

200–

500 
0.92 N/A 

Schuld et al. 

(2019)  VQC 
10–30 

150–

300 
0.88 N/A 

Dunjko&Briegel 

(2017) 
10–20 

100–

250 
0.85 N/A 

Broadbent et al. 

(2009)  BlindQC 
50–100 

800–

1000 
0.99 0.5 

Ouyang et al. 

(2020) – QHE 
100+ 1000+ 1000+ 0.05 

Proposed: QKD-

QMLIntegration 
40–60 

400–

600 
0.95 1.2 
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Overall, the figure highlights that the proposed QKD-QML approach achieves a favorable tradeoff: moderate 

quantum resource requirements, high key generation rates, and manageable fidelity demands, thus making it a 

promising candidate for secure, scalable quantum machine learning impractical settings Figure 3 illustrates the 

impact of encryption and quantum noise on classification accuracy within quantum machine learning (QML) 

framework. The baseline accuracy of 92% is maintained in the noise-free, non-encrypted scenario, representing the 

ideal performance of a quantum support vector machine (qSVM). When QKD-based encryption is applied to the 

input data, a slight degradation in accuracy is observed due to minor perturbations introduced by the encryption 

process. As noise strength increases, the classification accuracy of the encrypted model decreases gradually, 

demonstrating resilience to low and moderate noise levels. However, when both encryption and quantum noise are 

present simulating real-world noisy quantum communication channels a more pronounced accuracy drop is 

evident. Despite this, the model retains competitive performance (.80% accuracy) even at higher noise strengths (p 

0.2), validating the feasibility of the proposed QKD enhanced QML system for secure inference in NISQ 

environments. 

 

Table 4 Comparison of Existing QML Security Models vs. Proposed QKD-QML Integration 

 

Approach 
Security 

Level 
Composable 

Resource 

Overhead 

NISQ 

Feasibility 

Adversarial 

Robustness 

Rebentrost et al. 

(2014) –qSVM 
Low Weak Low High Weak 

Schuld et al. (2019) – 

VQC 
Medium Weak Medium High Partial 

Dunjko&Briegel 

(2017) 

Classical Security 

Medium Weak Low High Partial 

Broadbent et al. 

(2009) BlindQC 
High Strong High Low Strong 

Ouyang et al. (2020) 

QHE 

Very 

 High 
Strong Very High Very Low Strong 

Proposed: 

QKDQMLIntegration 
High Partial Medium Medium Strong 

 

 

Accuracy vs. Encrypted/Noisy Input in QML 

 

 

Fig. 3 Classification accuracy vs. noise strength for plain QML (no encryption), QKD-encrypted inputs, and 

encrypted inputs under noise 
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5 Conclusions 
 

This study demonstrates the feasibility and advantages of integrating quantum cryptography—specifically QKD-

based key sharing—with quantum machine learning algorithms. By embedding QKD-generated perturbations into 

the inference pipeline of a quantum SVM classifier, we show that it is possible to maintain high classification 

accuracy while ensuring quantum-resilient data confidentiality. Table 4 provides the gap existing in QML and the 

contribution from the algorithm proposed. The proposed integration framework reflects a novel intersection of 

quantum communication and computation paradigms, offering both security and performance. Our algorithm 

showcases robustness against minor encrypted transformations and achieves competitive classification accuracy 

compared to classical baselines. This opens new directions for secure quantum data pipelines, especially in 

sensitive domains such as finance, healthcare, and defense, where privacy-preserving inference is essential. Future 

work may explore integration with quantum homomorphic encryption and deploying the framework on NISQ-era 

hardware to study resilience under practical noise conditions. 
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