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Kidney Disease (KD) is characterized by a gradual decline in kidney function, which can 

eventually lead to kidney damage or failure. As the disease progresses, diagnosis becomes more 

challenging. Incorporating routine clinical data to assess different stages of KD can aid in early 

detection and timely intervention. Advanced stages of KD are associated with a higher risk of 

cardiovascular complications and mortality. Ultrasound (US) imaging is widely used in clinical 

practice for predicting KD due to its safety, convenience, and affordability. However, manual 

analysis of US images is time-consuming, prone to errors, and requires highly skilled 

professionals. In recent years, Deep Learning (DL) has shown promising results in medical image 

analysis. This research introduces a hybrid DL network, Convolutional Neural Network (CNN)-

Transformer, designed to predict KD from US images. To conduct the study, US images of both 

healthy and diseased kidneys were collected from Aadhar Diagnostic Centre, Maharashtra. The 

collected raw images underwent several pre-processing steps, including resizing and 

augmentation. The processed dataset was then split into training, validation, and test sets in a 

7:2:1 ratio. The proposed hybrid network was compared with well-known DL networks, ResNet 

and DenseNet. All three models were trained, validated, and tested under identical conditions, 

including the same number of images, epochs, and hyperparameters, to ensure a fair 

comparison. The models were tested on 25 healthy and 25 diseased images. The results showed 

that DenseNet and ResNet correctly predicted 44 and 43 cases, respectively, while the proposed 

CNN-Transformer network achieved 49 correct predictions out of 50 samples. The proposed 

network attained the highest accuracy of 98%, whereas DenseNet and ResNet achieved 88% and 

86%, respectively. In addition to accuracy, other evaluation metrics, including Precision, Recall, 

and F1-Score, were also significantly higher for the proposed network compared to the other two 

networks. These findings demonstrate that the proposed CNN-Transformer network delivers 

promising results for KD prediction using US images. 

Keywords: Ultrasonic Kidney Images, Data Augmentation, Deep Learning, Transformer, 

Google Colaboratory, Convolutional Neural Network, Accuracy. 

 

INTRODUCTION 

KD affects more than 10% of the world's population, making it a serious public health issue [1]. Over the last few 

decades, the prevalence of morbidity in KD patients has skyrocketed, imposing significant medical and economic 

pressures on the global healthcare system. Many cases of KD progress to uremia before anyone seeks medical 

attention, and the disorder sometimes presents with no apparent symptoms at all [2]. However, early detection and 

treatment of KD allow for effective disease management and, in rare cases, reversal. One key component in the early 

detection and prevention of KD is accurate KD staging, which has been shown in studies to reduce the progression of 

kidney damage [3]. 

KD is defined as health-impairing structural or functional renal abnormalities that have lasted for longer than three 

months. KD can be divided into five stages, G1-G5, according to the estimated glomerular filtration rate. Proteinuria 
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and serum creatinine levels are the two most commonly utilized KD screening tests today. However, biochemical 

testing of blood and urine is tedious and time-consuming [4]. Furthermore, many people neglect to seek out these 

tests during routine screenings, allowing KD to go unnoticed for a long time. Pathological studies of KD can show the 

extent and cause of kidney fibrosis, but they require a renal biopsy, which is invasive and can result in complications 

such as perirenal hematoma, arteriovenous fistula, or infection [5]. Additionally, performing a second biopsy on the 

same patient to track their progress and manage their therapy throughout a longitudinal study is not a viable option. 

In contrast, conventional US is a radiation-free, cost-effective, and noninvasive imaging technique used to diagnose 

KD [6]. Most kidney problems are initially detected using the US. In practice, skilled doctors can use this method to 

quickly detect end-stage KD with renal atrophy or significant changes in renal echogenicity. However, for the vast 

majority of patients with early-stage KD or transitional KD, this procedure is beyond the scope of human vision and 

difficult to perform in clinical settings. 

Many studies have already been conducted on KD prediction using various DL models. Researchers have used 

different types of data, such as Computed Tomography (CT) scans, US images, Magnetic Resonance Imaging (MRI), 

and clinical records. Table 1 presents some of the recent and noteworthy research works on KD prediction. The table 

provides details on the dataset used, model advantages, and limitations of each study. 

Table 1. Recent Research works on KD Prediction 

Ref Dataset Model Inference Limitation 

[7] 

US kidney 

images from 

Kaggle 

Novel Deep CNN 

The Novel Deep CNN model 

outperforms other architectures in 

detecting renal cell hydronephrosis. 

Using ADAM optimizer, data 

augmentation, and transfer learning 

significantly enhances classification 

performance. 

The further optimization 

strategies such as Stochastic 

Gradient Descent or Adagrad 

could be explored to improve 

model accuracy and 

convergence rate. 

[8] 

US images 

from the 

hospital 

ResNet34 + 

texture features 

The proposed model outperformed 

senior physicians in diagnosing 

Chronic KD, especially in early-

stage detection.  

Variability in US machines 

and regional differences in 

renal image parameters may 

affect performance.  

[9] 
US images 

from hospital  

Multimodal DL 

Model  

The multimodal DL model 

significantly outperformed single-

mode DL models and clinical 

models in predicting early fibrosis in 

Chronic KD patients.  

The model only focused on 

early fibrosis, excluding 

moderate and severe cases. 

Larger datasets are needed 

for robust validation. 

[10] 

MRI images 

from the 

Hospital 

U-Net  

Proposed kidney volume 

measurement performs comparably 

to medical professionals. 

Axial-section images yield more 

accurate and consistent results than 

coronal-section images. 

Limited dataset of only 40 

individuals; larger datasets 

are needed for validation. 

Measurement bias due to 

image orientation differences. 

[11] 

CT images 

from the 

Hospital 

Inception-

localization, 

DeepLab+Xceptio

n-segmentation, 

Decision Tree 

The proposed models effectively 

localize, segment, and estimate 

kidney volume.  

Challenges remain in 

handling complex cases with 

severe abnormalities such as 

liver cysts and significant 

kidney shape variations.  
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Ref Dataset Model Inference Limitation 

[12] 

Kidney CT 

image from 

Kaggle 

Hybrid CNN 

combining 

ResNet101 with a 

custom CNN  

The proposed approach significantly 

outperforms standalone models and 

provides a robust, precise, and 

efficient solution for automated KD 

diagnosis 

Computational complexity 

and resource requirements 

may also limit deployment in 

real-time clinical settings. 

[13] 
Clinical 

dataset  
Hybrid CNN-SVM  

The proposed hybrid CNN-SVM 

model improves Chronic KD 

detection by addressing overfitting 

and class imbalance issues.  

Feature selection techniques 

could be explored further to 

reduce computational 

complexity. 

[14] 

CT scans and 

medical 

records  

Ant Colony 

Optimization 

(ACO) + 

DenseNet, + 

LSTM 

ACO enhances feature selection, 

improving DL classification 

performance. DenseNet with ACO 

and LSTM achieved the highest 

accuracy, demonstrating superior 

feature extraction and classification 

capabilities.  

The computational 

complexity of ACO may make 

real-time application 

challenging. The study 

requires validation on larger 

and more diverse datasets for 

generalizability. 

[15] 
MRI images 

from Zenodo  

Transformer 

based EfficientNet 

 

EfficientNet showed the highest 

accuracy in classifying Chronic KD 

and healthy images. The study 

highlights the importance of early 

Chronic KD diagnosis, and 

improving treatment planning. 

Transformer-based models 

like EfficientNet performed 

well but may have high 

computational costs.  

 

[16] 
CT images 

from Kaggle 

Ensemble 

Transfer Learning 

and Bayesian 

Optimized KNN 

Feature extraction from multiple 

pre-trained DNNs combined with 

ML classifiers improves kidney 

stone detection.  

 

The model combines the 

three-transfer learning model 

so it is highly complex.  

Design only to detect kidney 

stones, other disease cant 

identified 

From the literature survey, it is observed that existing research has several limitations. Many models suffer from high 

complexity, insufficient data availability, and suboptimal accuracy due to the complex nature of US and CT kidney 

images. Considering these challenges, this research proposes a hybrid CNN-Transformer network to overcome these 

issues. The key contributions of this study are as follows: 

● US kidney images are not widely available online. Therefore, US images of both healthy and diseased kidneys were 

collected from a diagnostic center. The collected images were minimal, and DL models generally require a large 

dataset for better performance. To address this limitation, geometric augmentation techniques were applied, 

increasing the dataset size from 100 to 300 images. 

● Popular DL models like DenseNet and ResNet struggle to capture global features, leading to reduced accuracy. 

The integration of a Transformer module within the CNN network enables the extraction of both local and global 

features, enhancing prediction accuracy. 

● Despite augmentation, the dataset remains relatively small (300 images). The Transformer component with pre-

trained embeddings helps achieve better accuracy even with limited data. 

● The proposed hybrid network is compared with existing DL models, including DenseNet and ResNet, using both 

positive and negative performance metrics based on confusion matrix values. 
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The research paper is organized as follows: Section I discusses the significance of automated KD prediction using DL 

models and reviews recent research in this domain. Section II details the architecture and working principles of the 

DL models used in this study. Section III explains the experimental setup, data acquisition and preprocessing steps, 

and evaluation of DL models for KD prediction. Section IV presents the conclusion of the study and outlines future 

research directions. 

DEEP LEARNING MODELS 

For KD prediction from US images, a hybrid DL model, CNN-Transformer, is designed. To evaluate the effectiveness 

of the proposed model, popular DL models such as DenseNet and ResNet are used for comparison. The working of 

all three models are detailed in this section, along with their architectural diagrams. 

A. ResNet 

ResNet was created by He et al. in 2016 [17]. ResNet-50 is a sophisticated image classification model that can train 

on enormous datasets while producing state-of-the-art results. Figure 1 depicts the residual block. The network is 

straightforward to optimize, and employing this residual block allows for improved accuracy at that depth. ResNet is 

a kind of the CNN topology. The CNN consists of three fundamental layers: convolutional layers (CL), pooling layers 

(PL), and fully connected layers (FCL) [18]. Normalization, padding, and ReLU activation are some of the strategies 

used to improve CNN accuracy. One advantage of a residual network is its ability to mitigate the vanishing gradient 

problem. Residual blocks address this issue by allowing gradients to flow directly to earlier layers without excessive 

multiplications. These blocks include a shortcut connection that functions as an identity mapping, facilitating the 

effective training of multiple layers. ResNet-50 processes data through 50 layers and is structured into four major 

phases. In the first phase, the network comprises three residual blocks, each containing three layers. 

 

Figure 1. ResNet Architecture 

The ResNet architecture requires a CL as the initial step for all inputs. In mathematics, convolution refers to the 

operation of applying the result of one function to another. To generate a feature map from an input image, 

convolution utilizes the output function. This method involves considering the values of the input image when 

selecting a small-number matrix, often known as a filter. Equation (1) provides a method for determining the 

convolution technique, where 𝑓 denotes the input image and h denotes the utilized kernel. The indices for rows and 

columns are represented by 𝑚 and 𝑛, respectively. 

𝐺[𝑚, 𝑛] = (𝑓 ∗ ℎ)[𝑚, 𝑛] = ∑𝑗 ∑𝑘 ℎ[𝑗, 𝑘]𝑓[𝑚 − 𝑗, 𝑛 − 𝑘]   [1] 

A ReLU is employed in several CLs to speed up and improve the effectiveness of model learning. The ReLU function 

is shown in Equation (2): 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)   [2] 
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The PL follows the CL and the ReLU. This layer consists of a filter that moves across the feature map area with a 

predetermined stride size. The PL reduces an image's spatial dimensions and parameter count to enhance processing 

efficiency. Max pooling selects the highest value in the region at each filter update. Each architecture has a different 

number of layers at later stages. The second phase of ResNet-50 has four layers with kernel sizes of 128. The third 

phase of ResNet-50 has six layers with kernel sizes of 256. In the final stage, the architecture comprises three layers 

with 512 kernels each. An FCL with 1,000 neurons, corresponding to ImageNet output classes, follows the network's 

average PL. As the name suggests, average pooling reduces the image size by computing the average value of the 

defined region. The FCL links every activated neuron from one layer to the next. It receives the feature map generated 

by the CLs and PLs and produces the final output. 

ℎ(𝑥) = 𝑓(𝑏 + ∑𝑖 𝑤𝑖𝑥𝑖)  [3] 

ResNet-50 is chosen as a bottleneck architecture. Each residual function consists of three layers, which utilize 1×1 

convolutions. The 1×1 CLs first reduce the dimensions and then restore them. The 3×3 layers act as a bottleneck due 

to their smaller input and output sizes. In the ResNet architecture, skip connections occur every three layers. 

Convolutional operations in the residual blocks are performed with a stride of 2 when transitioning from one stage 

to the next, reducing the input dimensions (height and width) by half [21]. 

B. DenseNet 

In deep networks, network characteristics are constantly subjected to linear-nonlinear synthesis computing; the more 

expressive the features created, the better the model predicts. However, the concatenation effect of the gradient in 

backpropagation during deep network training can easily cause issues such as gradient explosion or vanishing, where 

the gradient becomes either too large or too small, preventing the deep network from completing the training process. 

DenseNet [22], a densely connected network, takes a different approach to network performance enhancement 

compared to ResNet and Inception. It accomplishes this by significantly reducing the number of parameters, 

effectively resolving issues such as gradient vanishing in deep network training, and improving feature propagation 

through densely connected feature reuse [23]. 

 

a) 

 

b) 

Figure 2. a) Arhitecture of DenseNet b) Dense Block 
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DenseNet is made up of several Dense Blocks, each of which has its own structure, as seen in Figure 2.a. To ensure 

optimal information flow, all layers are directly connected via the Dense Block. The network in the 𝐿 layer of the 

Dense Block contains 𝐿(𝐿 + 1)/2 connections, whereas the 𝐿 layer of a standard CNN has 𝐿 connections. Assume a 

network with 𝐿 layers propagates an image 𝑥0. Each layer's nonlinear transformation function is 𝐻𝑖, which is a mixture 

of batch normalization, activation, and convolution functions. In this scenario, 𝑖 represents the number of layers, 

while 𝑥𝑖 denotes the output of the 𝑖 −th layer. To facilitate information transfer between layers, layer 𝑖 will be fed the 

feature maps of all previous layers [𝑥0, 𝑥1, . . . , 𝑥𝑖−1]. This means that the input is a concatenation of all preceding layers' 

feature maps, and the output 𝑥𝑖 is created using the 𝐻𝑖  nonlinear transform:  

𝑥𝑖 = 𝐻𝑖([𝑥0, 𝑥1, . . . , 𝑥𝑖−1])  [4] 

Because the dimension of the feature map in a CNN varies, the dense connection within the Dense Block requires 

that it remain consistent. DenseNet is divided into many Dense Blocks, as shown in Figure 2.b, and a transition layer 

modulates the number and dimension of feature maps between them.  

Because DenseNet is densely connected, each layer's output feature maps can be used as input by subsequent layers, 

boosting feature transfer and allowing the network to make better use of shallow features. Furthermore, by 

eliminating the gradient vanishing, this connection enhances gradient transfer efficiency and aids in the training of 

deeper networks. Additionally, the slower growth rate requires fewer network parameters, reducing the likelihood of 

the network model overfitting [24]. State-of-the-art results are obtained on a variety of datasets, with DenseNet 

outperforming other models with fewer parameters and computations. In trials, DenseNet may scale up to hundreds 

of layers without encountering optimization difficulties such as overfitting or failure to converge.  

C. CNN–Transformer Hybrid Model 

The CNN-Transformer hybrid DL network is proposed for KD prediction from US images. Traditional CNN-based or 

transfer learning models like DenseNet and ResNet primarily extract local features from images, which can lead to 

suboptimal classification performance. To overcome this limitation, the proposed hybrid network incorporates a 

Transformer module that effectively captures global features. The combination of both local and global feature 

extraction enhances classification accuracy, making the network more robust for KD prediction. 

The architecture of the proposed hybrid CNN-Transformer is given in Figure 3. First, several CLs are utilized in the 

proposed network to analyze the input data and extract local features. The input feature dimensions are progressively 

expanded through these CLs, enhancing feature representation across different channels. ReLU activation and batch 

normalization ensure nonlinear feature representation and stable learning. To further optimize feature extraction, 

max pooling is applied to reduce the dimensionality of the feature map, improving computational efficiency. Next, a 

Transformer layer is introduced to capture global features using a multi-head self-attention mechanism (AM). Before 

passing through the Transformer encoder layers for feature extraction, the data processed by the CLs is transformed 

into the appropriate input format for the Transformer. To improve network stability and information flow, residual 

concatenation is applied to the Transformer output. Finally, a FCL processes the extracted features, and the output 

layer classifies the samples, distinguishing between healthy and unhealthy cases. 
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Figure 3. Architecture of the proposed Hybrid CNN-Transformer Network 

CNN Feature Extraction 

The CNN module extracts local features from the inputs and converts them into high-level features. The module's 

initial convolution operations on the image include two CLs and a max PL. Let 𝑋 ∈ 𝑅𝑁∗𝐶∗𝐿 be the input sequence, 

where 𝑁 is the batch size, 𝐶 is the total channel, and 𝐿 is the sequence length. The first CL extracts the key local 

features of the US image. Equation (5) describes the output characteristics of the 𝑙-th layer, denoted as 𝑋(𝑙). 

𝑋(𝑙) = 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣(𝑋(𝑙−1), 𝑊(𝑙)))   [5] 

The input of the 𝑙-th layer is 𝑊(𝑙), with a stride of 1, kernel dimension of 3, and a padding of 1. The network introduces 

nonlinearity through the ReLU activation function [27]. To generate a set of feature maps that emphasize important 

features such as edges and textures—essential properties for KD recognition—the network applies successive CLs to 

extract local information from the input image. A max-pooling technique is then used to retrieve the highest value 

from all the local regions, reducing the dimensions and improving the robustness of the features. The pooling function 

is represented in Equation (6). 

𝑋𝑝𝑜𝑜𝑙
(𝑙)

= 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋(𝑙))  [6] 

By reducing the feature size while preserving essential properties, the pooling technique lowers computational costs 

and enhances the model's generalizability. The CNN generates a feature map with dimensions 𝑋𝑐𝑛𝑛 ∈ 𝑅𝑁∗𝐶∗𝐿′
 after 

two layers of convolution and pooling, where 𝐹 represents the total channels and 𝐿′ denotes the pooled sequence 

length. 

Transformer Module 

The transformer module employs a CL to extract local features, which are then used to detect global dependencies in 

US images. Initially, the input sequence is passed through embedding and positional encoding layers. This phase is 

crucial for accurately capturing the temporal variation patterns in US images, forming a solid foundation for 

subsequent feature extraction and dependent modeling. The Transformer encoder, composed of multiple stacked 

encoder layers, processes the images after they have been embedded and positionally encoded. Each encoder layer 

consists of two primary components: a feed-forward neural network (FFNN) and a self-attention mechanism (self-
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AM). The Self-AM captures interactions within the input sequence, while the FFNN refines these interactions, 

improving the network’s ability to retrieve nonlinear relationships. To optimize gradient flow, accelerate training, 

and ensure efficient information transfer throughout the deep network, Layer Normalization (LN) and residual 

connections (RC) are incorporated after each encoder layer. Notably, the input and output dimensions of each 

encoder layer remain consistent, minimizing issues related to missing data or dimensional mismatches. The key 

components of the transformer encoder include the AM, FFNN, RCs, and LN. The specific process consists of three 

steps: 

Step 1: The transformer is centered around the self-AM, which is designed to identify global features [31]. Given a 

feature dimension, let 𝑋𝑐𝑛𝑛 = [𝑥𝑝
1, 𝑥𝑝

2, . . . . , 𝑥𝑝
𝑁], where 𝑥𝑝

𝑖  represents the input feature vector at the 𝑖-th time step. At 

first, the query (𝑄), key (𝐾), and value (𝑉) matrices are generated through the following linear transformations: 

𝑄 = 𝑋𝑐𝑛𝑛 . 𝑊𝑄   [7] 

𝐾 = 𝑋𝑐𝑛𝑛 . 𝑊𝐾  [8] 

𝑉 = 𝑋𝑐𝑛𝑛 . 𝑊𝑉   [9] 

The learned parameter matrices 𝑊𝐾, 𝑊𝑄, and 𝑊𝑉 represent linear mappings of 𝐾, 𝑄, and 𝑉, respectively. The self-AM 

outcome is calculated by the scaled dot-product attention network [32]. Before dividing the outcome by √𝑑, where 

𝑑 is the query and key vector’s dimension, the dot product of the 𝑄 and 𝐾 matrices is computed. This scaling factor 

helps to ensure gradient stability. The attention weights are then computed by applying the softmax to the scaled 

results. Finally, as shown in Equation (10), the outcome of the self-AM is calculated by multiplying the weights by the 

𝑉. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄.𝐾𝑇

√𝑑
) 𝑉  [10] 

The transformer network utilizes a multi-head AM to extract features from multiple subspaces of the input sequence. 

The network can collect data from various subspaces by processing multiple attention heads simultaneously, and 

improve its learning capability. The formula of multi-head AM is given in Equation (11): 

𝑀𝑢𝑙𝑡𝑖 − 𝐻𝑒𝑎𝑑 𝐴𝑀(𝑋𝑐𝑛𝑛 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . . , ℎ𝑒𝑎𝑑ℎ). 𝑊𝑂   [11] 

Where, 𝑊𝑂 represents the linear projection matrix, and ℎ𝑒𝑎𝑑𝑖 represents the computation result of the 𝑖th head, 

specifically 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖)   [12] 

Step 2: The multi-head attention self-output is followed by RCs and LN. By adding the 𝑋𝑐𝑛𝑛  to the outcome of the 

multi-head self-AM, the vanishing gradient issue is successfully mitigated. LN, which ensures consistent feature 

distribution and improves network training stability [33]. The transformer encoder module frequently employs this 

RC design to enable efficient gradient propagation. The specific process is described in Equation (13): 

𝑍𝑀𝑢𝑙𝑡𝑖−𝐻𝑒𝑎𝑑 𝐴𝑀 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋𝑐𝑛𝑛 + 𝑀𝑢𝑙𝑡𝑖 − 𝐻𝑒𝑎𝑑 𝐴𝑀(𝑋𝑐𝑛𝑛 ))   [13] 

Step 3: To enhance the representation of non-linear features, the next component is the FFN, which has two FCLs 

and a ReLU. The formula for computing the FFN is given in Equation (14):  

𝐹𝐹𝑁(𝑍𝑀𝑢𝑙𝑡𝑖−𝐻𝑒𝑎𝑑 𝐴𝑀) = 𝑅𝑒𝐿𝑈(𝑍𝑀𝑢𝑙𝑡𝑖−𝐻𝑒𝑎𝑑 𝐴𝑀 . 𝑊1 + 𝑏1). 𝑊2 + 𝑏2  [14] 

The bias terms are 𝑏1 and 𝑏2, while the weight matrices are 𝑊1 and 𝑊2. The outcome 𝑍 of the encoder layer is obtained 

by passing the FFN's output through residual connectivity and LN, as shown in Equation (15):  

𝑍 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑍𝑀𝑢𝑙𝑡𝑖−𝐻𝑒𝑎𝑑 𝐴𝑀 + 𝐹𝐹𝑁(𝑍𝑀𝑢𝑙𝑡𝑖−𝐻𝑒𝑎𝑑 𝐴𝑀))  [15] 

The output 𝑍 is then fed into the classification module or the next encoder layer. The encoder composed of multiple 

layers, efficiently encodes the global, temporal features of the input image in the context of KD detection [34]. To 
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differentiate between healthy and unhealthy samples, the classification module must extract rich feature 

representations.  

Fully Connected Network (FCN) 

The FCN [35] is responsible for the prediction of the features obtained through transformer and convolution 

processes. As shown in Figure 3, this module consists of several FCLs, denoted as 𝑓𝑐, 𝑓𝑐1, and 𝑓𝑐2. The FCN is a 

common neural network structure composed of multiple FCLs. The 𝑓𝑐 generates a feature representation of size 128 

by linearly transforming the transformer's output features. This layer efficiently fuses the features acquired by the 

transformer at each time step using weighted combinations, and retrieves the high-level features. The feature 

dimension is then reduced to 64 by passing the resulting feature vector through 𝑓𝑐1. This compression preserves 

important information while reducing extraneous noise or redundant features. A ReLU is applied after the 𝑓𝑐1 layer, 

enhancing the network's ability to encode complex patterns and improving its learning of non-linear relationships. 

After the 𝑓𝑐2, the features are transformed to match the dimensions of the target category, resulting in a binary 

outcome: Disease (1) or Healthy (0). 

RESULT AND DISCUSSION 

A. Experimental Setup 

The classification of kidney images as healthy and diseased was performed on Google Colaboratory [36]. The Python 

programming language was used to access NVIDIA's T4 GPUs [37]. The GPU has a clock rate of 1.59 GHz, which 

helps to accelerate the processing. It consists of 40 cores, enabling parallel computation, along with 16GB memory 

for handling large image datasets and a bandwidth of 300GB/sec. The selection of this GPU overall reduces the 

training time, helps in processing image datasets, and decreases computational complexity. The collected kidney 

images from the hospital were stored in Google Drive. Google Colab accesses the Drive data for pre-processing and 

classification. 

B. Data Acquisition and Processing 

The US kidney images were collected from Aadhar Diagnostic Centre in Maharashtra and annotated by Dr. Nitin 

Rajaram Potdar, MBBS, DMRD, Consultant Radiologist, who has 18 years of US experience and 5 years of experience 

with the Army Medical Corps. A total of 50 images from diseased kidneys and 50 images from healthy kidneys were 

collected. The raw US images are not suitable for direct input into an AI model and require preprocessing. The 

collected images vary in dimensions. In this research, ResNet, DenseNet, and the proposed network are used, which 

accept input dimensions of 224×224, 224×224, and 299×299, respectively [38]. Figure 4 shows the actual images 

and their resized versions with dimensions of 224×224.  

 

Figure 4. Actual images versus resized images 
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The first pre-processing step is resizing. Since the number of collected images is minimal, data augmentation is 

performed to enhance the dataset. The augmentation helps to increase the DL network accuracy [39]. The 

augmentation steps include rotating by 30 degrees, width and height shifts of 0.2, shear and zoom range of 0.2, and 

horizontal flipping. The collected 100 images are augmented to 600 images, comprising 300 healthy and 300 

diseased images. Figure 5 presents some sample augmented images. Table 2 provides the detailed distribution of the 

kidney dataset before and after augmentation. It also includes the number of images used for training, validation, 

and testing. 

 

Figure 5. The outcome of augmented images 

Table 2. Distribution of Ultrasonic Kidney Image Dataset 

Ultrasonic Images Actual Data Augmented Data Train Data Validation Data Test Data 

Healthy Images 50 300 175 50 25 

Diseased Images 50 300 175 50 25 

Next, the kidney and parenchyma volumes are detected. The kidney is identified using a bounding box, from which 

the height and width are determined. These measurements are then used to calculate the kidney and parenchyma 

volume. Figure 6 illustrates the extracted height and width (in cm) along with the kidney and parenchyma volume 

(in cm³) from the US images. 

 

Figure 6. Kidney and parenchyma volume detection 
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C. Experimental Outcome 

The proposed hybrid CNN-Transformer network is designed for classifying kidney images. For comparison, two other 

standard DL models, ResNet and DenseNet, were also implemented. All three models were trained and validated 

using 175 healthy and diseased images and tested on 50 healthy and diseased images. The learning rate was fixed at 

0.001, the loss function used was cross-entropy, the performance metric was accuracy, and hyperparameters were 

kept the same for all models for comparison purposes. 

Figure 7 illustrates the performance of the DenseNet during training and validation. The accuracy and loss metrics 

were chosen to evaluate the performance. In the figure, the training metrics are represented by a dotted line, while 

the validation metrics are shown as a solid line. The maximum accuracy achieved in training and validation was 0.89 

and 0.83, respectively, while the corresponding loss values were 0.28 and 0.63. 

 

Figure 7. Performance plot of the DenseNet model during the training and validation phases. 

Figure 8 presents the performance plot of the ResNet, showing accuracy and loss during training and validation. 

Similar to the previous figure, the dotted and solid lines represent the training and validation metrics, respectively. 

The maximum accuracy reached by ResNet was 0.85 for validation and 0.58 for training, while the loss values were 

0.60 and 0.58. 
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Figure 8. Performance plot of the ResNet model during the training and validation phases. 

Figure 9 displays the performance plot of the proposed hybrid model. The proposed network achieved an accuracy of 

0.98, with a loss of less than 0.3. When comparing performance plots, the proposed network consistently maintains 

stable accuracy values, whereas the other two models show fluctuations. This clearly demonstrates the efficiency of 

the proposed network. 

 

Figure 9. Performance plot of the Proposed network during the training and validation phases. 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

A
C

C
U

R
A

C
Y

/L
O

S
S

EPOCHS

PERFORMANCE PLOT OF THE RESNET MODEL

ACCURACY VAL_ACCURACY LOSS VAL_LOSS

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4

A
C

C
U

R
A

C
Y

/L
O

S
S

EPOCHS

PERFORMANCE PLOT OF THE PROPOSED HYBRID 

MODEL

ACCURACY VAL_ACCURACY LOSS VAL_LOSS



Journal of Information Systems Engineering and Management 
2025, 10(50s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

292 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

After training and validation, the DL models were tested using 25 healthy and 25 diseased kidney images. The correct 

and incorrect classifications of kidney images by DenseNet, ResNet, and the proposed hybrid network are 

represented in the confusion matrix [40] in Figure 10. 

The correctly identified healthy images by DenseNet, ResNet, and the proposed network were 19, 18, and 25, 

respectively, representing true positives (TP). The correctly identified diseased images were 25, 25, and 24, 

respectively, representing true negatives (TN). The false positive (FP) and false negative (FN) counts for DenseNet 

were 6 and 0, for ResNet 7 and 0, and for the proposed network 0 and 1. 

.   

a)        b) 

 

c) 

Figure 10. Confusion Matrix a) DenseNet b) ResNet c) Proposed Model 

Using the values from the confusion matrix (TP, TN, FP, FN), performance metrics such as accuracy, precision, recall, 

F1-score, false positive rate (FPR), and false negative rate (FNR) were calculated [41]. Table 3 presents the 

performance metric values obtained by each model along with the formulas used for computation. The accuracy of 

the proposed network was significantly high, reaching 0.98, while DenseNet and ResNet achieved 0.88 and 0.86, 

respectively. The precision and recall of the proposed network were 1.00 and 0.96, while its F1-score was 0.97. 
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DenseNet and ResNet attained F1-scores of 0.89 and 0.87, respectively. In positive performance metrics, the 

proposed network achieved the highest values, while in negative metrics, it achieved FPR = 0 and FNR = 0.04. The 

performance evaluation demonstrates the efficiency of the proposed network in identifying KD with high accuracy 

and reliability. 

Table 3. Comparison of the Proposed Hybrid Network Performance Metrics with the Existing Model 

Model Accuracy Precision Recall F1-Score FPR FNR 

Formula 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

DenseNet 0.88 0.8065 1.00 0.8929 0.24 0.0 

ResNet 0.86 0.7812 1.00 0.8772 0.28 0.0 

Proposed Hybrid 

Model 
0.98 1.00 0.96 0.9796 0.0 0.04 

CONCLUSION 

The research aims to develop a reliable DL model for KD prediction from US images. While numerous research has 

been conducted in this field, achieving the expected level of accuracy remains a challenge. Existing models struggle 

to capture all essential features from medical images, leading to suboptimal performance. To address this limitation, 

the study integrates CNN with a Transformer model. CNN effectively captures local features, while the Transformer 

extracts global features from US images. The combination of both local and global features significantly improves the 

accuracy of KD prediction. To assess the effectiveness of the proposed model, it is compared with widely used DL 

models in medical imaging, such as DenseNet and ResNet. All three models are trained, validated, and tested on US 

images for KD prediction. The proposed network achieves an accuracy of 98%, whereas DenseNet and ResNet obtain 

88% and 86%, respectively. This 10% improvement highlights the superiority of the hybrid network in KD prediction 

and underscores its potential for real-time deployment. 

One of the key limitations in existing research is the scarcity of publicly available US datasets. Due to this, the study 

collects its own dataset from clinical sources. However, due to medical restrictions, only 100 images are acquired. As 

a result, generalizability testing of the proposed network is limited. This is a crucial factor for real-time deployment. 

Future research will focus on collecting data from multiple medical centers to ensure diversity across age, gender, 

and geographic regions. Additionally, network complexity will be analyzed, and a user-friendly website will be 

developed for real-world applications. The proposed web-based system will allow users to upload US images with a 

single click, providing immediate kidney health status predictions. This will benefit both patients and medical 

professionals by facilitating early detection and intervention for KD. 
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