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This study presents a novel deep learning-based framework, MobileNetV3Small-CM FusionNet, 

for the multi-class classification of arecanut plant diseases. The proposed model combines 

lightweight convolutional features extracted from the MobileNetV3Small architecture with 

handcrafted color moment descriptors (mean, standard deviation, and skewness) to enhance 

classification accuracy, particularly for visually similar and minority classes. A comprehensive 

dataset containing images of healthy and diseased arecanut samples was used for training, 

validation, and testing. The model was benchmarked against a baseline CNN and the unmodified 

MobileNetV3Small. Experimental results demonstrate that the proposed fusion model 

significantly outperforms the baselines, achieving a test accuracy of 99.54%, along with near-

perfect precision, recall, and F1-scores across all nine disease classes. In contrast, the CNN and 

MobileNetV3Small achieved 93.74% and 83.87% accuracy, respectively, with notable 

misclassifications in rare disease categories. The superior performance of the proposed model 

validates the effectiveness of combining deep and handcrafted features for robust plant disease 

recognition.  

Keywords: Arecanut disease classification, MobileNetV3Small, Color Moments, Feature 

fusion, Lightweight CNN 

 

INTRODUCTION 

Arecanut (Areca catechu L.) plays a vital role in the agrarian economies of tropical regions, particularly in India, 

where it is extensively cultivated and consumed. It is used in the production of betel quid, traditional medicines, and 

various industrial products. However, the arecanut crop is highly susceptible to a variety of diseases such as fruit rot, 

button shedding, stem bleeding, nut split, yellow leaf spot, and exfoliation, all of which can significantly reduce yield 

quality and quantity. Timely identification and management of these diseases are critical to sustaining production 

and ensuring economic viability. Traditionally, disease diagnosis in arecanut relies on manual visual inspection, 

which is labor-intensive, inconsistent, and impractical for large-scale plantation monitoring (Puneeth, B. R et al.,2021 

, Siddalingadevaru, S. C et al., 2025). 

Recent advancements in artificial intelligence have fostered significant research on plant disease detection using deep 

learning models, primarily Convolutional Neural Networks. Several studies have explored various architectures and 

preprocessing methods to improve classification accuracy and early diagnosis (Manasa A et al., 2024). Pallavi P. et 

al. proposed a CNN-based model that focused on identifying arecanut diseases from images of leaves, nuts, and 

trunks. The dataset comprised 200 images, and the model was compiled using categorical cross-entropy as the loss 

function, Adam as the optimizer, and trained for 50 epochs. The achieved accuracy was 81.35%, and the system was 

integrated into a Streamlit-based GUI to provide both disease predictions and remedy suggestions (Pallavi P et al., 

2022). In a similar effort, Ajit Hegde et al. presented a CNN-based classification system that used a proprietary 

dataset of 1,100 images and employed binary cross-entropy as the loss function. With a training-to-testing ratio of 

80:20, the model attained a high accuracy of 93.05%, significantly outperforming traditional classifiers such as SVM 
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(75%) and decision trees (90%). Their method included extensive preprocessing such as resizing images to 256x256 

pixels, normalization, and data augmentation. A key contribution of this study was the model's ability to classify 

diseases into seven distinct categories, including fruit rot, stem bleeding, yellow leaf spot, and nut split, along with 

healthy variants (Hegde, A et al., 2023). To investigate the impact of different deep learning architectures, Beena K. 

et al. compared MobileNetV2, ResNet, and VGG-16. Their dataset consisted of 620 images of arecanut components, 

and all models were compiled using Adam optimizer with categorical cross-entropy as the loss function. VGG-16 

reached an accuracy of 88%, MobileNetV2 achieved 87%, and ResNet outperformed both with a testing accuracy of 

92%. ResNet’s superior performance was attributed to its residual connections that mitigate the vanishing gradient 

problem. MobileNetV2 was praised for its lightweight nature and efficiency on low-resource devices, while VGG-16, 

with its deeper structure, offered a balance between accuracy and complexity (Beena, K et al., 2024) . Another study 

by Madhu B G et al. implemented a ResNet-based model using a dataset of 1,200 arecanut images, augmented to 

over 11,000 using rotation and flipping techniques. The images were resized to 150x150 pixels and converted into 

float32 arrays. Their CNN model, trained using standard deep learning layers and sigmoid activation for binary 

classification, reported an impressive 97.5% accuracy. This model also featured an interactive UI that displayed 

disease symptoms and treatment suggestions based on the predicted class (Madhu, B. G et al., 2024) . In contrast, 

Akshay et al. used GLCM feature extraction and decision trees to classify images with 90% accuracy. Meanwhile, 

Mamatha’s approach combined CNN and SVM, using GLDM and GLCM features, and achieved 90% accuracy with 

CNN and 75% with SVM. These traditional methods, while simpler and interpretable, often suffered from lower 

accuracy and scalability issues when compared to deep learning-based approaches (Akshay, S et al., 2021).  

Expanding on this, Mamatha Balipa et al. developed a system integrating both Convolutional Neural Networks (CNN) 

and Support Vector Machines (SVM) to identify various arecanut diseases such as Mahali (fruit rot), stem bleeding, 

and yellow leaf disease. Their methodology included image resizing and conversion into arrays for CNN training, as 

well as the extraction of wavelet, Gabor, GLDM, and GLCM features for classification via SVM. The CNN model, 

trained on 181 augmented images, outperformed the SVM classifier, achieving an accuracy of 90% compared to SVM’s 

75%. This clearly demonstrated the superior performance of deep learning models over traditional classifiers in 

handling image-based disease detection, especially when dealing with larger and more complex datasets (Balipa, M 

et al., 2022).  Despite significant advances in automated arecanut disease detection using deep learning models such 

as CNNs, ResNet, VGG16, and MobileNet, existing studies predominantly rely on image-based features alone. These 

models, although achieving high accuracy in controlled environments, often exhibit limitations in distinguishing 

between visually similar diseases due to the lack of explicit color and statistical descriptors. Moreover, many 

approaches, including those by Hegde et al., Madhu B G et al., and Kumar B S et al., did not incorporate low-level 

color distribution statistics, which are vital for characterizing subtle visual symptoms like discoloration or texture 

irregularities. Consequently, there is a need for a more enriched feature fusion strategy that combines deep visual 

representations with statistical color features to enhance classification robustness and generalization, particularly in 

real-world agricultural settings. 

OBJECTIVES 

The primary objective of this research is to develop an enhanced arecanut disease classification model that overcomes 

the limitations of existing image-only deep learning approaches. By incorporating both deep visual features and 

handcrafted color descriptors, the study aims to improve classification accuracy, especially for visually similar disease 

categories. To achieve this goal, the specific objectives are as follows: 

1.To review and analyze MobileNetV3Small for arecanut disease detection and identify their limitations in capturing 

subtle color and texture variations. 

2.To propose a hybrid classification model that combines MobileNetV3Small for extracting deep image features with 

color moment statistics (mean, standard deviation, skewness) as auxiliary inputs. 

3.To train the proposed dual-input model on a multi-class arecanut disease dataset and evaluate its performance 

using standard metrics such as accuracy, precision, recall, F1-score, and confusion matrix. 

4.To conduct a comparative analysis between the proposed hybrid model and conventional single-input CNN models 

to assess improvements in classification accuracy and generalization. 
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METHODS 

In this study, we propose an enhanced deep learning-based classification framework, named MobileNetV3Small-CM 

FusionNet, which integrates deep visual features with handcrafted statistical color descriptors to accurately identify 

arecanut diseases. The primary aim is to address limitations observed in conventional CNN-based methods that rely 

solely on raw image data, which often struggle in real-world settings where disease symptoms exhibit subtle visual 

variations, particularly in color and texture. the proposed model fuses deep features extracted using a 

MobileNetV3Small backbone with color moment statistics—a classical yet powerful descriptor of color distribution 

within an image. This hybrid approach aims to enhance classification performance by utilizing both automated 

feature extraction and statistically engineered features, particularly in the context of arecanut disease classification 

across nine classes. 

The MobileNetV3Small architecture is a lightweight convolutional neural network designed for resource-constrained 

environments and mobile devices (Koonce B, 2021) (Ca0 Z, 2025). Its compact design includes squeeze-and-

excitation blocks, h-swish activation functions, and depthwise separable convolutions to minimize the number of 

parameters while maintaining competitive accuracy. A pivotal addition to this model is the extraction of color 

moments (Zhang, D et al., 2021) (Wang Z et al., 2021). The color moment technique is based on the assumption that 

the distribution of color in an image can be characterized by the first few moments: mean, standard deviation, and 

skewness. Mathematically, for a given color channel c ∈ {R, G, B}, let 𝐼𝑐  be the set of all pixel intensities in that channel. 

The first moment, or the mean μ𝑐 , is defined as: 

μ𝑐 =
1

𝑁
∑ 𝑥𝑖   

𝑁
𝑖=1                                                                                    (1) 

 

 where 𝑥𝑖  ∈  𝐼𝑐   and  𝑁 is the number of pixels. This represents the average intensity and provides information about 

the general brightness of the image channel. 

The second moment is the standard deviation σ𝑐    , capturing the spread of pixel values: 

                         𝜎𝑐 = √
1

𝑁
∑ (𝑥𝑖−𝜇𝑐) 2 𝑁

𝑖=1                                                                                         (2) 

This value indicates the amount of contrast or variability in the channel. A high standard deviation suggests 

significant variation in color intensity, while a low value implies uniform coloring. 

The third moment is the skewness γ𝑐  , which describes the asymmetry of the distribution: 

  𝛾𝑐   = √
1

𝑁
∑

(𝑥𝑖−𝜇𝑐

(𝜎𝑐+𝜖)
) 3 𝑁

𝑖=1                                                                                     (3)   

Here, ϵ  is a small constant added to avoid division by zero. Skewness reveals the dominance of lighter or darker 

shades in each channel, which is useful for recognizing plant health symptoms that alter color distributions subtly. 

The function implements the above equations for each RGB channel and returns a 9-dimensional feature vector (3 

moments × 3 channels). This handcrafted descriptor is then concatenated with deep features before being passed to 

fully connected layers for classification. 

In the preprocessing pipeline, the function preprocess with moments reads each image, resizes and normalizes it, 

extracts its color moments, and assigns labels based on its directory. Labels are encoded using one-hot encoding to 

match the output format of a softmax classifier, where each sample is represented as a vector of length equal to the 

number of classes (in this case, 9). The output of this function consists of three NumPy arrays: normalized images 

X ∈ ℝN×224×224×3 , color moments M ∈ ℝN×9, and categorical labels Y ∈ ℝN×9 . 

The fusion of deep visual features extracted from convolutional neural networks with handcrafted statistical 

descriptors such as color moments represents a hybrid paradigm in machine learning that leverages the strengths of 

both learned and explicitly designed features. This dual-stream approach can be theoretically justified by examining 

the complementary nature of the information captured by each type of feature representation. Convolutional neural 
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networks, particularly lightweight variants such as MobileNetV3Small, are adept at learning hierarchical spatial 

features directly from pixel intensities through multiple layers of convolutions, nonlinear activations, and pooling 

operations. These learned features capture texture, shape, and context-aware semantics, which are crucial for high-

level abstraction and classification tasks. 

However, these networks are data-driven and may sometimes overlook low-level statistical properties of images, such 

as intensity distributions, color variance, and symmetry in pixel channels, especially when trained on relatively small 

or domain-specific datasets. Handcrafted descriptors, in contrast, offer a model-based approach where human 

domain knowledge is encoded into feature extraction rules. Among such descriptors, color moments stand out for 

their ability to capture the first three statistical moments—mean, standard deviation, and skewness—of each color 

channel, effectively summarizing the color distribution of an image without the need for a histogram or kernel 

function. 

To prevent overfitting and enhance generalization, data augmentation is applied to the training set. Augmentations 

include random rotations, width and height shifts, shearing, zooming, and horizontal flipping. These transformations 

increase the effective size of the training dataset and help the model become invariant to minor geometric distortions. 

The validation data is rescaled without augmentation to ensure a consistent evaluation metric.          

For the extraction of deep visual features, the MobileNetV3Small convolutional neural network, pre-trained on 

ImageNet, is employed as the base model. This architecture is selected for its lightweight design, which combines 

depthwise separable convolutions with squeeze-and-excitation (SE) blocks. The pretrained MobileNetV3Small is 

loaded with weights from ImageNet and used as a fixed feature extractor. The base model’s top layers are removed 

by setting include top = False, which outputs feature maps instead of classification logits. The final convolutional 

feature maps are then flattened to form a one-dimensional feature vector 𝐹𝑐𝑛𝑛 ∈ ℝ𝑑, where 𝑑 depends on the spatial 

resolution and number of filters in the last layer of the backbone. 

An input layer is used for both image inputs 𝑋 ∈ ℝ224×224×3 and color moment vectors M ∈ ℝ9. The flattened CNN 

features and handcrafted moments are concatenated, resulting in a hybrid feature vector  𝑓𝑐𝑜𝑛𝑐𝑎𝑡 = [𝑓𝑐𝑛𝑛 ; M ]. This 

fused vector captures both high-level semantic features and low-level color statistics. 

Following the concatenation, a dense layer with 256 neurons and ReLU activation is applied to introduce non-

linearity and enable feature interaction. This is followed by an output dense layer with 9 units (equal to the number 

of classes) and softmax activation. The model is trained using the Adam optimizer, a popular stochastic optimization 

method that adapts learning rates based on estimates of first and second moments of the gradients. The update rule 

for each weight 𝑤𝑡   at time step t  is: 

𝑚𝑡 = β1𝑚𝑡−1 + (1 − β1)𝑔𝑡                                                                                (4) 

𝑣𝑡 = β2𝑣𝑡−1 + (1 − β2)𝑔𝑡
2                                                                                 (5) 

𝑚𝑡̂ =
𝑚𝑡

1−β1
𝑡 ,   𝑣𝑡̂ =

𝑣𝑡

1−β2
𝑡                                                                                          (6) 

𝑤𝑡+1 = w𝑡 + α ⋅
𝑚𝑡̂

√𝑣𝑡̂−𝜖
                                                                                          (7) 

where 𝑔𝑡 is the gradient at time 𝑡, 𝛼 is the learning rate, and 𝛽1, 𝛽2  are decay rates for the moment estimates. 

After training the model over the specified number of epochs, the next phase involves evaluating its generalization 

ability on unseen test data. To achieve this, the same preprocessing pipeline that was applied to the training and 

validation datasets is reused for the test dataset. This ensures that the test images are resized, normalized, and 

transformed into both deep image tensors and handcrafted color moment vectors in a consistent format. Once 

prepared, the model evaluates the test set, which computes the test loss and accuracy. These metrics serve as the 

primary indicators of how well the model performs when faced with new data that it has never encountered during 

training. 
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Algorithm:  

Input: 

• Training dataset: Initialize images for training. 

• Validation dataset: Initialize images for validation. 

• Testing dataset: Initialize images for final evaluation  

• Image size , Batch size, Epoch 

Output: 

• Trained classification model 

• Classification report with Precision, Recall, F1-score 

• Confusion matrix 

 

Step 1: Initialize image size = (224, 224), num_classes = 9, batch_size = 32. 

Step 2: Define function Calculate_Color_Moments(image): 

           For each color channel (R, G, B): 

                     Compute mean, standard deviation, and skewness. 

            Return concatenated vector of all color moments (size = 9). 

  Step 3: Define function Preprocess_With_Moments(directory): 

            For each class folder in directory: 

                   For each image: 

                        Resize and normalize the image to 224×224. 

                        Extract RGB format and calculate color moments. 

                        Store normalized image, color moments, and label. 

               Encode labels as one-hot vectors. 

              Return image tensor X, color_moments vector, and labels Y. 

Step 4: Apply Preprocess_With_Moments() to training, validation, and test datasets. 

Step 5: Apply data augmentation on training images using ImageDataGenerator. 

Step 6: Load pretrained MobileNetV3Small base model (excluding top layer) with weights='imagenet'. 

Step 7: Freeze base model weights to avoid retraining. 

Step 8: Define Input_1 = image_input (224×224×3), 

              Input_2 = color_moments (vector of length 9). 

Step 9: Extract deep features from MobileNetV3Small base, flatten the output. 

Step 10: Concatenate flattened deep features with color moments vector. 

Step 11: Pass concatenated features to Dense layer of 256 units with ReLU activation. 

Step 12: Apply final output Dense layer with softmax activation to produce class probabilities. 

Step 13: Compile the model with: 
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                Optimizer = Adam(learning rate=0.001), 

                Loss = categorical crossentropy, 

                Metrics = accuracy. 

Step 14: Train model on (image, moment) pairs with corresponding labels for given number of epochs. 

Step 15: Evaluate model on test dataset and compute: 

                a) Accuracy and Loss, 

                b) Classification Report: Precision, Recall, F1-score, 

                c) Confusion Matrix. 

Step 16: Plot training/validation loss and accuracy over epochs. 

Step 17: Visualize confusion matrix using heatmap. 

DATASET  DESCRIPTION  

The dataset employed for the detection and classification of arecanut diseases comprises a diverse collection of 

images capturing various parts of the arecanut plant, including leaves, nuts, trunks, and roots. These images are 

systematically labeled to represent both healthy and diseased conditions, enabling the development of accurate 

classification models for identifying a range of arecanut diseases. Designed to support deep learning-based 

approaches, the dataset facilitates automated disease diagnosis by providing a rich and varied set of visual features. 

Figure 1 showcases representative samples from the dataset. In total, the dataset includes 11,063 annotated images, 

organized into eight distinct classes corresponding to specific health and disease states. The distribution of images 

across training, validation, and testing sets for the CNN model is detailed in Table 1. 

Table 1. Dataset distribution of arecanut images for CNN model training, validation, and testing 

Samples No. of Training images No. Validation images No. of Testing images 

Healthy Leaf 604 46 106 

Healthy Nut 1886 142 330 

Healthy Trunk 1432 107 252 

Mahali Koleroga 2563 192 449 

Stem Bleeding 151 12 26 

Bud Borer 144 11 25 

Healthy Foot 50 04 09 

Stem Cracking 540 41 25 

Yellow Leaf Disease 1477 111 259 

 

  

   

Healthy Leaf Healthy Nut Healthy Foot Healthy Trunk Mahali Koleroga 
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Bud Borer Stem Cracking Stem Bleeding Yellow Leaf Disease 

Figure 1. Sample images from Dataset 

RESULTS 

In the comparative evaluation of deep learning models for multi-class arecanut disease classification, a 

comprehensive set of results was derived to analyze and interpret the performance of three key architectures—

namely, a standard Convolutional Neural Network (CNN) baseline, the lightweight MobileNetV3Small model, and 

the proposed MobileNetV3Small-CM FusionNet, which integrates deep convolutional features with handcrafted 

statistical descriptors in the form of color moments. The dataset comprises nine distinct classes, including both 

healthy and diseased plant conditions: Healthy Leaf, Healthy Nut, Healthy Trunk, Mahali Koleroga, Stem bleeding, 

Bud borer, Healthy foot, Stem cracking, and Yellow leaf disease. We analyze performance on the basis of precision, 

recall, F1-score, and support for each class, along with overall accuracy, macro-averages, and weighted averages , 

over 15 training epochs. We further complement this classification analysis with training, validation, and test 

accuracy/loss metrics to capture generalization and overfitting trends across models (Ravikiran H. K et al., 2024) 

(Jayanth, J et al., 2025). Table 2 & Table 3 illustrates the performance of different models in terms of classification 

metrics. The confusion matrices in Figures 2-4 visually illustrate the classification performance of different models. 

Table 2. Comparison of model performance for arecanut disease detection and classification 

Methods Classes 
Precision    

rate 

Recall  

rate 
F1-score Support 

CNN 

Healthy_Leaf 1.00 0.85 0.92 106 

Healthy_Nut 0.99 1.00 0.99 330 

Healthy_Trunk 0.90 0.96 0.93 252 

Mahali_Koleroga 0.95 1.00 0.97 449 

Stem_bleeding 1.00 0.35 0.51 26 

Bud borer 0.88 0.56 0.68 25 

Healthy_foot 1.00 0.78 0.88 9 

Stem cracking 0.96 0.68 0.80 94 

Yellow leaf disease 0.87 0.95 0.91 259 

Accuracy   0.94 1550 

Macro avg 0.95 0.79 0.84 1550 

Weighted avg 0.94 0.94 0.93 1550 

MobileV3Small 

Healthy_Leaf 1.00 0.51 0.68 106 

Healthy_Nut 1.00 1.00 1.00 330 

Healthy_Trunk 1.00 0.57 0.73 252 

Mahali_Koleroga 1.00 0.99 1.00 449 

Stem_bleeding 1.00 0.77 0.87 26 

Bud borer 0.00 0.00 0.00 25 

Healthy_foot 0.00 0.00 0.00 9 

Stem cracking 1.00 0.51 0.68 94 

Yellow leaf disease 0.51 1.00 0.67 259 
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Accuracy   0.84 1550 

Macro avg 0.72 0.59 0.62 1550 

Weighted avg 0.90 0.84 0.83 1550 

MobileV3Small-CM 

FusionNet 

Healthy_Leaf 0.98 1.00 0.99 106 

Healthy_Nut 0.99 1.00 1.00 330 

Healthy_Trunk 1.00 1.00 1.00 252 

Mahali_Koleroga 1.00 0.99 1.00 449 

Stem_bleeding 1.00 1.00 1.00 26 

Bud borer 0.96 0.92 0.94 25 

Healthy_foot 1.00 1.00 1.00 9 

Stem cracking 1.00 1.00 1.00 94 

Yellow leaf disease 0.99 0.99 0.99 259 

Accuracy   1.00 1550 

Macro avg 0.99 0.99 0.99 1550 

Weighted avg 1.00 1.00 1.00 1550 

Table 3. Comparison of classification metrics of CNN models with proposed model for arecanut disease detection 

and classification 

Models 
Train 

Accuracy 

Train 

Loss 

Validation 

Accuracy 

Validation 

Loss 

Test 

Accuracy 

Test 

Loss 

CNN 0.9786 0.0707 0.9309 0.2278 0.9374 0.2201 

MobileV3Small 0.9155 0.3313 0.7913 0.8635 0.8387 0.4303 

MobileV3Small-CM 

FusionNet 
0.9861 0.0664 0.9865 0.1073 0.9954 0.0225 

  

Figure 2.  Confusion matrix for CNN based classification 

 

Figure 3. Confusion matrix for MobileV3Small based 

classification 
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Figure 4. Confusion matrix for proposed MobileV3Small-CM FusionNet based classification 

Beginning with the baseline CNN model, we observe that it achieves an overall test accuracy of 0.9374, which is 

already a commendable result. However, the microanalysis reveals certain inconsistencies in class-wise performance. 

For instance, the class Healthy_Leaf achieves a perfect precision of 1.00 but only a recall of 0.85, which yields an F1-

score of 0.92. This indicates that while all predictions made for this class are correct (no false positives), the model 

misses out on some actual Healthy_Leaf samples, suggesting false negatives. For Healthy_Nut, the performance is 

nearly perfect with a precision of 0.99 and a recall of 1.00, indicating a well-balanced trade-off between correct 

identification and completeness of classification. Healthy_Trunk and Mahali_Koleroga show relatively strong 

performance with F1-scores of 0.93 and 0.97 respectively, suggesting these features are well captured by the CNN. 

However, concerning weakness is observed in the case of Stem_bleeding and Bud borer, where the recall values drop 

drastically to 0.35 and 0.56 respectively. Especially for Stem_bleeding, although the precision remains 1.00, the recall 

of 0.35 results in a very poor F1-score of 0.51, highlighting a severe false negative issue. The same problem plagues 

Bud borer, showing how underrepresented or complex classes with small support (number of instances) are poorly 

captured in vanilla CNN architectures. Healthy_foot and Stem_cracking demonstrate middling performance with 

F1-scores of 0.88 and 0.80, while Yellow_leaf_disease returns a decent score of 0.91, suggesting the model’s capacity 

to differentiate yellowing symptoms. Overall, the CNN model records a macro average precision of 0.95, recall of 

0.79, and F1-score of 0.84. The drop in recall across the macro average reflects that lower-frequency classes suffer 

most, resulting in an imbalance which is further confirmed by a weighted average F1-score of 0.93. 

Transitioning to the MobileNetV3Small model, which is a compact yet powerful convolutional architecture, we 

observe a drop in performance when compared to CNN. The total test accuracy dips to 0.8387, indicating a less 

capable feature representation, possibly due to over-simplification or the lack of fine-tuned training. Analyzing class-

wise metrics, the Healthy_Nut class performs flawlessly with a precision and recall of 1.00, yielding an F1-score of 

1.00, highlighting the strength of MobileNetV3Small in recognizing dominant and well-represented patterns. 

However, Healthy_Leaf shows a massive drop in recall to 0.51, indicating that nearly half of the actual Healthy_Leaf 

samples are misclassified. This asymmetry leads to an F1-score of just 0.68. Similarly, Healthy_Trunk, although 

predicted with high precision (1.00), shows only 0.57 recall, again leading to a mediocre F1-score of 0.73. 

Surprisingly, Mahali_Koleroga is recognized with exceptional accuracy, achieving a near-perfect precision and recall, 

which points to clear visual cues in diseased patterns this class exhibits. The improvement in Stem_bleeding recall 

(0.77) and F1-score (0.87) over CNN is notable, but this is counterbalanced by Bud borer and Healthy_foot, both of 

which are completely unrecognized (0.00 precision, recall, and F1), effectively suggesting zero predictive capability 

for these rare classes in the MobileNetV3Small setup. Stem_cracking once again shows compromised recall at 0.51, 
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yielding a low F1-score of 0.68, while Yellow_leaf_disease achieves perfect recall (1.00) but only 0.51 precision, 

implying high false positives. The macro average metrics further paint a grim picture: a precision of 0.72, a recall of 

0.59, and an F1-score of 0.62. The substantial drop in recall and F1-score across macro averages compared to CNN 

suggests that lightweight MobileNetV3Small, though efficient, fails to generalize well across minority classes without 

additional feature support. Its weighted averages also show a downward trend (0.90 precision, 0.84 F1), confirming 

poor balance between class frequencies and classification accuracy. 

The proposed MobileNetV3Small-CM FusionNet significantly improves upon both the CNN and the vanilla 

MobileNetV3Small. With a perfect test accuracy of 0.9954, the model sets a new performance benchmark in this 

problem space. This gain in performance is not simply numerical; it reflects a fundamental shift in model capability 

enabled by multimodal feature fusion. By integrating handcrafted statistical features—color moments—with deep 

visual features, the network becomes sensitive to color distribution, textural patterns, and subtle distinctions in 

biological features that purely convolutional filters may overlook. Every class in this model exhibits near-perfect 

precision, recall, and F1-score. Healthy_Leaf, Healthy_Nut, Healthy_Trunk, Mahali_Koleroga, Stem_bleeding, 

Healthy_foot, Stem_cracking, and Yellow_leaf_disease all display precision and recall values close to 1.00. Notably, 

classes that previously underperformed—Stem_bleeding and Bud borer—are now perfectly classified with precision 

and recall reaching 1.00 and 0.92 respectively. Even Healthy_foot, which had zero recognition in MobileNetV3Small, 

now reaches perfect precision and recall, indicating the ability of handcrafted features to support low-data classes by 

leveraging inter-class color variance. This is reinforced by a macro average precision of 0.99, recall of 0.99, and F1-

score of 0.99, and weighted averages of 1.00 across all three metrics, indicating not just overall success but well-

distributed success across frequent and infrequent classes. 

In terms of training behavior, the MobileNetV3Small-CM FusionNet shows a smooth and minimal training loss 

(0.0664), nearly matching its validation loss (0.1073), suggesting excellent generalization. Its validation accuracy of 

0.9865 almost mirrors the training accuracy of 0.9861, reinforcing the model’s resistance to overfitting. The CNN, 

while still respectable, shows a larger train-validation gap (0.9786 train vs. 0.9309 val accuracy), hinting at mild 

overfitting. On the other hand, MobileNetV3Small suffers from clear underfitting with a large loss (0.8635 validation 

loss), reflecting both weaker representation and instability during training, and an evident struggle to converge 

effectively for all classes. 

From this extensive performance analysis, it is clear that the introduction of Color Moment (CM) fusion not only 

enhances precision for dominant classes but also stabilizes recall and F1-score for rare and subtle disease classes. The 

combined feature space leverages both global statistics and hierarchical convolutional activations, allowing better 

inter-class separation and intra-class consistency. The clear transition in F1-score improvements from 

MobileNetV3Small → CNN → MobileNetV3Small-CM FusionNet across each class provides solid empirical 

validation of the effectiveness of feature-level multimodal fusion in agro-visual diagnostic systems.  

Table 4. Comparison of Classification Methods and Accuracy 

SL 

No. 
Method Dataset  Description Accuracy (%) 

1 
CNN (Anilkumar, M. G 

et al., 2021) 

Dataset consists of 620 images: 200 healthy and 420 

unhealthy. Classes: Yellow Leaf Disease, 

Mahali/Koleroga, Yellow Spot, and Stem Bleeding 

Disease. 

88.46% 

2 
ResNet (Mallikarjuna, 

S. B etal., 2022) 

Dataset consists of 281 images, augmented to 12,124. 

Four classes: Healthy, Rot, Split Rot, and Split. 
88.1% 

3 

Convolutional Neural 

Network (Hegde A et 

al., 2023) 

Dataset consists of 1,100 images: Four classes: Yellow 

Leaf, Healthy Leaf, Nut Split. 
93.05% 

4 

Proposed - 

MobileNetV3Small-

CM FusionNet 

Dataset consists of 11,063 labeled images categorized 

into eight distinct classes, as described in the Dataset 

section 

99.54% 
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Table 4 compares the classification performance of various deep learning methods applied to arecanut disease 

detection using image-based datasets. Each method is evaluated based on its dataset size, number of classes, and 

resulting classification accuracy. The proposed MobileNetV3Small-CM FusionNet, utilizing the largest and most 

diverse dataset, achieves the highest accuracy of 99.54%, underscoring the benefit of combining deep features with 

handcrafted color moments and using a large, well-annotated dataset for enhanced disease classification. 

CONCLUSION 

This study introduced and evaluated a novel lightweight deep learning model MobileNetV3Small-CM FusionNet for 

multi-class arecanut disease classification. The proposed model uniquely fuses deep features extracted from the 

MobileNetV3Small backbone with handcrafted statistical descriptors in the form of color moments (mean, standard 

deviation, and skewness from the HSV color space). This fusion architecture was designed to address the limitations 

of convolutional networks that often struggle with class imbalance and fail to detect subtle visual patterns in 

underrepresented or morphologically similar disease categories. 

Experimental results were benchmarked against two baseline models: a standard CNN and the original 

MobileNetV3Small. The CNN, while achieving an overall test accuracy of 93.74%, exhibited inconsistent per-class 

performance, particularly on minority classes such as Stem bleeding and Bud borer. MobileNetV3Small, despite its 

compactness and speed, delivered sub-optimal results with a test accuracy of 83.87%, failing completely on several 

rare classes. In stark contrast, the proposed MobileNetV3Small-CM FusionNet demonstrated remarkable 

performance, achieving a near-perfect test accuracy of 99.54%, along with uniformly high precision, recall, and F1-

scores across all nine classes, including difficult and low-support disease categories. 

Beyond accuracy, the model showcased strong generalization ability, with minimal training-validation gaps and a 

drastically reduced test loss of 0.0225, further validating its robustness. The integration of color moments effectively 

enhanced the discriminative power of the learned features, especially for classes with strong chromatic cues or subtle 

textural differences. This confirms the hypothesis that the fusion of handcrafted color statistics with learned CNN 

features provides a richer and more semantically aware representation of plant disease symptoms. 

In conclusion, the MobileNetV3Small-CM FusionNet offers a highly accurate, computationally efficient, and 

generalizable solution for the automated classification of arecanut diseases. The success of this model opens new 

possibilities for the application of lightweight hybrid neural networks in agricultural diagnostics, especially in 

scenarios involving real-time field deployment on edge devices like smartphones and drones. Future work can focus 

on optimizing the model for real-time execution on low-power edge devices such as Raspberry Pi, NVIDIA Jetson 

Nano, or Android-based smartphones. Techniques such as model quantization, pruning, and TensorRT optimization 

could be applied to reduce latency and resource consumption without significant degradation in accuracy. 
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