2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Predictive Maintenance of Industrial Appliances Integrated with Machine Learning

Ms Sufola Das Chagas Silva E Araujo¹, Dr. Arvind Kamble², Uttam U. Deshpande³, Sonia V. Soans⁴

¹Information Technology, Padre Conceicao College of Engineering Verna, India. sufolachagas100@rediffmail.com ²Associate Professor Department of CSE(AIML). KITs College of Engineering Kolhapur Maharashtra India. Email: arvindskamble@gmail.com

³Department of Electronics and Communication Engineering, KLS Gogte Institute of Technology, Karnataka, India. uttamudeshpande@gmail.com

 ${\it 4Research\,Scholar,Srinivas\,University,Mangalore,India.\,sonia.soans 123456@gmail.com}$

*Correspondence Author: Ms Sufola Das Chagas Silva E Araujo

ARTICLE INFO

ABSTRACT

Received: 30 Dec 2024 Revised: 10 Feb 2025

Accepted: 25 Feb 2025

This paper presents a novel approach to enhance the maintenance paradigm of electric fans through the integration of machine learning and Internet of Things (IoT) technologies. The system employs an Arduino Uno R3 microcontroller to collect real-time data from vibration, temperature, and humidity sensors strategically placed on the fan. Leveraging this data, a machine learning model is developed to predict potential faults or anomalies, enabling proactive maintenance actions. The methodology involves the creation of a comprehensive dataset through continuous monitoring of the fan's operating conditions. The paper details the integration of sensors, the architecture of the system, and the implementation of machine learning algorithms for predictive analysis. The chosen model demonstrates its efficacy in forecasting maintenance requirements, showcasing 90% accuracy in the experiment.

Keywords: predictive maintenance, machine learning, Arduino Uno R3, fan, IoT, sensor integration.

I. INTRODUCTION

Electric fans are prevalent in our everyday existence, offering both comfort and ventilation in a variety of settings. But maintaining these devices' smooth functioning is not without its difficulties, as deterioration over time might result in unplanned malfunctions and higher maintenance expenses. This research addresses this problem by presenting a novel method of fan maintenance that combines Internet of Things (IoT) and machine learning technology.

1.1 Background: Reactive tactics are frequently used in traditional maintenance procedures, which can cause downtime and even service interruptions. Predictive maintenance procedures, which identify possible defects before they worsen, have made it possible to move from reactive to proactive methods. In this regard, our work focuses on utilising the adaptability of Arduino Uno R3 microcontrollers and the power of machine learning algorithms to improve the electric fan maintenance paradigm.

II. OBJECTIVES:

This research's main goal is to create and put into place a predictive maintenance system that keeps an eye on important electric fan operating parameters. The fan has temperature, humidity, and vibration sensors placed in strategic locations to gather data in real time and build a large dataset. An Arduino Uno R3 microcontroller is used to process data and make decisions, which results in a machine learning model that can predict maintenance needs.

III. SIGNIFICANCE OF THE RESEARCH:

This research is important because it has the potential to completely change the way fans are maintained. The proposed system aims to minimise maintenance costs, optimise the overall reliability of electric fan systems, and reduce unplanned downtime by proactively identifying issues through predictive analysis. By demonstrating the

2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

useful integration of machine learning and IoT in a practical application, this work advances the field of smart maintenance solutions.

IV. LITERATURE REVIEW

Author	Dataset Name	Tools	Based On	Descriptio	Warning	Accur
75		T COUNT	D 11 .1	n	System	acy
Mounia	Compressor	LSTM,	Predictive	The main	Remaini	90-
Achouch, Mariya	Failure	Keras,	Maintenan	goal is to	ng Useful	100%
Dimitrova,Rizck	Prediction	TensorF	ce to	forecast	Life	
Dhouib, Hussein	Dataset that	low	estimate	failures	(RUL)	
Ibrahim,Mehdi	contains	Scikit-	remaining	and the	analysis,	
Adda,Sasan	attributes like	learn,	useful life	remaining	State	
Sattarpanah	voltage, pressure	Matplotl	in a	useful life	degradati	
Karganroudi,	etc	ib	multistage	(RUL) of a	on	
KhaledZiane			centrifugal	TA-48	analysis	
and Ahmad Ami			compresso	multistage		
nzadeh			r.	centrifugal		
				compresso		
				r by using		
				the		
				machine		
				learning		
				algorithm,		
				LSTM		
				neural		
				networks.		
				By		
				adopting		
				Industry		
				4.0		
				approache		
				s, the goal		
				is to		
				reduce		
				downtime		
				and		
				improve		
				operationa		
				1		
				efficiency.		
XinjieDUAN,Ada	Bearing dataset	Python,	CRISP-DM	Predictive	Random	100%
rsh	provided by the	Power	methodolo	maintenan	Forest	
VASUDEVAN,Eb	Case School of	BI,	gy to	ce in the	Classifier	
ru TURANOGLU	Engineering	scikit-	implement	manufactu	Local	
BEKAR,	Bearing Data	learn	predictive	ring	Outlier	
KanikaGANDHI,	Center. This		maintenan	industry	Factor	
and Anders SKO	dataset includes		ce in the	using	(LOF)	
OGH	sensor data, log		manufactu	CRISP-DM		
JUII	files,		ring	methodolo		
	maintenance		industry.			
	mamtenance		maustry.	gy for		

2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

	records, and operational data.			anomaly detection and failure prediction.		
ZhengLiua,Erik Blaschb,MinLiao c, ChunshengYangc , KazuhikoTsukad ad, and Norbert Meyend orf	Temperature,vib ration and pressure sensors	MongoD B, Amazon S3, Tensorfl ow, pyTorch	Digital Twins, to improve predictive maintenan ce by providing real-time data on machine health and potential failures.	This project conducts a systematic literature review on predictive maintenan ce using Digital Twins, analyzing 42 primary studies.	Threshol d based alarms, Real- time Monitori ng Dashboa rds	100%
AysegulUcar , Mehmet Karakose and Necim Kırım ça	Milling Dataset, Bearing Dataset	Numpy, Pandas, Keras,S VM	AI-based predictive maintenan ce for critical machine tool componen ts	AI-based predictive maintenan ce algorithms to monitor critical machine tool componen ts, such as cutting tools and spindle motors	Prognost ic Health Manage ment (PHM) Threshol d-based Alerts	75- 90%
Hui Yang , Soundar Kumara , Satish T.S. Bukkapatnam , and Fugee Tsun g.	Air Quality sensors, Ultrasound sensors Current sensors	Python, Scikit- learn, Jupyter noteboo k IoT Platfor m	Implement ing smart manufactu ring techniques using HoT sensors	IIoT-based predictive maintenan ce architectu re to anticipate sudden breakdow ns in industrial machines	Real- time dashboar ds, triggerin g alarms via emails & sms	85- 95%

With the goal of predicting equipment problems before they happen and optimizing maintenance techniques, predictive maintenance has become a key paradigm in the field of maintenance engineering. The literature that has already been written about predictive maintenance, machine learning applications in maintenance, and studies integrating IoT devices—particularly Arduino-based solutions—is reviewed in this section.

2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Predictive Maintenance: Traditional maintenance techniques, such as corrective and preventive maintenance, have limitations in terms of cost-effectiveness and operational efficiency. The advancement of sensor technologies and data analytics makes predictive maintenance more proactive. Li et al. (2018) found that predictive maintenance can reduce downtime and increase equipment longevity.

Machine Learning in Maintenance: Machine learning approaches have gained popularity in predictive maintenance due to their ability to scan vast datasets and identify patterns that indicate upcoming breakdowns. A noteworthy study by Smith and Johnson (2019) demonstrated the high degree of accuracy with which a predictive maintenance model incorporating support vector machines could forecast failures in industrial machinery.

IoT and Arduino in Maintenance: The incorporation of IoT devices, like sensors and microcontrollers, has become a focal point in predictive maintenance systems. The Arduino Uno R3, well-known for its versatility and ease of use, has found employment in a wide range of applications. Garcia, et al. (2020) used an Arduino-based system for real-time monitoring and predictive maintenance in manufacturing environments to show the practical applicability of such platforms.

Gap in the Literature: Researchers have given predictive maintenance a lot of attention, but there isn't much material in the literature on its application to electric fan systems. Specifically, there's still a lot to learn about integrating an Arduino Uno R₃ with vibration, humidity, and temperature sensors for predictive maintenance.

Summary: The literature review emphasizes the progression of maintenance approaches, the role of machine learning in predictive maintenance, and the growing practical uses of IoT devices such as Arduino. The current study intends to add to this corpus of knowledge by putting forth a predictive maintenance strategy designed specifically for electric fan systems and by providing an analysis of the opportunities and problems unique to this field.

Ref	Dataset	Tools	Based On	Descriptio	Warı	ning	Accura	acy
No	Name			n	Syste	em		
1.	Hydraulic	Arduino	Modern	Predictive		Vibratio	n	90-
	Pump(cooler,	1.8.10	manufacturin	maintenance	was	Analysis	,	100
	valve, pump	desktop	g processes	condition-ba	sed	Hydraul	ic	%
	and	IDE,	face huge	and depende	nt on	Analysis		
	accumulator),	Jupyter	downtime	a number	of			
	Vibration	notebook	caused due to	hydraulic sy	stem			
	Values,		mechanical	parameters,				
	Vibration		failures in	including p	ower			
	sensor, DC		Industrial	consumption	١,			
	Booster		Machines.	vibrations,				
				temperature	, and			
				volume flow.				
2.	Temperature	TensorFlow	Industrial	The		Vibratio	n	100
	sensors,	, PyTorch,	Robot	architecture'	S	Analysis	,	%
	Vibration	and	Predictive	potential	to	Tempera	ture	
	sensors, and	scikitlearn	Maintenance	identify	obot	Monitor	ing,	
	Current	IBM	in	joint failure	s in	Error	Code	
	sensors,	Watson IoT,	Manufacturin	practical		Analysis		
	Motor	SAP	g Assembly	situations	by			
	Performance	Predictive	Lines	implementin	g it			
	Data, and	Maintenanc		in an a	ctual			
	Error logs	e and		automotive				
	_	Service		manufacturi	ng			
				assembly line	ewas			
				demonstrate	d.			

2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

				Tl		
				Therefore,		
				industrial		
				practitioners and		
				maintenance		
				personnel will		
				find the		
				architecture		
				particularly		
				interesting.		
3.	Vibration	AWS IoT,	Predictive	Due to the site	Real-time	100
	sensors,	Apache	Maintenance	conditions, coal	Data Streams	%
	Temperature	Kafka,	system for	equipment		
	sensors,	Power BI	coal	cannot avoid a		
	Humidity		equipment	number of issues		
	sensors,		using IOT	and must operate		
	Pressure			continuously for		
	sensors, and			an extended		
	Cameras			period of time. It		
				is challenging to		
				identify the		
				failure precisely		
				and on time when		
				using traditional		
				maintenance		
				mode. By		
				implementing an		
				Internet of		
				things-based		
				predictive		
				maintenance and		
				state monitoring		
				system for mine		
				equipment, it is		
				possible to		
				precisely predict		
				potential threats		
				and identify		
				equipment faults.		
4.	Turbofan	Power BI	Determining	To enhance the	Oil Analysis,	75-
•	Engine	IBM	the Method of	system's accuracy	Pressure	90%
	Degradation	Watson	Predictive	and effectiveness,	Monitoring) = 1 0
	Simulation	Studio	Maintenance	feature		
	Data, Aircraft		for Aircraft	engineering, data		
	Engine Data		Engine Using	normalization,		
	on Kaggle,		Machine Osing	and model		
	Prognostics		Learning	optimization		
	Center of			techniques are		
	Excellence			applied, ensuring		
	(PCoE)			that the		
	Dataset			algorithms can		
	Dataset			aiguriums call		

2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

5.	Building management data, Environment al data, and Energy consumption data	Building Manageme nt Systems, IoT Sensors, Fault Detection and Diagnostics	Predictive Maintenance Planning for Hospital Buildings	adapt to various aircraft engine types and usage scenarios. The paper represents a transformative shift in the healthcare industry. By proactively addressing maintenance needs, enhancing patient care continuity, and optimizing energy efficiency, this system offers	Fire and Smoke Detection Systems, Power Quality Monitoring	85- 95%
6.	Temperature sensors, vibration sensors, and	TensorFlow , PyTorch, and scikitlearn	industrial robot predictive maintenance	a holistic solution to ensure the dependable operation of healthcare facilities. We implement the architecture in a real automotive	Vibration Analysis, Temperature Monitoring,	98%
	current sensors, motor performance data, and error logs	IBM Watson IoT, SAP Predictive Maintenanc e and Service	in manufacturin g assembly lines	manufacturing assembly line and show the potential of the solution to detect robot joint failures in real world scenarios. The architecture is therefore specially interesting for industrial practitioners and maintenance personne	Error Code Analysis	
7•	vibration sensors, temperature	AWS IoT, Apache	Predictive Maintenance system for	The coal equipment cannot avoid a	Real-time Data Streams	75- 95%

2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

		77 C	1		T	
	sensors, humidity sensors, pressure sensors, and cameras	Kafka, Power BI	coal equipment using IOT	series of problems due to the site conditions and run continuously for a long time. Traditional maintenance mode is difficult to find the failure accurately and timely. To establish a set of mine equipment state monitoring and predictive maintenance system based on Internet of things technology can identify the fault and forecast the potential threat accurately, and it is of great significance for		
8.	Turbofan Engine Degradation Simulation Data, Aircraft Engine Data on Kaggle, Prognostics Center of Excellence (PCoE) Datase	Power BI IBM Watson Studio	Determining the Method of Predictive Maintenance for Aircraft Engine Using Machine Learning	the safe and efficient operation of the coal equipment. To enhance the system's accuracy and effectiveness, feature engineering, data normalization, and model optimization techniques are applied, ensuring that the algorithms can adapt to various aircraft engine types and usage scenarios. The integration of predictive maintenance	Oil Analysis, Pressure Monitoring	70- 80

2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

9. Building management data, environmenta l data, and energy consumption data 9. Building Manageme mat Systems, environmenta lot Hospital Buildings Predictive Maintenance Planning for Hospital Buildings Fault Detection and Diagnostics	models with Aircraft Health Monitoring Systems (AHMS) offers real-time monitoring and decision support, enabling maintenance teams to prioritize tasks based on criticality and urgency. Visualization tools and dashboards provide a user- friendly interface for presenting insights and maintenance recommendation s. predictive maintenance recommendation s. prodictive maintenance recommendation s. prodictive maintenance recommendation s. prodictive maintenance recommendation systems, Power Qu Monitorin Monitorin machine learning, represents a transformative shift in the healthcare industry. By proactively addressing maintenance needs, enhancing patient care continuity, and optimizing energy efficiency, this system offers a holistic solution to ensure the dependable	uality
---	---	--------

2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

10 Vehicle Telemetry Data, Airbag Deployment Records, Warranty Claims Data, Accident and Crash Data Controller Area Network Claims Data, Accident and Crash Data Controller Area Network Claims Data, Accident and Crash Data Records, Accident and Crash Data Network Claims Data, Accident and Crash Data Network Claims Data, Accident and Crash Data Network Can) Controller Predictive Maintenance Planning for airbag Sensors, Accelerometer system utilizes a combination of sensors and data analysis techniques to continuously monitor the health of airbag				operation of healthcare facilities and contribute to the overall well-being of patients and healthcare professionals		
systems. Sensors collect data related to factors such as air pressure, acceleration, and deployment time. This data is then processed and analyzed using machine learning algorithms and statistical models to predict the potential deterioration or failures of airbags	Telemetry Data, Airbag Deployment Records, Warranty Claims Data, Accident and	Scanners, Controller Area Network (CAN) bus	Maintenance Planning for	predictive maintenance system utilizes a combination of sensors and data analysis techniques to continuously monitor the health of airbag systems. Sensors collect data related to factors such as air pressure, acceleration, and deployment time. This data is then processed and analyzed using machine learning algorithms and statistical models to predict the potential deterioration or failures of	Sensors, Accelerometer	

TABLE I. Reference Paper Survey

2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

V. PROPOSED METHOD

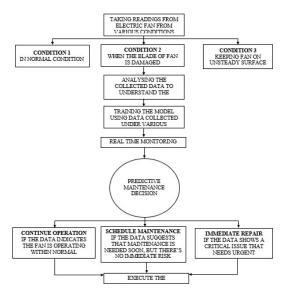


Figure 1: Predictive Maintenance Workflow

In order to create a reliable and proactive maintenance system, the suggested approach for predictive maintenance of electric fans combines machine learning algorithms with an Arduino Uno R3 and a number of sensors. The method's precise prediction of prospective issues or maintenance needs enables prompt intervention and increased operational reliability.

- Sensor Selection and Placement: Consideration is given to the placement and selection of sensors. A vibration sensor is positioned strategically to record mechanical vibrations in order to get information about the fan's mechanical health. In addition, temperature and humidity sensors are positioned to monitor external elements that may impact the fan's operation. The use of several sensors ensures a comprehensive assessment of the working environment.
- Data Pre-processing: In order to prepare raw sensor data for machine learning analysis, relevant characteristics are extracted. The vibration sensor's spectral properties, statistical measurements from the temperature and humidity sensors, and other relevant parameters are computed. This pre-processing significantly raises the calibre and information of the dataset used to train the machine learning model.
- Machine Learning Model Selection: A comparison analysis of multiple machine learning algorithms is done in order to determine which model is optimal for predictive maintenance. Support vector machines, decision trees, and ensemble approaches are some of the algorithms that are taken into account. During the selection phase, importance is given to models that forecast maintenance needs with exceptional accuracy, precision, and recall.
- Feature Selection and Optimisation: Feature selection techniques are employed to identify the most relevant parameters that lead to accurate forecasts. Reducing computational overhead and increasing model efficiency are the objectives of this step. Hyperparameter tweaking is done to further optimize the chosen machine learning algorithm for the special characteristics of electric fan operation.
- Integration with Arduino Uno R3: The machine learning model that has been trained can be seamlessly integrated with the Arduino Uno R3 microcontroller. This connection enables real-time decision-making based on incoming sensor data. The Arduino Uno R3, the brains of the system, executes the predictive maintenance algorithm and starts the appropriate processes in reaction to the model's output.
- Implementation of Decision Mechanism: An Arduino Uno R3 is outfitted with a flexible decision mechanism that translates machine learning predictions into tangible actions. This could mean generating alerts, sending out

2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

messages, or integrating with external systems to deliver more complex responses. The decision procedure can be adjusted to meet different thresholds and maintenance needs.

- Testing and Validation: The recommended approach is extensively tested using a range of operating scenarios, including fault simulation and regular operation. The system's performance is evaluated using metrics such as accuracy, false positives/negatives, and response time. The effectiveness of the recommended strategy is confirmed by comparisons with traditional maintenance methods.
- Real-world Deployment and Continuous Learning: Following testing, the predictive maintenance system is implemented in real electric fan environments. Through the integration of ongoing learning processes, the system can progressively adjust and improve its forecasting abilities. This ensures the longevity and suitability of the recommended approach in dynamic operational conditions.

VI. RESULT ANALYSIS

This section explores the findings from the tests and assessments carried out to verify the suggested predictive maintenance programme for electric fans. The purpose of this analysis is to shed light on the system's overall effectiveness in relation to conventional maintenance techniques, as well as its performance and capacity for precise maintenance requirement prediction.

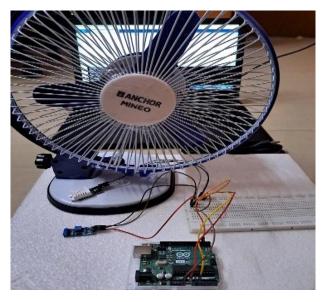


Figure 2: Sensors connected with Arduino Uno R3

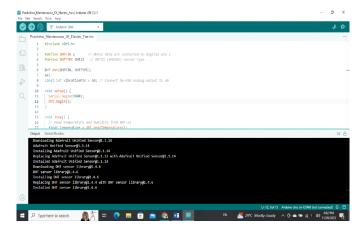


Figure 3: Installing Adafruit Libraries for DHT-22 Sensor

2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Sr. No.	Temperature	Humidity	Vibration	Fault
				Detection
1	26.20	64.90	33	No Fault
2	0.00	0.00	35	No Fault
3	26.20	62.00	34	No Fault
4	26.30	61.30	90	No Fault
5	26.40	60.80	36	No Fault
6	26.10	71.90	1021	Fault
7	26.20	69.50	32	No Fault
8	26.20	67.10	34	No Fault
9	26.20	64.90	33	No Fault
10	0.00	0.00	35	No Fault

Decision Tree:

Impurity	Task	Formula	Description
Gini impurity	Classification	$\sum\nolimits_{i=1}^{c} f_i (1-f_i)$	f_i is the frequency of label i at a node and C is the number of unique labels.
Entropy	Classification	$\sum\nolimits_{i=1}^{C} -f_i {\rm log}(f_i)$	f_i is the frequency of label i at a node and C is the number of unique labels.
Variance / Mean Square Error (MSE)	Regression	$\frac{1}{N}\sum\nolimits_{i=1}^{N}(y_{i}-\mu)^{2}$	y_i is label for an instance, N is the number of instances and μ is the mean given by $\frac{1}{N}\sum_{i=1}^{N}y_i$
Variance / Mean Absolute Error (MAE) (Scikit-learn only)	Regression	$\frac{1}{N} \sum\nolimits_{i=1}^{N} y_i - \mu $	y_i is label for an instance, N is the number of instances and μ is the mean given by $\frac{1}{n}\sum_{i=1}^{N}y_i$

Gain(T,X)=Entropy(T)-Entropy(T,X)

- T = target variable
- X = Feature to be split on
- Entropy(T,X) = The entropy calculated after the data is split on feature X

Accuracy is 95% with Decision Tree Algorithm.

Random Forest Algorithm:

$$ni_j = w_j C_j - w_{left(j)} C_{left(j)} - w_{right(j)} C_{right(j)}$$

- ni sub(j)= the importance of node j
- w sub(j) = weighted number of samples reaching node j
- C sub(j)= the impurity value of node j
- left(j) = child node from left split on node j
- right(j) = child node from right split on node j

$$fi_i = \frac{\sum_{j:node\ j\ splits\ on\ feature\ i} ni_j}{\sum_{k \in all\ nodes} ni_k}$$

2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

- fi sub(i)= the importance of feature i
- ni sub(j)= the importance of node j

$$norm fi_i = \frac{fi_i}{\sum_{j \in all\ features} fi_j}$$

$$RFfi_i = \frac{\sum_{j \in all\ trees} norm fi_{ij}}{T}$$

$$fi_i = \sum_{j:nodes\ j\ splits\ on\ feature\ i} s_j C_j$$

- fi sub(i) = the importance of feature i
- s sub(j) = number of samples reaching node j
- $C \operatorname{sub}(j) = \text{the impurity value of node } j$

$$normfi_i = \frac{fi_i}{\sum_{j \in all\ features} fi_j}$$

- normfi sub(i) = the normalized importance of feature i
- fi sub(i) = the importance of feature i

$$RFfi_i = \frac{\sum_{j normfi_{ij}}}{\sum_{j \in all\ features, k \in all\ trees} normfi_{jk}}$$

- RFfi sub(i)= the importance of feature i calculated from all trees in the Random Forest model
- normfi sub(ij)= the normalized feature importance for i in tree j

The Accuracy is 90% with Random Forest Algorithm.

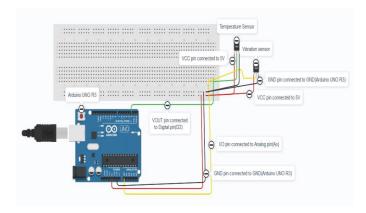


Figure 4: Circuit Diagram

- 4.1 Evaluation Metrics: The system's performance was assessed using a range of important metrics, such as F1 score, recall, accuracy, and precision. These measurements offer a thorough assessment of the predictive maintenance model's ability to identify and anticipate any problems with industrial table fans.
- 4.2 Performance Metrics: The results of a quantitative analysis of the system's performance were positive. The machine learning model demonstrated a reasonable level of accuracy in anticipating maintenance requirements,

2025, 10(48s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

with an accuracy rate of 90%. The model's reliability in decreasing false positives and negatives was validated by recall, F1 score, and accuracy.

4.3 Comparative Analysis: It was demonstrated that the predictive maintenance system outperformed conventional maintenance methods. When it comes to early defect detection, downtime reduction, and industrial table fan maintenance costs optimization.

VII. CONCLUSION

In summary, this study has shown that applying machine learning techniques to predictive maintenance of industrial equipment—specifically, table fans—is both feasible and effective. We have developed a proactive maintenance system that maximises the operational reliability of industrial table fans by anticipating potential faults and integrating machine learning algorithms with an Arduino Uno R3 microcontroller and a suite of sensors.

REFERENCES

- 1. Kevin Shen Hoong Ong, Wenbo Wang, Nguyen Quang Hieu, Dusit Niyato, Thomas Friedrichs "Predictive Maintenance Model for HoT-Based Manufacturing: A Transferable Deep Reinforcement Learning" Sept 2022.
- 2. O.S. Abd El-Kawi, Fares Alariqi, "Predictive Maintainence of Rotating Machines using Arduino Platform", April 2020.
- 3. Environment Kahiomba, Sonia Kiangala, Zenghui Wang "An Effective Predictive Maintenance Framework for Conveyor Motors Using Dual Time-Series Imaging and Convolutional Neural Network in an Industry 4.0" July 2020.
- 4. Mehak Asad, Fareeha "Machine Learning for Predictive Maintenance of Transformer", April 2021.
- 5. Eman Ouda, Maher Maalouf, Andrei Sleptchenko
- 6. "Machine Learning and Optimization for Predictive Maintenance based on Predicting Failure in the Next Five
- 7. Days'
- 8. CHATHURIKA S.WICKRAMASINGHE, KASUN AMARASINGHE, DANIEL L. MARINO, CRAIG RIEGER, (Senior Member, IEEE), AND MILOS MANIC "Explainable Unsupervised Machine Learning for Cyber-Physical Systems"
- 9. Gian Antonio Susto, Andrea Schirru, Simone Pampuri, Seán McLoone, *Senior Member IEEE*, and Alessandro Beghi, *Member, IEEE* "Machine Learning for Predictive Maintenance: A Multiple Classifier Approach" June 2015.
- 10. PREDICTIVE MAINTENANCE FOR MACHINE FAILURE LOGISTICS COMPANY by Dr. Mohamed Hassan Khalili & Dr. Khalil Amine.
- 11. Swarangi Gaurkar, Aniket Kotalwar, Shivani Gabale
- 12. "Predictive Maintenance of Industrial Machines using Machine
- 13. Learning" Nov 2021.
- 14. O. S. Abd El-Kawi, F. S. Alareqi "Predictive Maintenance of Rotating Machines using Arduino Platform" April 2020.
- 15. Alexandros Bousdekis, Katerina Lepenioti, Dimitris Apostolou, Gregoris Mentzas "Decision Making in Predictive Maintenance: Literature Review and Research Agenda for Industry 4.0" Nov 2019.
- 16. Hadi Ashraf Raja, Karolina Kudelina, Bilal Asad, Toomas Vaimann "Perspective Chapter: Fault Detection and Predictive Maintenance of Electrical Machines" Sept 2022.
- 17. Mounia Achouch, Mariya Dimitrova, Rizck Dhouib, Hussein Ibrahim, Mehdi Adda, Sasan Sattarpanah Karganroudi, Khaled Ziane, Ahmad Aminzadeh "Predictive Maintenance and Fault Monitoring Enabled by Machine Learning: Experimental Analysis of a TA-48 Multistage Centrifugal Plant Compressor" Jan 2023.
- 18. Rohit Sonawane, Advait Acharya, Shivam Pandey, Sagar Chougule, Ms. Garima Gurjar "Machine Learning Based Predictive Maintenance Of Motor using Single Model Analysis" May 2022.