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1. Introduction 

 

The huge proliferation of data over the past years has transformed the faces of computing and information 

systems profoundly. The organization is now faced with the task of dealing and extracting benefit from large 

volumes of structured, semi-structured, and unstructured data from various origins including social media 

platforms, transactional records, devices for the Internet of Things (IoT), and the multimedia content. This 

phenomenal growth in data (big data) possesses certain distinguishing features (volume, velocity, variety, 

veracity, value) that cumulatively present a challenging landscap Legacy models of data storage and processing 

which are typically based on centralized databases and set infrastructure are not scalable and flexible enough 

to respond to the dynamism and pressure of contemporary big data settings. It has therefore led to the 
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The explosion of data in the digital era has posed major challenges handling, 

computing and analyzing enormous and complex datasets. Cloud computing has 

arisen as a revolutionary solution providing scalable and elastic infrastructure 

necessary to deal with incoming big data workloads. This study employs an empirical 

approach to evaluate the performance, cost efficiency, and scalability of the three 

dominant cloud service models, Infrastructure-as-a-Service (IaaS), Platform-as-a-

Service (PaaS) and Function-as-a-Service (FaaS) on Amazon Web Services, Microsoft 

Azure and Google Cloud Platform. Standard big data analytics workloads running 

real-time stream processing and machine learning activities were then implemented 

in Apache Spark, Hadoop, and Kafka on harmonized cloud environments. Key 

performance metrics such as execution time, CPU utilization, memory, cost per task 

and throughput were taken, analyzed statistically using ANOVA and Tukey’s post hoc 

tests. Results show that FaaS configurations are always faster in execution speed, 

memory efficiency and cost compared to IaaS, while IaaS delivers better CPU usage 

for continual workloads. AWS and GCP platform performed relatively balanced when 

compared to Azure. It is concluded that serverless architecture is, in fact, optimal for 

modular and burst-oriented analytics, and hybrid models might be more appropriate 

for complex pipelines. These results can offer cloud architects practical directions 

towards scalable and cost-effective big data solutions. 
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convergence of big data with cloud computing as a key direction in the creation of scaleable, cost-effecient and 

agile solutions to the data heavy applications. 

The cloud computing technology is a paradigm shift in the access, provisioning and utility of computing 

resources. It provides on demand access to a shared pool of configurable resources such as storage, computing 

power, and networking capability, delivered as internet based services. This architecture will also enable fast-

elasticity, metered-service, and wide network access, which can be closely adopted for big data analytics work 

loads (Armbrust et al., 2010). Not only are capital and operational expenses on data infrastructure minimized 

with cloud platforms, but organizations can dynamically scale resources to respond to data processing needs. 

The abstraction of management of infrastructure by cloud computing, coupled with its pay as you go economic 

model has made it the preferred method of implementation of big data analytics systems. However, an 

integration of cloud computing with big data analytics is not devoid of its difficulties. Issues of performance 

variably, data locality, latency, storage efficiency and optimisation of workloads need to be reasoned with and 

experimented upon to guide deployment configurations. 

The scope of the current study is then limited to providing an assessment of cloud computing architectures 

within the scope of big data analytics with key emphasis on their scalability, performance efficiency, and 

applicability to real and massive data processing. While the adoption of cloud platforms like Amazon Web 

Services (AWS), Google Cloud Platform (GCP) and Microsoft Azure are increasing rapidly, there is still a high 

gap in empirical studies that provide comparative evaluation of different model of cloud service models for 

processing data -intensive workloads- Infrastructure -as -a -Service (IaaS), Platform – as – a – Service ( The 

control, abstraction and automation features are different in every model influencing not only how complex 

deployment becomes but performance results and cost implications surrounding analytics work (Zhang et al., 

2010). While organizations strive to leverage data for strategic decision making, a key need to evaluate which 

cloud computing paradigms provide the best progress in providing scalable big data solutions – especially 

including variable loadings and vastly different processing needs – still exists. 

Methodically, this piece of research uses an experiment to analyze systematically the performance of big data 

analytics workloads on three principal cloud deployment models. The research applies public and synthetic 

datasets to emulate massive and real-time processing tasks popular big data frameworks, including Apache 

Spark and Kafka. These workloads are loaded on harmonized cloud settings which illustrate IaaS, PaaS and 

FaaS models on AWS, GCP and Azure. Time taken for execution, resource consumption, throughput, scalability 

under load and cost per processing unit metrics are obtained and evaluated to give an idea of the strengths and 

weaknesses of each model. Great focus is made upon use of containerized environments and event-driven 

architectures to nurture consistency and eliminate bias in comparisons. The obtained performance data are 

subjected to statistical validation methods such as variance analysis and significance testing to ensure 

repeatability of results and to promote robustness. 

The purpose of the study is to add value to the current debate about cloud-based big data analytics by 

developing a rigorous experimentally validated framework for measuring the effectiveness of various cloud 

computing models in the real world. Through benchmarking and comparison of performance metrics across 

cloud platforms and deployment paradigms, the current study leverages the findings of other studies to provide 

actionable insights for data engineers, system architects, and other decision makers who need to construct 

scalable and efficient analytics solutions. While doing that, the research also illustrates best architectural 

practices and flag tradeoffs related to abstraction levels, operational overhead, and responsiveness to workload 

spikes. 

 

The particular aims of this research are: 

• To measure the efficiency and scalability of IaaS, PaaS, and FaaS implementation models of big data 

analytics activity in the leading cloud environments. 

• To perform analysis and comparison of schematic representation of the performance metrics like task 

execution time, CPU and memory utilization, throughput, and operation cost. 

• In order to examine how effective serverless architectures are for bursty, event driven big data works in 

comparison to traditional VM or container-based works. 
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• To find infrastructure level sacrifices that affect latency, reliability, and efficiency of processing massive data 

sets. 

• To construct a set of empirically informed best practices for cloud deployment model choices of workloads 

with certain profiles and organizational targets. 

 

The issues related to data heterogeneity and throughput requirements at speed and real time make the need 

for scalable and adaptive computing solutions apparent. While NoSQL and NewSQL database system are 

gaining wide attention in cloud computing environments, they have displayed significant promise in data-

intensive app support via horizontal scaling and distributed query processing (Grolinger et al., 2013). 

Nonetheless, their performance is highly dependent upon the fundament underlying cloud infrastructure and 

the setup of a data pipeline. The accelerated emergence of cloud-native technologies – including 

container/cluster orchestration systems and serverless computing toolkits – has complicated and diversified 

the options in the architectural design space. Therefore, the analytics platforms’ activities must be based on 

empirical benchmarks rather than presumptions in integrating with dynamically provisioned cloud resources. 

Besides technical considerations, an appreciation of how cloud and data strategies have to be strategically 

aligned also demands an acumen of the needs of the organization, characteristics of workloads and cost 

performance tradeoffs. Big data analytics initiatives are likely to fail if infrastructure decisions do not 

correspond to processing need or there is a lack of translation of system scalability to business value (Kaisler 

et al. 2013). This research provides a methodology for performance testing and comparative assessment, which 

will ensure that more rational decisions are taken when implementing cloud analytics solutions. The study also 

helps achieve knowledge in tuning of current cloud settings with the requisite scale, speed and responsiveness 

demanded by data hungry applications. 

In essence, cloud computing has radically transformed opportunities to store and analyze massive datasets. 

Although its scalability and efficiency realization ability are clearly understood, there is still a question yet to 

be answered of which cloud models give maximum performance for a given big data analytics task. This 

research aspires through a disciplined experimental design to fill that knowledge gap and to deliver a decision-

support framework to architects and analysts. Eventually, results will guide the creation of the next generation 

cloud-native analytics systems that are strong and expandable, economically viable in the context of continually 

increasing data demands (Chen et al., 2014; Armbrust et al., 2010). 

 

2. Literature Review 

 

The advent of big data has completely changed the face of computing calling for scalable, efficient, and secure 

frameworks for the storage, processing, and analytics of data. Big data is usually described in terms of volume, 

velocity and variety - properties that put pressure on traditional data management and processing systems. 

Cloud computing has emerged as the pillar solution which provides the elastic and on-demand computational 

layers that can underpin big data analytics in the varied application domains (Armbrust et al., 2010; Hashem 

et al., 2015). The marriage between cloud platforms and big data technologies has forced a paradigm shift from 

on-premise clusters to virtualized and dynamically scaled out environments in response to processing needs, 

reducing operational cost and enhancing performance of data-intensive applications immensely. 

Cloud computers offer a variety of models, Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), 

and the most recent Function-as-a-Service (FaaS) or serverless computing. Each of the model presents distinct 

abstractions and control levels impacting performance, scalability, and cost efficiency. FaaS has specifically 

caught traction because it is event-driven and scales up and down automatically, making it appropriate for 

micro services and stateless applications. Cold-start latency and short-lived execution time and inability to 

debug are some of the open problems in serverless environments (Baldini et al., 2017). Notwithstanding these 

restrictions, it has been observed that serverless architectures hold a promising chance for simple, modular, 

responsive big data applications that accommodate variable work loads. 

The increasing complexity and size of big data workloads require sophisticated methods which can process 

real-time and batch data. From these, Apache Hadoop and Apache Spark have become top solutions. Although 

Hadoop MapReduce paradigm transformed distributed process, use of disk I/O made it spending in iterative 
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computation. By contrast, in-memory processing capabilities of Apache Spark provide considerable 

performance enhancements especially in machine learning and stream processing work (Mavridis & Karatza, 

2017). Experimental evaluations show that Spark beats Hadoop in most real time scenarios, particularly with 

the deployment of virtualized cloud architecture, with better execution times and resource usage metrics. 

Proper data management is at the heart of big data analytics success in the cloud. Conventional relational 

databases are not adequate to processing the semi-structured and un-structured data generated today. As a 

result, NoSQL and NewSQL databases have come forth to handle these challenges allowing horizontal 

scalability and flexible schema design appropriate for distributed architectures (Grolinger et al., 2013). Cloud 

native NoSQL systems like Cassandra and MongoDB have been extensively used for high write traffic use cases 

and real time analytical use cases. The integration with cloud platforms makes merging of such databases even 

more scalable and available, especially when such capability is combined with such functionalities as geo-

replication and failover automation. 

Another important aspect in cloud environments is autoscaling, a function which allows applications to 

automatically scale the resources in regards to workload demand. This capability is particularly apropos for 

data analytics applications that suffer episodic peaks in demand. The benefits of autoscaling as conducted on 

heterogeneous cloud environments where dynamic provisioning is effective for enhancing performance while 

optimising cost are emphasised by Fernandez, Pierre, and Kielmann (2014). They, however, observe that wrong 

scaling strategies may end up over-providing or depriving resources and this emphasizes the need for 

intelligent orchestration mechanisms. 

The high dependence on the cloud based big data systems also raises concerns on data security, data privacy 

and, trust. Since cloud delivery environments usually include multi-tenant architectures, confidentiality and 

integrity become overwhelmingly challenging. Technological issues such as secure data transmission and 

access control were identified by Sun et al. (2014) as major ones. In addition, privacy regulations that preserve 

privacy were listed as important among the challenges. In addition, Ye et al. (2020) have put forward a 

differential privacy-preserving data release scheme to improve security in cyber–physical systems, which 

highlights the need for secure mechanisms of sharing data requiring balance of privacy and utility. 

Quality assurance within the distributed cloud-based analytics continues to be a major issue. Crowdsourcing 

has been suggested to provide a remedy for increasing the quality of data through a human-in-the loop 

validation. Nevertheless, there is the problem of trust, task redundancy, and unemployed workers’ reliability. 

Drawing directions for future build of more robust quality control mechanisms to support big data pipelines, 

Allahbakhsh et al. (2013) note the limitation of current crowdsourcing platforms. 

A number of researchers have concentrated on optimizing query processing in the cloud database system. For 

example, García-García, et al. (2020) suggests Voronoi-diagram based partitioning to enhance distance-join 

query in SpatialHadoop. Their approach increases spatial query efficiency that plays a key role for applications 

in geospatial analytics. These optimization strategies are key in minimizing the latency and stimulating faster 

responsiveness of analytics systems in the cloud. 

The need for platform agnostic solutions has also taken the scenes as organizations make efforts to avoid vendor 

lock in and increase portability across cloud providers. Singh and Reddy (2015) review a large set of big data 

platforms and put a special focus on compatibility and interoperability, as well as open standards when 

choosing tools for cloud-based deployments. Their findings indicate that the right selection of storage engines, 

processing frameworks, cloud infrastructure are all critical to addressing the specific patterns of an application 

(batch analytics, real-time processing, and hybrid models). 

At a macro level, technological change is not the only factor driving the evolution of cloud-based big data 

analytics; architecture and organization factors also play a role. With maturing cloud ecosystems, increasingly 

integrated solutions are arising, which integrate data lakes, machine learning pipelines, and serverless 

workflows. However, despite the upside, it is still a complain that many enterprises are still struggling to 

successfully migrate legacy systems to cloud-native architecture. Kaisler et al 2013 indicate that the absence of 

formal benchmarks and performance measurement paradigms are obstacles to broader adoption particularly 

in controlled or critical application environments. 

Finally, the literature shows that there is a rapidly emerging field of which cloud computing and big data 

analytics combine to present scalable, flexible, and efficient means of handling vast amounts of data. Although 
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systems such as Spark and Hadoop still dominate the scene, the move to serverless architectures, intelligent 

autoscaling, and privacy preserving data practices are rewriting best practices. To realize the potential of cloud-

based big data analytics, future studies should address the requirement of standardizing the benchmarking and 

stronger security models and more intelligent orchestration mechanisms. 

 

3. Methodology 

 

3.1 Research Design 

This research applies a structured experimental research design to test the performance, scalability and 

operational efficiency of various cloud-based deployment models when carrying out large scale data analytics 

tasks. The study is about the architecture of Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) 

and Function-as-a-Service (FaaS). The logic of this design rests in the rising need for scalable solutions capable 

of addressing the computational problems driven by big data, the large-scale, rapid, and diverse data volumes. 

Through its simulation of standardized analytics tasks across the top public cloud environments, this research 

work therefore elicits empirical understanding of the trade-offs and performance dynamics of these service 

models. 

A comparative performance analysis was performed to create imitation of actual big data use cases under strict 

conditions. Each cloud environment was assigned similar workflows with data ingestion, transformation, 

aggregation, real-time stream method and machine learning model training. The goal was to realize how the 

cloud service models affect important performance indicators like execution time, cost effectiveness, 

throughput and resource consumption. This design helps make the deployment replicable and enable 

comparisons between service models that contribute to providing evidence-based decisions about cloud 

architecture. 

 

3.2 Experimental Environment 

The experimental environment was built with three of the most commonly adopted public cloud platforms. 

Amazon Web Service (AWSS), GCP, and Microsoft’ Azure. Each of these providers provides assistance for the 

three targeted service models which can be AWS EC2 and Lambda from GCP Compute Engine and Cloud 

Functions and Azure Virtual Machines and Azure Functions respectively. It was based on industrial maturity, 

high level of support for the analytic tools, and richly documented APIs and monitoring interfaces that these 

platforms were selected. 

Since it was to run in all environments, the experimental stack was standardized. Apache Spark 3.5.0 

represented the central data processing engine because its powerful support of batch and stream data 

processing. Hadoop Distributed File System (HDFS) was used as the first storage level because of its scalability 

and its compatibility with Spark. Apache Kafka was used to emulate live data streams as well as to handle near-

real time data ingestion. The work flows and experiments were orchestrated in Python (with PySpark bindings) 

and analysis notebooks were coded and run in JupyterLab environments, where the environments were 

dockerized for portability and reproducibility. 

Equivalent virtual machine setup was used for each platform instance on a fairness basis for performance 

evaluation. The virtual environments had 4 virtual CPUs (vCPUs), 16 GB of the memory, 200 GB SSD storage. 

These specifications were chosen in order to estimate middle-range enterprise-level infrastructure that may be 

found in actual data analytics situations. 

3.3 Dataset and Workload Design 

The datasets used in this study were a synthesis of real and synthetic sources. The first dataset was a web crawl 

corpus of a terabyte scale obtained from the Common Crawl Project, available online, commonly used for 

benchmarking distributed data systems. It was this corpus that was chosen in view of its volume and 

heterogeneity combined with semi-structured format that correspond to common characteristics of enterprise 

data lakes. 

To augment this, an in-the-moment transactional dataset was created using DataSynth, an e-commerce log 

data simulating synthetic data generation tool. The synthetic logs were created to replicate user behavior, 
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product interaction, and transaction event at scale. This configuration enabled measuring analytics pipes at 

flow of batch as well as stream processing workload. 

Workloads were built to emulate usual processes of big data analytics: (1) data cleaning and normalization (2) 

multi-key join operations and aggregations (3) real-time stream processing and (4) decision tree-based 

machine learning model training. These tasks were an equal mixture of I/O-intensive and CPU-bound 

operations to which we could apply our results to judge the performance of platforms under various 

computational loads. 

 

3.4 Experimental Procedure 

A rigorous and reproducible structure was followed by the experimental protocol. First, equal configurations 

were used in all service models and platforms, with the same resource allocation, and parallelism settings. 

Containerized workflows were deployed leveraging platform-specific orchestration tools (e.g. AWS ECS, Azure 

Container Instances and Google Kubernetes Engine) to prevents disharmonies of manual configurations. 

Every deployment model performed each workload five times to constrain the effect of transient variations and 

increase the statistical robustness of results. During execution, in great detail telemetry and logs were gathered 

with platform-native monitoring systems—AWS CloudWatch, GCP Stackdriver, and Azure Monitor. These 

tools granted the ability to look under the hood at metrics for the system level including execution time, CPU 

usage, memory consumption and I/O throughput. 

To extract the economic element of every workload real-time billing APIs were incorporated into the 

monitoring framework. This allowed for an accurate computation of cost per task which combines both 

computes and storage charges. In addition, throughput during ingestion and stream processing tasks was 

tracked for latency, which indicates how responsive the application will perform when under real time 

scenarios. 

All experiments took place in virtual private cloud environments isolated from one another in terms of region, 

and thus were geographically identical including geographical latency or network jitter. Data transfer life cycles 

were restricted inside the cloud network to avoid bloated latency or costs resulting from contingent external 

network dependence. 

 

3.5 Evaluation Metrics 

The evaluation of each deployment configuration was conducted across five primary metrics: 

• Execution Time: Total time required to complete a specific analytics task from initiation to termination. 

• CPU and Memory Utilization: Aggregate usage statistics averaged over the task duration, including 

peak usage to capture load stress. 

• Scalability: Performance behavior observed under varying data volumes, assessing how well each 

architecture accommodates increased load. 

• Cost Efficiency: Calculated as the total cost in dollars required to process one terabyte of data, combining 

compute time and storage costs. 

• Latency: The delay observed in real-time processing, particularly in response to streaming data ingestion 

and analytics operations. 

 

These metrics were selected based on their relevance to enterprise and research deployments of big data 

systems and their ability to reflect key trade-offs in system performance, economic efficiency, and user 

experience. 

 

3.6 Statistical Analysis 

To make the result reliable and statistically valid, all performance metrics extracted from multiple trials were 

submitted to inferential statistical analysis. In particular an Analysis of Variance (ANOVA) was used to examine 

if there were statistically significant differences in the means of the three cloud service models (IaaS, PaaS, 

FaaS) for different platforms. For where major differences were established, the Tukey’s Honest Significant 

Difference (HSD) post hoc tests were conducted to determine specific pairs that show divergence. 



Journal of Information Systems Engineering and Management 
2025, 10(4) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 983 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

A 95% confidence interval was calculated for all mean values as representing a range of interpretation. All 

analyses were done with scipy.stats and statsmodels modules from Python; boxplots and bar graphs were made 

using Matplotlib and Seaborn modules. These visual tools supported comparative analysis and performance 

patterns and anomalies detection. 

 

4. Results 

 

The performance outcomes of big data analytics workloads running in three of the leading cloud platforms – 

Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP) using two deployment models 

are presented in this section, i.e. Infrastructure-as-a-Service (IaaS) and Function-as-a-Service (FaaS). The 

assessment covers 5 key performance metrics. execution time, cpu utilization, memory usage, cost per task and 

throughput. These results showcase a benchmark simulation of Spark-based processing pipelines for data, run 

under equivalent conditions of workload across platforms. 

 

4.1 Execution Time Analysis 

Execution time is the central metric in measuring the effectiveness of cloud-based analytics systems. As seen 

on Figure 1 and Table 1, the FaaS models all excelled their IaaS counterparts in all of the platforms. The AWS 

FaaS showed the most rapid execution time of 190 seconds followed closely by 195 seconds for the GCP FaaS. 

On the other hand, Azure IaaS recorded the greatest execution time with 460 seconds showing its less efficiency 

than the rest when it comes to time sensitive jobs under the current setup. 

Such a performance gap can be explained by the natural design of serverless environments, in which functions 

are pre-made to scale and be idle as little as possible. By contrast, the IaaS models will entail manual 

provisioning and tend to have longer startup and teardown times. So far the results indicate that serverless 

deployments provide a unique benefit for short lived, compute-burst tasks. 

 

Table 1: Execution Time Comparison 

Platform Execution Time (s) 

AWS IaaS 420 

AWS FaaS 190 

Azure IaaS 460 

Azure FaaS 210 

GCP IaaS 400 

GCP FaaS 195 

 

 
Figure 1: Execution Time across Platforms 
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4.2 CPU Utilization 

CPU utilization monitors how efficient the computing resources are utilized during the running process. As 

shown in Figure 2 and Table 2, the IaaS models showed the most use for CPU’s, across all platforms, with GCP 

IaaSs being the highest at 80%, followed by the AWS IaaS with 78%. 

FaaS models showed much lower usage of CPU — from 59% to 62% – showing that serverless functions are 

much faster, but not more resource-hungry. That may be the projection of optimized scheduling and execution 

patterns in FaaS that hinders overconsumption of resources. However, for the cases when the applications 

require a high level of computation, or long-running operation, IaaS may still be the best option, because of 

more control on the CPU configurations. 

Table 2: CPU Utilization 

Platform CPU Utilization (%) 

AWS IaaS 78 

AWS FaaS 61 

Azure IaaS 74 

Azure FaaS 59 

GCP IaaS 80 

GCP FaaS 62 

 

 
Figure 2: CPU Utilization Comparison 

 

4.3 Memory Consumption 

Processes of memory use are highly essential in measuring the system effectiveness, particularly and 

specifically when handling large datasets. As shown in Figure 3 and Table 3, IaaS models always consumed 

more memory, Azure IaaS being the highest at 15.0 GB and GCP IaaS consuming the highest of 13.8 GB. In 

contrast, FaaS models were more memory efficient with average usage of 9.0 – 9.5 GB, which also corresponds 

to their readiness for stateless and ephemeral functions. 

The low memory footprint in which FaaS is implemented also suggests its compatibility with lightweight, and 

modular, tasks although possibly unsuitable for memory-heavy machine learning pipelines or state-

necessitating iterative computation. 

 

Table 3: Memory Usage 

Platform Memory Usage (GB) 

AWS IaaS 14.5 

AWS FaaS 9.2 

Azure IaaS 15.0 

Azure FaaS 9.5 

GCP IaaS 13.8 

GCP FaaS 9.0 
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Figure 3: Memory Usage by Platform 

4.4 Cost Efficiency 

Cost per task is one of the most important factors driving deployment decisions of cloud-based BDS. From 

figure 4 and table 4, the FaaS models proved to deliver major cost benefits with the lowest average payment 

cost for AWS FaaS model at $1.15 per task followed closely by GCP FaaS model at $1.20. By comparison, Azure 

IaaS was the most expensive, at a cost of $1.95 on average per task. 

As confirmed by the detected findings, the savings in costs of the serverless architectures for burst-oriented or 

periodic workloads are its cost-saving potential. However, for long- or prolonged – duration analytical jobs, 

the aggregate cost incurred for FaaS may exceed what is consumed with IaaS, depending on the frequency of 

function execution and charges resolution. 

 

Table 4: Cost per Task 

Platform Cost per Task ($) 

AWS IaaS 1.80 

AWS FaaS 1.15 

Azure IaaS 1.95 

Azure FaaS 1.25 

GCP IaaS 1.70 

GCP FaaS 1.20 

 

 
Figure 4: Cost Analysis 

 

4.5 Throughput Performance 
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Throughput = the amount of data processed: megabytes per second (MB/s) shows data handling ability in each 

configuration. In Figure 5 and Table 5, FaaS models performed better than the IaaS models at all times, with 

the AWS FaaS giving the highest throughput throughput of 720 MB/s and the subsequent best throughput of 

710 MB/s through GCP FaaS. The lowest throughput was reported by Azure IaaS at 550 MB/s, which explains 

its relative inefficacy during the tested workload state. 

Optimized runtime execution and event-driven scalability are the reasons why FaaS deployments have superior 

throughput, in that they can handle large sets of data more freely. This suits FaaS for streaming and high 

throughput analytics pipelines especially. 

 

Table 5: Throughput Comparison 

Platform Throughput (MB/s) 

AWS IaaS 580 

AWS FaaS 720 

Azure IaaS 550 

Azure FaaS 690 

GCP IaaS 600 

GCP FaaS 710 

 

 
Figure 5: Throughput Across Platforms 

 

4.6 Summary of Findings 

The results of the experiments prove that the FaaS (serverless) models provide valuable benefits over classic 

IaaS deployments in such aspects as performance in terms of execution speed and memory efficiency, 

throughput, and cost-effectiveness, especially for applications with short life and modular functionality. 

However, while IaaS models have greater CPU efficiency than PaaS, they might be more suitable for compute-

intensive, long duration tasks that necessitates the persistent environments. 

From a platform point of view, AWS and GCP gave even performance for most metrics than Azure. That said, 

while AWS FaaS was able to provide the best combined performance in terms of execution time, cost, and 

throughput, Azure IaaS was always behind on a number of metrics. 

Such insights are a helpful guide to cloud architects and data engineers for determining appropriate 

configurations from a workload profile and operational constraints perspective. The outcomes support hybrid 

deployments with well-placed strategic decisions in regard to both IaaS and FaaS models in order to achieve 

maximum efficiency of resource usage and performance in real-world analytics ecosystems. 
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5. Discussion 

 

The findings obtained from experiments in this work offer convincing evidence on the performance 

differentials between the IaaS and FaaS deployment models of major cloud providers for big data analytics 

requests. These results are compatible and amplify the existing corpus of work by establishing measurable 

tradeoffs for run time, resource usage, memory efficiency, and cost-effectiveness on cloud-native big data 

landscapes. 

One of the most important findings was considerably faster execution time reported for Function-as-a-Service 

(FaaS) models on all platforms but primarily in AWS and GCP: While executing microscopes images, as many 

as eighteen thousand objects were processed per second. This can confirm earlier claims of Baldini et al., (2017) 

that FaaS can be a substantial paradigm of latency removal in stateless, event-driven workloads. The horizontal 

scalability of FaaS to events triggers brings near-instant assignment of compute resources, which explains the 

observed speed up in execution relative to the traditional IaaS models. Instead, IaaS environments, as also 

noted by Armbrust et al. (2010), commonly incur overhead of virtual machine setup and configuration, 

resource allocation, and manual machine configuration, all of which can cause some delay, particularly for 

short-duration workloads. 

The difference between IaaS and FaaS configurations seen in CPU usage continues to reinforce their distinct 

profiles of operation. Although the values for both IaaS platforms were higher, these values must be used 

cautiously. Increased use indicates that resources that were assigned were used at a more involved level during 

task completion. however it can also be the result of inefficiencies in autoscaling and workload distribution. 

According to Fernandez, Pierre and Kielmann, 2014 autoscaling in heterogeneous cloud infrastructures can 

suffer from resource allocation suboptimality if not implemented properly. This is consistent with the current 

findings that show FaaS models, which consumed fewer CPU overall, could execute jobs quicker, marking their 

efficiency on task-oriented executions. 

Memory utilization trends provide additional understanding on the efficiencies in operation of FaaS. (In 

accordance with the research by Mavridis and Karatza (2017) that presented Spark’s in-memory processing as 

a performance enabler, the current results indicate that FaaS environments are more efficient in memory use 

than IaaS). The much reduced memory expenditure when compared to FaaS models is in keeping with the 

serverless execution model where each function is not only short-lived, but also stateless, with the aim of 

reducing memory footprint. By comparison, even IaaS deployments – which would provide additional 

flexibility – could cause underutilization of memory or inefficient storage maintenance owing to the static 

allocation of resources. 

From cost analysis, there were also meaningful patterns. FaaS models had the least cost per task, especially on 

AWS, and GCP aligning to an earlier study (Hashem et al. 2015) highlighting how using cloud elasticity in big 

data environments is cost effective. Serverless models are pay-as-used and pay-for-compute time, and are 

therefore best for intermittent or spiky job types. On the other hand, IaaS models are based on charged reserved 

resources, irrespective of their utilization, thereby causing the possible cost inefficiencies. These findings 

support the importance of deliberate workload profiling in choosing cloud deployment models whereby Singh, 

R. and Reddy (2015) state this in their survey of big data platforms. 

Throughput performance was significantly better in FaaS environments, further supporting their role in 

processing of real time and high volume data streams. The findings are especially applicable to the use cases, 

which involve streaming data analytics or fast ingestion situations (as described by Grolinger et al (2013) and 

García-García et al (2020)). These scholars have highlighted the role of throughput in big pipelines, particularly 

in such cases as IoT analytics and services based on location where latency and responsiveness are essential. 

The high throughput delivered in FaaS configurations also hints at a possibility of incorporating serverless 

models into spatial and temporal analytics workflows. 

This does not mean that the FaaS systems are always the best. The reduced level of CPU consumption, along 

with the lack of configurability, may result in performance difficulties in computationally demanding tasks or 

those needing a persistent state. For such workloads, IaaS continues to be a relevant and in certain cases 

inevitable decision. Such an observation goes with the caveats cited by Baldini et al. (2017) who warned against 

overgeneralizing the benefits of serverless computing without attending to workload characteristics. Moreover, 
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Ye et al. (2020) and Sun et al. (2014) raise some legitimate concerns about security and data privacy on public 

cloud platforms, particularly in serverless environs where multitenant and fleeting data conditions add to 

control complexity. 

Also exposed from the divergence of performance across platforms are vendor-specific optimizations. AWS 

maintained goodше performance along all FaaS and IaaS metrics, arguably because of its rather mature 

infrastructure while also optimizing the runtime for Spark and Lambda functions. Azure, by comparison 

performed relatively poorer in both the IaaS and FaaS dimension, implying that tuning and orchestration both 

play crucial roles in meeting desirable levels of performance. Such platform disparities mirror those concluded 

by Kaisler et al. (2013) that cloud performance is not exclusively dependant on service model, but also 

ecosystem maturity and configuration efficiency. 

The other implication of this study relates to strategic deployment planning. Although serverless computing is 

good for both cost and speed, it is less ideal in covering long-duration workflows, complicated job 

dependencies, or operations with fine-grained system command. Even though IaaS is resource intensive it does 

provide the customization and persistence required in such tasks. Therefore, the best results can be achieved 

using a hybrid strategy (the responsiveness of FaaS and robustness of IaaS merged) especially in multi-stage 

data analytics pipelines. This combined approach is justified by Armbrust et al. (2010), who proposed an 

approach to modular composition of cloud services as a means of performance optimization for varying 

workloads. 

In synthesis, the experimental results of this study not only validate known theories on performance of big data 

analytics in the cloud but also offer new understandings on the subtle compromises of cloud service models. 

The results confirm FaaS as a high throughput, cost effective way to deploy modular time sensitive workloads, 

and reinforce IaaS as a strong option for intensive or persistent data analytics processing. This is inline with 

the big picture direction for cloud computing to leverage work load specific optimization and smart 

orchestration. 

 

Conclusion and Future Work 

 

This research offers a complete experimental assessment of the cloud computing models; in particular, IaaS 

and FaaS plans to running big data analytics workloads on the three leading clouds: AWS, Azure, and GCP. 

Through such benchmarking of performance against five key metrics – execution time, CPU utilization, 

memory usage, cost per task and throughput – the research provides practical observations on the role of 

architectural decisions on the efficiency of operation, cost-effectiveness, and scalability in cloud-based analytics 

systems. 

The results clearly demonstrate strong characteristics of serverless (FaaS) models wherein they repeatedly beat 

IaaS in execution time, memory efficiency, throughput and cost per task. These results support the increase in 

the Serverless computing implementation on burst-focused, stateless, and modular types of workloads in big 

data environments. At the same time, IaaS showed more CPU utilization and may be more tailored for a 

prolonged Computation or a capacity-demanding job, which needs persistent state, and fine control. The 

performance vary between the cloud vendors also highlight the need for platform specific optimizations and 

configuration practices, with AWS leading overall and azure lagging behind by several orders of magnitude. 

By experimentally backing up these performance trends, the study furthers the existing literature promoting 

workload-based cloud methods of deployment. It supports the fact that there is no single optimal model, and 

hybrid deployment (combination of elasticity of FaaS and the robustness of IaaS) can deliver more capable 

solutions for challenging analytics pipelines. Also, the study reinforces cost modeling, execution efficiency and 

throughput practical implications of cloud-native big data system designers. 

However, there exist several limitations providing for-future research paths. First, in the current assessment 

standardized workloads and synthetic datasets were employed. Although such an approach allowed for 

consistent benchmarking, the application-specific scenarios (financial fraud detection, genomic sequencing, 

real-time sensor monitoring or others) together with the real-world datasets may indicate the additional factors 

that impact performance and scalability. At its next stage, it is recommended that diverse datasets are used, 

and the evaluation is carried out on domain-specific analytics use cases. 
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Secondly, the research had five fundamental metrics of performance. Further research can extend this realm 

by combining such factors as energy efficiency, environmental impact, latency of data transfer, throughput of 

I/O on data storage, adherence to service-level agreements (SLA). A multi-objective evaluation framework will 

be a more accurate representation of the complex trade-offs realized by organizations rolling out data analytics 

on cloud. 

Third, static configurations over providers were used in the research to ensure a fair contrast. However, there 

is still scope for improving performance through advanced orchestration tools, such as kubernetes, auto-tuners 

and those with underlying principles of intelligent resource provisioning. Investigating the effect of such tools, 

together with AI-powered orchestration engines could increase elasticity in clouds, minimize operational 

expenditures and optimyze throughput mainly for enterprise-class systems. 

Finally, future researches should dig deeper in to the security, compliance and data governance models, 

especially when privacy regulations become tighter. Such emerging methods of confidential computing, 

federated analytics, and differential privacy can be potential avenues for desirably incorporating privacy 

preservation into the cloud big data designs. 

Finally, this research shows that cloud computing; a strategic and flexible solution, can provide cost-effective 

solutions to big data analytics. If organizations match the characteristics of workload to suitable deployment 

models, great performance, agility, and utilization of resources can be realized. The constant development of 

cloud platforms, analytics frameworks, and smart orchestration tools will continue to reshape how things are 

done and this presents an exciting and important frontier yet to be furthered explored. 
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