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Since Bitcoin's inception, the non-custodial financial and programmable aspects of 

blockchain technology have garnered significant global attention, akin to other 

groundbreaking innovations. Blockchain is a transparent and decentralized ledger that 

prioritizes immutability, transparency, decentralization, and privacy. Its potential 

extends to large-scale, beneficial applications across various sectors, encompassing 

healthcare, supply chain management, logistics, the Internet of Things (IoT), and more. 

Many industrial applications make use of permissioned blockchains. However, 

blockchain still faces inherent and external challenges. While permissioned 

blockchains are suitable for many use cases, they do have limitations, especially in 

terms of scalability and throughput.  

In this paper, the authors propose implementing the proposed method by Swathi and 

Venkatesan using tPBFT (trust Practical Byzantine Fault Tolerance) instead of PBFT 

(Practical Byzantine Fault Tolerance) to improve the scalability and performance of the 

blockchain. The Hyperledger Fabric framework is conducted for the proposed method 

within the assessment of scalability, considering varying transaction volumes, and it 

demonstrates an enhancement in scalability. This work addresses the need for 

blockchain systems to evolve and adapt to meet the demands of various industries and 

applications, acknowledging that scalability is a key factor in their success. 

Keywords: Blockchain, Improve Scalability, PBFT, tPBFT, Consensus mechanisms, Nodes, 

Hyperledger fabric. 

 
INTRODUCTION 

In traditional financial systems, every transaction necessitates verification by a third party. Banks and other financial 

institutions are responsible for verifying transactions when customers want to use their credit or debit cards to 

purchase anything at a marketplace. Even in cases where a buyer opts for a cash payment, the process necessitates 

withdrawing money from a bank, emphasizing that a third party always plays a role in the validation or verification 

of the transaction. The fundamental goal of the technology of blockchain is to create a decentralized infrastructure. 

Hence, the participation of a third party tends to centralize all transactions thus an enduring risk of a single point 

failure is introduced. This can be achieved through either a permissionless or a permissioned approach, both of which 

aim to create a decentralized infrastructure. In the case of cryptocurrency, therefore, public or permissionless 

blockchain is utilized whereby any person may take part in executing transactions. On the other hand, permissioned 

blockchain networks allow the network to choose certain individuals who can take part in block validation process. 

Such networks are often utilized within secure networks or private enterprises. This methodology results in the 

establishment of a distributed ledger that records transactions comprehensively, maintaining a detailed history of 
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each verified transaction. Additionally, it provides a shared platform that allows users to observe each other's 

transactions without the need for third-party intermediaries. Furthermore, this blockchain technology upholds the 

anonymity of all user data and transactions, ensuring that each system user possesses a copy of the perpetually 

expanding ledger [1]. In a permissioned blockchain, every participating peer is tasked with executing each 

transaction, maintaining a ledger, and engaging in the consensus process, which includes fault-tolerant mechanisms. 

However, this approach has limitations, particularly when it comes to supporting private transactions with secret 

contracts. Hyperledger Fabric stands out as among the best choices for providing a secure and adaptable foundation 

for industrial blockchains, it often utilizes the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm. 

Despite the numerous advantages of blockchain technology, certain factors have held back its full-scale adoption in 

various industries. One of the prominent challenges is scalability. Scalability is referring to the ability of a system to 

handle increased volume of the work and accommodate its expansion. It is a crucial concern for organizations looking 

to leverage blockchain technology. As industries seek to integrate blockchain into their operations, addressing 

scalability becomes a vital item on their priority list [2, 3].   

The choice to implement trust Practical Byzantine Fault Tolerance (tPBFT) over PBFT in this article was driven by a 

specific performance advantage, when the network expands to include more than 30 nodes, tPBFT demonstrates 

significantly improved performance compared to PBFT, this improvement is particularly evident in areas such as 

reduced node communication overhead, enhanced consensus effectiveness, and increased scalability. 

(Croman et al., 2016) [4] explored how Bitcoin's current distributed overlay architecture is limited in its ability to 

support much greater throughputs and reduced latencies by critical and arbitrary constraints. Their findings suggest 

that block size and interim reparameterization be considered as a first step toward achieving high-load blockchain 

norms for the future. Additionally, significant progress will necessitate a thorough reevaluation of specialist 

methodologies, this strategy is in the process of developing a well-structured perspective on the design space for such 

situations. 

(Wang et al., 2017) [5] shown how challenging it is to scale permissioned blockchain apps to effectively service a 

large number of clients without any problems. It gives an explanation of Blockbench, the framework for analyzing 

private blockchains. The author provides a fair way for correlating for various phases and facilitates a deeper 

understanding of other frameworks. 

(Tuan et al., 2017) [6] They carried out a Blockchain evaluation that assessed such parameters as throughput, 

resilience, latency, and scalability to internal faults, their study included a comprehensive evaluation of Hyperledger 

Fabric, Parity, and Ethereum, three of the most famous blockchains that are private. Their results indicate that these 

frameworks are still some distance away from replacing traditional database frameworks commonly used for 

conventional data management, furthermore, the assessment of these three frameworks in terms of structural 

decisions at different stages of the blockchain product stack reveals issues related to their execution. 

(Baliga et al., 2018) [7] established an evaluation technique in which they exposed Fabric to various workload 

configurations to examine its throughput and latency. The authors modify various transaction and chain code settings 

and investigate how they affect latency using a series of lower size benchmarks designed specifically for Fabric. 

(Gorenflo et al., 2019) [8] rebuilt the Hyperledger Fabric permissioned blockchain infrastructure to increase 

exchange capacity from 3,000 to 20,000 trades per second. They adjusted the parameters governing computation 

and I/O overhead, focusing on resolving the execution bottlenecks that are currently present in Hyperledger Fabric. 

The rest of this study is structured as follows: Section 2 provides the policies and procedures, Section 3 describes the 

Hyperledger Fabric v2.0, Section 4 presents the suggested method, Section 5 discusses the findings and analyses, and 

Section 6 conclude the article. 

POLICIES AND PROCEDURES 

In this section, we provide definitions for key terms related to this work: 

• Consensus: These methods ensure the integrity and correctness of records in a distributed ledger. 

Consensus is a fundamental aspect of a distributed ledger; it is responsible for validating the legitimacy of all 

transactions and maintaining a consensus on the current state of the ledger within the network [9]. 

• Proof of Work (PoW): This is the consensus mechanism employed by public blockchains, such as the one 

used by Bitcoin. Various other consensus methods are available, including Practical Byzantine Fault Tolerance 

(PBFT), Proof of Stake (PoS), Proof of Authority (PoA), Proof of Capacity (PoC), and many others. 
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• Smart contracts: These digital counterparts of real-world contracts store a computer program within the 

blockchain. When funds are received, a smart contract acts as an escrow, releasing the funds upon the completion of 

specific objectives. For instance, in project execution, sponsors can transfer funds to the smart contract. If the project 

reaches its funding goal, the smart contract disburses funds to the project's author. Conversely, if the project doesn't 

raise enough money within the designated timeframe, funds are automatically returned to the backers. The 

immutability and distribution of the blockchain containing the smart contract ensure its reliability. The system can 

define various functions based on business logic [9, 10]. 

HYPERLEDGER FABRIC V2.0 

The platform known as Hyperledger Fabric is designed to facilitate distributed record arrangements with a focus on 

privacy, robustness, flexibility, and versatility. It operates within a private framework and aims to simplify the 

complexity and unpredictability found in the financial ecosystem while supporting the use of pluggable components. 

It is currently operating version 2.x. and recent years have witnessed updates to Hyperledger Fabric. In a blockchain 

network, a limited number of nodes collaborate to process transactions. In the case of Hyperledger Fabric, which 

operates as a permissioned network, nodes are assigned unique identities by the Membership Service Provider 

(MSP). These nodes can run on physical hardware, containers, or virtual machines. Hyperledger Fabric categorizes 

nodes into three types: peers, orderers, and clients. Notably, there has been a significant change regarding peers in 

Hyperledger. The peers have been categorized into three groups: endorsers, consenters, and committers. Peers are 

responsible for executing and maintaining transactions within the ledger. Peers in the network serve multiple roles 

within the Hyperledger Fabric ecosystem. They receive ordered state updates in the form of blocks from the ordering 

service and store these blocks in the ledger. By default, all peers also function as committers, committing transactions 

to the ledger. Additionally, peers take on the role of endorsers, executing smart contracts and simulating transactions 

to validate them. Consenters are responsible for verifying whether peers have exchanged assets correctly. Orderers, 

on the other hand, manage the ordering of transactions, and the collection of orderers is referred to as the ordering 

service. Finally, end-users act as clients, sending transaction requests to peers. Clients coordinate orders and 

committers during the verification process [11]. 

3.1 Hyperledger Fabric Architecture Overview 

In the network illustrated in Figure 1, three organizations (O1, O2, and O3) collaborate to establish a distributed 

ledger. Each of these organizations acts as a validating peer. Among the validating peers, O1, in this case, holds the 

role of the network initiator. Clients (C1, C2, C3) transmit transaction requests to validating peers, who then validate 

and broadcast the transactions. Peer node P1 is responsible for maintaining a copy of ledger L1, which is connected 

to C1. In a similar manner, peer node P2 maintains a copy of ledger L2 connected to C2, and peer node P3 replicates 

ledger L3 connected to C3. Channels, such as C1 and C2, are managed by channel configurations (CC1 and CC2, 

respectively), with O1, O2, and O3 having control over the channels according to policy guidelines. The network also 

includes an order placement service that serves as a network management hub and operates using the system 

channel. Every organization operates its own designated Certificate Authority (CA), and these CAs are responsible 

for delivering certificate services to their respective counterparts [11]. 

 

 

 

Figure (1) Overview of the Hyperledger Fabric system [2]. 
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To facilitate the transaction flow within Hyperledger Fabric and maintain data confidentiality, a configuration 

involving three endorsing peers and one committing peer is utilized, as depicted in Figure (2). The process unfolds 

as follows: 

• Proposal Request: The client application initiates a request to trigger a chaincode function. This request is 

then transmitted to endorsing peers that are affiliated with authorized organizations.  

• Endorsement: The endorsing peers receive the proposal request, replicate the transaction, and temporarily 

store sensitive data. They then provide the client application with the proposal response. The response includes 

the supported read/write set and a hash of the keys involved in the transaction. 

• Transaction Submission: The client application sends the transaction, along with its hash, to the ordering 

service. 

• Block Distribution: The ordering service adds the hashed transaction to a block and disseminates this block 

across the network's peers. 

• Data Validation: During the commit phase, the peers validate the data by determining if they have permission 

to access it. 

• Data Verification: Peers also verify whether their data has been received in the temporary data store. If they 

have the necessary permissions, they access and validate the data; otherwise, they collect and evaluate it from 

their peer counterparts. 

• Data Transfer: After successful verification, a copy of the material is transferred to private storage for 

safekeeping, and the data in temporary storage is destroyed. This process ensures the confidentiality of sensitive 

data while allowing for the secure execution of transactions in the Hyperledger Fabric network [12]. 

THE PROPOSED METHOD 

 

 

 

Figure (2) The transaction flow within the Hyperledger Fabric system [2]. 

Figure (3) The proposed method [2]. 
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The architecture depicted in Figure (3) serves as a valuable tool for assessing scalability according to latency and 

transaction throughput. Scalability is achieved when either the throughput increases or remains consistent as the 

number of transactions grows, or when latency remains constant or decreases with an increasing number of 

transactions [12]. Scalability refers to a system's ability to handle increasing workloads and growing demands. Users 

can choose to implement this suggested framework based on their specific business use cases. By altering at least one 

independent variable and measuring dependent components, the framework's performance can be evaluated to 

assess its scalability. Real-world production trials involve adjusting measurements, and ongoing studies may see 

changes to some metrics. Distributed machine learning (ML) can provide a solution to address scalability challenges.  

The term "distributed machine learning" refers to an approach designed for multi-node systems that enhances their 

efficiency, capacity, and accuracy, particularly for larger input data sets. Distributed machine learning algorithms can 

effectively handle extensive data sets, meeting accuracy and computational requirements while providing scalability 

[13]. Scalability challenges can be addressed by leveraging Apache Spark MLlib, an open-source cluster processing 

system designed for real-time data processing. The primary advantage of Apache Spark lies in its in-memory cluster 

computing, which significantly accelerates various applications. Spark offers a programming interface for large-scale 

data parallelism and fault tolerance for non-critical failures. It is versatile, capable of handling various workloads, 

including streaming, iterative computations, batch applications, and complex queries. Figure (3) illustrates how 

blockchain has been integrated with Apache Spark, providing a comprehensive standard for multiple transactions 

and enhancing workflow efficiency. This work integrates runtime code and memory management outside of the Java 

virtual machine (JVM) to optimize the efficiency of SQL operations and data. Certain aspects of transaction validation 

can be parallelized using Spark. Fabric's transaction validation service has been revamped to incorporate Spark, 

enabling the parallelization of as many validations as feasible [14]. Blockchain comprises four layers: the application 

layer, network layer, consensus layer, and contract layer. Figure (4) demonstrates how Spark interacts with the 

application and consensus layers of the blockchain. When a transaction proposal is received, the order determines 

whether the client has authorization to submit the transaction. The individual transaction requests are then sent by 

the order to the Kafka cluster, where each fabric is mapped to Spark to create transaction orders. Before mapping, 

the Random Forest machine learning algorithm is applied to transactions due to its quick learning curve and high 

accuracy. This assists transactions in making channel decisions, enabling simultaneous execution. Ultimately, these 

transactions are consolidated into a block based on the maximum number allowed in a block [15], creating a distinct 

collection of transactions. Figure (5) illustrates the fabric and Spark mapping process along with the transaction 

workflow. The scalability of the system is clear, as extra transactions may be accommodated due to the simultaneous 

execution process. 

 

 

 

 
Figure (4) The blockchain's structure within the proposed method [2]. 
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RESULTS AND ANALYSIS 

A private mini blockchain network was established at NIT Karnataka to evaluate and validate the proposed solution 

directive. This network was built using Hyperledger Fabric, which was run on a 64-bit Ubuntu operating system with 

8 GB of RAM. The most recent versions of the blockchain framework and Hyperledger Fabric using tPBFT were used 

to conduct the testing, the versions used were 1.4.0 and 2.0, respectively. The assessment considered three different 

companies. A Certificate Authority client (CA), a Membership Service Provider (MSP), and a peer were included in 

each of the N organisations that made up the network. As shown in Figure (1), a single channel connected all the 

companies. The experiments' chain code was developed in the Golang programming language. Hyperledger Fabric 

offers two distinct ordering methods: SOLO and a Kafka-based ordering service. Since SOLO is primarily for testing 

and not intended for real-world use, the tests in this work employed Kafka. The ordering service comprised a 

configurable number of Zookeeper nodes and Kafka servers. ZooKeeper, a distributed program, enables efficient 

synchronization and shared data management among nodes. To avoid split decisions, the number of Zookeeper nodes 

must be odd. For trust fault tolerance, a minimum of four Kafka servers was recommended. The system's hubs 

collaborated to form the blockchain network, with each hub's structure, design, and hardware differing as needed 

[16]. The test configuration included hubs responsible for performance evaluation, which served as clients capable of 

performing two types of tasks: load-generating clients and monitoring clients. Load-generating clients submitted 

transactions on behalf of end-users, while monitoring clients could query their peers and receive transaction progress 

updates [15]. The test also acquired and analysed the datasets required to evaluate performance indicators. Figure 

(6) displays the relationship between the number of transactions and confirmation time. 

 

 

 

 

 

Figure (5) The transaction workflow as well as the mapping procedure between Fabric and Spark [2]. 

Figure (6) The relationship between the number of transactions and confirmation time. 
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We accept transactions in the range of 0 to 50000 as shown in Figure (6). Seconds have been measured as the 

confirmation time. It is evident that the confirmation time has been essentially constant for 30000 transactions. The 

confirmation times then gradually get longer as the number of transactions rises above 30000 transactions. These 

numbers were obtained from the experimental set-up described above. The results are for transactions beyond 

30000, confirmation times dramatically rise. The system's throughput rises as the number of transactions rises, but 

at the expense of a rise in network latency. The overhead approach for extracting more transactions into blocks 

becomes more complicated as the number of transactions increases. 

Figures (7) & (8) display throughput before and after proposed solution implementation using tPBFT algorithm 

respectively.  

 

  

Figure (7) Throughput before proposed solution 

implementation. 

Figure (8) Throughput after tPBFT proposed 

solution implementation. 

The throughput of a blockchain infrastructure is determined by the number of validated transactions executed per 

second. Most contemporary payment systems can typically handle an average of around 2,000 transactions per 

second. Hyperledger Fabric systems typically accomplish a throughput of 3,000 transactions per second, whereas 

blockchain systems based on Bitcoin only manage an average of seven transactions per second. Increasing the block 

size and network transaction demand can lead to hard forking in a blockchain. Although one way to enhance 

throughput in Hyperledger Fabric is to increase the block size, doing so poses risks to the decentralization and 

security of the blockchain, making it an unrealistic solution. In line with the proposed solution direction, Apache 

Spark was used to address this challenge. Figures (7) and (8) clearly demonstrate that the proposed framework 

significantly decreases the workload on Fabric. The results obtained were as follows: The Hyperledger Fabric 

demonstrates robust transaction throughput up to 30,000 transactions. The proposed solution using tPBFT 

algorithm increased the blockchain's throughput to more than 30,000 transactions. The inclusion of additional 

transactions in the system was facilitated by the implementation of parallelism in the solution directive, which 

simultaneously reduced overhead. 

Figures (9) & (10) display latency before and after proposed solution implementation using tPBFT algorithm 

respectively.  

  

Figure (9) Latency before proposed solution 

implementation. 

Figure (10) Latency after tPBFT proposed solution 

implementation. 
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The latency of a blockchain network is influenced by the time required for blocks to propagate across the network, 

with transaction verification time directly affecting network latency. Faster transaction confirmation times result in 

lower latency and faster network transmission.  

PBFT experiences increased latency when there are more than 30 nodes, while tPBFT performs better at reducing 

latency. The following details become clear when analyzing and comparing the data in Figures 9 and 10: Up to 30,000 

transactions, Hyperledger Fabric demonstrates a reasonable transaction latency; however, the latency abruptly 

increases beyond this point. The growing block size may be contributing to the increase in latency, as it implies that 

as the volume of transactions on the system increases, so does the delay. Network congestion resulting from increased 

network capacity or the need for additional resources to propagate larger blocks can also lead to higher latency. These 

findings emphasize the critical role of throughput, scalability, and latency in the efficiency of blockchain systems and 

offer insights into how different factors impact the efficiency of these systems.  

The findings mentioned above clearly demonstrate that the implementation of the suggested framework by using 

tPBFT effectively maintains stability in terms of both throughput and latency, even when dealing with up to more 

than 30,000 transactions. Spark's capacity to parallelize the transaction processing significantly contributed to 

handling more transactions, resulting in improved scalability. This increased scalability is also reflected in the 

reduced confirmation time. The use of Spark as the foundation for the blockchain allowed the consensus mechanism 

to efficiently handle a greater volume of transactions. Consequently, the consensus mechanism in Hyperledger Fabric 

using tPBFT exhibited superior scalability performance, whereas in PBFT, scalability would start to decline when the 

number of nodes exceeded 30. The test findings clearly demonstrate  improvements in characteristics like as 

scalability, transaction latency, transaction throughput, , and confirmation time compared to their baseline 

performance. 

CONCLUSIONS 

Over the past decade, blockchain technology has made rapid advancements, bringing us closer to its integration into 

everyday life. The adoption of blockchain technology has steadily increased, attracting a growing number of users. 

However, despite its progress, blockchain's performance still requires significant improvements, especially when 

compared to mainstream CPUs. The current architecture often encounters system bottlenecks, prompting specialists 

to carefully consider solutions to the scalability challenge. The proposed method using tPBFT uses distributed 

machine learning techniques to handle scalability issues in an innovative way, hence tackling these challenges. 

Notably, the suggested technique using tPBFT performs effectively even when the blockchain system comprises more 

than 30 nodes and experiences a higher volume of transactions.These advancements indicate a promising direction 

for enhancing blockchain technology and making it more robust and scalable for various applications and user needs. 
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