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This study presents a hybrid deep learning approach utilizing Convolutional Neural Networks 

(CNN) and Long Short-Term Memory networks (LSTM) to estimate Direct Normal Radiation 

(DNR) and Diffuse Solar Radiation (DSR) from Global Solar Radiation (GSR). Leveraging 

temporal patterns and spatial dependencies in solar radiation data, the proposed model aims to 

provide accurate predictions of solar components critical for solar energy systems. Our model is 

trained and validated using a real-world dataset comprising daily solar radiation measurements. 

The CNN-LSTM model outperforms traditional machine learning methods in both accuracy and 

robustness. 

Keywords: Solar radiation, renewable energy, estimation, CNN, LSTM, CNN-LSTM, hybrid 
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INTRODUCTION 

Solar radiation and daylight are vital for sustaining life on Earth. They play a key role in shaping the Earth’s 

meteorological patterns and driving renewable energy systems. Estimating the amount of solar radiation reaching 

the Earth's surface is thus essential for energy planning, environmental studies, and climate modeling [1-5]. 

In many regions, direct measurements of solar radiation are unavailable due to the high cost and limited coverage of 

instruments like pyranometers, solarimeters, and pyrheliometers. Additionally, inaccuracies in sensors and missing 

data further complicate reliable assessments. As a result, researchers have developed various models to estimate 

global solar radiation (GSR), including empirical, physical, and soft computing approaches [6-10]. 

In recent years, artificial intelligence (AI) and machine learning (ML) techniques—such as Artificial Neural Networks 

(ANN)[11-15], Support Vector Machines (SVM), Extreme Learning Machines (ELM)[16-20], and Gaussian Process 

Regression (GPR)—have been widely applied for solar radiation modeling. Many of these models use meteorological 

parameters such as air temperature, sunshine duration, humidity, and wind speed as inputs. Studies conducted 

across diverse locations have shown that ANN-based models, in particular, can yield high accuracy even when only 

limited meteorological data are available, Table 1 provides an overview of relevant prior work. 

In this work, we propose a data-driven approach for estimating the direct normal radiation (DNR) and diffuse solar 

radiation (DSR) components from GSR, using only the day-of-the-year (DOY) as input. This approach eliminates the 

need for meteorological parameters and simplifies the prediction process [21-23]. 

To this end, we develop and compare two deep learning models: the Convolutional Neural Network (CNN) and the 

Long Short-Term Memory (LSTM) network. While CNNs are known for their ability to extract local patterns and 

features, LSTMs are effective at learning long-term dependencies in time series. Both models are trained on measured 

data collected from the Ghardaïa region (Algeria) during 2013–2014 and tested on 2015 data. Their performances 

are compared using standard metrics to determine the most effective architecture for solar radiation component 

estimation using a minimal input feature set. 
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The remainder of the paper is organized as follows: Section 2 outlines the theoretical background of CNN, LSTM, and 

other relevant methods. Section 3 describes the study site and dataset. Section 4 presents results and discussions. 

Finally, Section 5 concludes the study and provides suggestions for future work. 

Table.1 Summary of Related Work 

Author(s) Method(s) 

Used 

Input Parameters Target Location Key Results 

Behrang & 

Assareh [24] 

ANN T, RH, SS, EV, WS GSR Iran Developed two ANN 

models with meteorological 

inputs. 

Rahimikhoob 

[25] 

ANN Air temperature GSR Semi-arid 

region 

Accurate GSR estimation 

using limited inputs. 

Yadav & 

Chandel [26] 

ANN SS, T_max, Month, 

SS_theoretical 

GSR India Trained 7 ANN models; 

best performance with 4 

inputs. 

Rehman & 

Ohandes [27] 

ANN T, RH GSR Abha, 

Saudi 

Arabia 

ANN estimated GSR 

accurately with only T and 

RH. 

Lam et al. [28] ANN Sunshine Duration GSR 40 

Chinese 

Cities 

R² ≥ 0.82 across different 

climate zones. 

Asl et al. [29] ANN Various (not 

specified) 

GSR Dezful, 

Iran 

APE = 6.08% 

Ramedani et 

al. [30] 

MLP Neural 

Network 

T_max, RH, SS, 

Precipitation 

GSR Tehran, 

Iran 

RMSE = 3.09 

Mellit & Pavan 

[31] 

MLP Neural 

Network 

Daily avg GSR, 

T_avg 

GSR Trieste, 

Italy 

Optimal config: 3 inputs, 2 

hidden layers, 24 outputs. 

Voyant et al. 

[32] 

ANN Endogenous + 

exogenous data 

GSR Corsica, 

France 

Relative RMSE: 0.5% and 

1% 

Koca et al. [33] ANN Latitude, Longitude, 

Altitude, Month, SS, 

Cloud 

GSR Turkey Compared models with 

different numbers of 

inputs. 

This Work 

(Proposed) 

CNN, LSTM Day-of-Year (DOY) DNR, 

DSR 

Ghardaïa, 

Algeria 

Comparison of CNN and 

LSTM with minimal input 

(DOY). 

. 

METHODOLOGY 

Data Description 

The study utilizes a dataset comprising daily solar radiation measurements collected over multiple days. The key 

variables include: 

• Day of Year (DOY): Sequential day count (1–365/366) to capture seasonal variations. 

• Global Solar Radiation (GSR): Total solar energy received on a horizontal surface (Wh/m²). 

• Direct Normal Radiation (DNR): Beam radiation received perpendicular to the sun’s rays (Wh/m²). 

• Diffuse Solar Radiation (DSR): Scattered solar radiation due to atmospheric conditions (Wh/m²). 

 

Data Preprocessing 

To enhance model performance, the following preprocessing steps were applied: 

• Normalization: All radiation values were scaled to a [0, 1] range using min-max normalization to ensure 

uniform feature weighting [34]. 
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• Windowing: A sliding window approach generated sequential input-output pairs, capturing temporal 

dependencies in GSR data [35]. 

• Splitting: The dataset was partitioned into training (70%), validation (15%), and testing (15%) subsets to 

facilitate robust model evaluation [36]. 

 

Convolutional Neural Network (CNN) Architecture 

Originally developed for computer vision tasks [37,38], Convolutional Neural Networks have demonstrated 

remarkable versatility in time-series forecasting applications. Their effectiveness has been particularly notable in 

energy prediction systems [39], photovoltaic system optimization [40], and renewable energy applications [41], as 

well as in pattern recognition domains such as speech and facial recognition [42]. 

The fundamental CNN structure employs a hierarchical feature extraction approach through: 

1. Convolutional Layers: These apply trainable filters to detect local temporal or spatial patterns 

2. Pooling Layers: Which progressively reduce feature map dimensionality while preserving essential 

information [43] 

3. Fully Connected Layers: That integrate extracted features for final predictions [44,45] 

A distinctive strength of CNNs lies in their capacity for automated feature learning, significantly reducing the need 

for manual feature engineering while enabling robust end-to-end training [46-48]. For photovoltaic power 

forecasting specifically, CNNs excel at identifying: 

• Localized temporal dependencies in irradiation patterns 

• Short-term fluctuations in solar energy availability 

• Non-linear relationships between meteorological variables and power output 

The schematic representation of our implemented CNN architecture appears in Figure 1. This configuration was 

specifically optimized for solar radiation prediction through extensive hyperparameter tuning and validation testing. 

 

Figure 1. CNN architecture 

Long Short-Term Memory (LSTM) Architecture 

Long Short-Term Memory networks, first proposed by Hochreiter and Schmidhuber [47], represent an advanced 

variant of Recurrent Neural Networks (RNNs) specifically engineered to overcome the vanishing gradient problem 

inherent in conventional RNN architectures. The LSTM's distinctive gating mechanism enables exceptional 

performance in modeling long-range temporal dependencies, making it particularly suitable for sequential data 

analysis and time-series forecasting applications. 

 

The fundamental building block of an LSTM network consists of: 

Memory Cell: Maintains state information across arbitrary time intervals 

Gating Mechanisms: 

• Input Gate: Regulates the flow of new information into the cell state 
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• Forget Gate: Determines which historical information to retain or discard  

• Output Gate: Controls the cell state's influence on hidden outputs [49,50] 

This sophisticated architecture provides three key advantages for solar forecasting: 

1. Selective Memory Retention: The network can automatically learn which temporal patterns are relevant 

for prediction  

2. Long-Term Dependency Modeling: Maintains information over hundreds of time steps without signal 

degradation  

3. Adaptive Learning: Dynamically adjusts to varying patterns in seasonal and diurnal solar cycles 

 

The complete LSTM cell architecture implemented in our study is illustrated in Figure 2, with the following 

implementation details: 

• Peephole connections were evaluated but not implemented due to computational constraints  

• Coupled input/forget gates were tested for model simplification  

• Gradient clipping (norm=1.0) was applied during training for stability  

• Layer normalization was incorporated to accelerate convergence 

The LSTM's demonstrated capability to capture complex temporal patterns in solar radiation data makes it 

particularly valuable for both short-term (hourly) and medium-term (daily) forecasting applications. 

 

 
Figure 2. LSTM architecture. 

 

Hybrid CNN-LSTM Architecture 

The CNN-LSTM architecture represents a powerful hybrid model that synergistically combines the strengths of 

convolutional and recurrent neural networks for enhanced time-series forecasting. This architecture has 

demonstrated superior performance in various temporal prediction tasks by effectively capturing both local patterns 

and long-term dependencies in sequential data [51,55]. 

 

Architecture Overview: 

1. Convolutional Front-End: 

• Multiple 1D convolutional layers extract hierarchical local features 

• Kernel sizes optimized to capture relevant temporal patterns (typically 3-5 timesteps) 

• ReLU activation functions introduce non-linearity 

• Max-pooling layers reduce dimensionality while preserving essential features 
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2. LSTM Backbone: 

• Processed features are fed into LSTM layers for temporal modeling 

• Multiple LSTM layers enable learning at different time scales 

• Dropout layers (p=0.2-0.5) between LSTM units prevent overfitting 

• Optional bidirectional processing captures both forward and backward dependencies 

 

Model Architecture Diagram 

The following block diagram (figure .3) illustrates the structure of the CNN and LSTM-based prediction models:

 
Figure .3 structure of the CNN and LSTM-based prediction models 

STUDY AREA AND DATA COLLECTION 

Ghardaïa, a Saharan city situated approximately 600 km south of Algeria’s capital, lies in an arid and dry region 

(Figure 4). Its geographic coordinates are 32° 36′ N latitude, 3° 48′ E longitude, and an elevation of 450 meters above 

mean sea level. The area experiences exceptionally high solar exposure, with annual sunshine exceeding 3,000 hours 

and an average global solar radiation surpassing 6,000 Wh/m² on a horizontal surface. However, winters in Ghardaïa 

are notably harsh, with cold winds carrying snow from nearby highlands. Toward the end of winter, sandstorms 

originating from the southwest bring intense dust, often causing significant disruptions. Summers are extremely hot, 

with temperatures rising above 45°C, while winters remain relatively cool. Precipitation is scarce and minimal [56-

60]. 
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Figure 4. Location of the study area 

Ground-based measurements were collected using two ventilated CMP21 Secondary Standard pyranometers from 

Kipp & Zonen, installed on a SOLYS2 solar tracker equipped with a sun sensor, along with a CHP1 First Class 

pyrheliometer (Figure 5). These instruments are part of the enerMENA meteorological network, which operates 

across the Middle East and North Africa (MENA) region. 

Figures 6–8 illustrate the daily variations in total GSR, DSR, and DNR for the Ghardaïa region. 

 

Figure 5.  Instrumentation station for measuring the global, the direct and   the diffuse solar radiation: (1) 

Pyranometre for measuring the diffuse. (2) irradiance Pyranometre for measuring the global solar irradiance. 

(3)  Peryheliometer for measuring the directirradiance component. (4) The ball used to permanently hide the 

Pyranometer. 
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Figure 6. Variation of daily global solar radiation (GSR). 
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Figure 7. Variation of daily direct normal radiation (DNR).
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Figure 8. Variation of daily diffuse solar radiation (DSR). 
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MODELS VALIDATION  

Although the mathematical formulations of common error metrics can be found in previous studies [61,62], this 

section highlights their physical interpretation and the improvements they provide. 

In this work, six statistical metrics are used to evaluate the forecasting performance of the models: RMSE, MAE, 

normalized RMSE (nRMSE), normalized MAE (nMAE), the Coefficient of Determination (R2), and the Correlation 

Coefficient (R). 

These metrics offer a comprehensive and scale-independent evaluation of model accuracy, allowing for effective 

comparison across different algorithms. 

 

Root Mean Square Error (RMSE) 

The Root Mean Square Error (RMSE) measures the standard deviation of prediction errors, giving greater weight to 

larger errors. It is defined as: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐻𝐸 − 𝐻𝑀)2

𝑛

𝑖=1

                                                         (10) 

where: 

• 𝐻𝐸  is the estimated (predicted) value, 

• 𝐻𝑀  is the measured (actual) value, 

• n is the total number of samples. 

Lower RMSE values indicate better forecasting performance. 

 

Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) quantifies the average magnitude of errors in a set of predictions, without 

considering their direction. It is given by: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝐻𝐸 − 𝐻𝑀|

𝑛

𝑖=1

                                                    (1) 

Unlike RMSE, MAE treats all errors equally, providing a direct measure of prediction accuracy. 

 

Normalized RMSE (nRMSE) 

The normalized RMSE (nRMSE) expresses the RMSE as a percentage of the mean of the measured values, providing 

a scale-independent measure: 

𝑛𝑅𝑆𝑀𝐸 = (
𝑅𝑀𝑆𝐸

𝐻𝑀𝑎𝑥 − 𝐻𝑀𝑖𝑛

) × 100                                          (2) 

The ranges of nRMSE define the model performance as [63,64]: 

Excellent if:       nRMSE  < 10% 

Good if:       10% < nRMSE < 20% 

Fair if:       20% < nRMSE < 30% 

Poor if:                 nRMSE  > 30%  

 

Normalized MAE (nMAE) 

Similarly, the normalized MAE (nMAE) relates the MAE to the mean of the measured values: 

𝑛𝑀𝐴𝐸 = (
𝑀𝐴𝐸

1
𝑛

∑ 𝐻𝑀
𝑛
𝑖=1

) × 100                                                    (3) 

This metric also provides a percentage error independent of the data scale. 

 

Coefficient of Determination (R2) 

The Coefficient of Determination (R2) assesses how well the predicted values approximate the actual data. It is 

defined by [65,66]: 
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𝑅2 = 1 −
∑ (𝐻𝑀 − 𝐻𝐸)2𝑛

𝑖=1

∑ (𝐻𝑀 − 𝐻𝑀)2𝑛
𝑖=1

                                                              (4) 

Where 𝐻̅𝑀 is the mean of the measured values. 

An 𝑅2 value closer to 1 indicates a stronger fit between the predicted and observed data. 

 

Correlation Coefficient (R) 

The Pearson Correlation Coefficient RRR quantifies the linear relationship between the predicted and measured 

values [67-70]: 

𝑅 =
∑ (𝐻𝐸 − 𝐻𝐸). (𝐻𝑀 − 𝐻𝑀)𝑛

𝑖=1

√∑ (𝐻𝐸 − 𝐻̅𝐸).𝑛
𝑖=1 ∑ (𝐻𝑀 − 𝐻̅𝑀).𝑛

𝑖=1

                                                    (5) 

Where 𝐻̅𝐸 and 𝐻𝑀 are the mean predicted and measured values, respectively. 

An R value close to 1 signifies a strong positive correlation. 

 

RESULTS AND DISCUSSION 

Simulation was conducted using each of the three architectures—CNN, LSTM, and CNN-LSTM—on the same dataset 

to ensure a fair comparison. 

 

Table 2. The obtained statistical results  

Model 
MAE 

(W/m²) 

RMSE 

(W/m²) 
nMAE (%) nRMSE (%) R² Score R 

CNN 302.87 378.15 18.55 23.17 0.841 0.917 

LSTM 259.45 319.23 15.89 19.56 0.891 0.943 

CNN-

LSTM 
228.56 289.24 13.99 17.74 0.916 0.957 

 

As evidenced by the comparative results in Table 2, our experimental evaluation establishes a distinct performance 

hierarchy among the tested architectures, with the CNN-LSTM hybrid model significantly outperforming both 

standalone CNN and LSTM architectures across all evaluation metrics. The CNN model demonstrates a reasonable 

ability to identify short-term temporal patterns but is limited in capturing the sequential dependencies present in the 

solar radiation data. This limitation is evident in its relatively high RMSE and lower R² and correlation coefficient. 

The LSTM model exhibits improved performance over the CNN by leveraging its strength in modeling temporal 

sequences. Its ability to capture long-range dependencies allows it to deliver more accurate predictions, as reflected 

by the reduction in MAE and RMSE. However, it still lacks the capability to efficiently extract localized features which 

can contribute to improved short-term estimations. 

The CNN-LSTM model effectively combines the advantages of both architectures. It first uses CNN layers to extract 

robust localized features from input sequences, which are then processed by LSTM layers to model temporal 

dependencies over longer sequences. This hybrid structure allows the model to learn a richer representation of the 

underlying patterns in the solar radiation data. 

Visual inspections in figure 9 of the predicted versus actual DNR and DSR values confirm the quantitative results. 

The CNN-LSTM predictions closely track the observed values, showing less fluctuation and lower residuals. In 

contrast, CNN predictions exhibit larger deviations during periods of high variability, while LSTM, although more 

consistent, sometimes underestimates peak values. 
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Figure .9 simulate CNN-LSTM outputs for illustrative purposes. 

 

The superiority of the CNN-LSTM model is further emphasized by the normalized error metrics. With the lowest 

nMAE and nRMSE, it demonstrates not only high accuracy but also scalability and stability across different ranges 

of solar radiation intensity. The R² score of 0.916 and correlation coefficient of 0.957 indicate a strong linear 

relationship between predicted and actual values, which is crucial for real-time forecasting applications. 

From a practical standpoint, these results suggest that the CNN-LSTM model can be confidently employed in solar 

energy forecasting systems where both short-term responsiveness and long-term accuracy are essential. The model’s 

ability to generalize across diverse data patterns makes it suitable for deployment in different geographical locations 

and seasonal conditions. Future enhancements could involve the integration of additional meteorological inputs such 

as temperature, humidity, and cloud cover to further improve predictive performance. 

 

CONCLUSION 

This study demonstrates the effectiveness of CNN, LSTM, and their hybrid CNN-LSTM models in estimating DNR 

and DSR from GSR. Among them, the CNN-LSTM approach stands out due to its superior accuracy and capability in 

modeling both short-term and long-term temporal features. The approach successfully captures complex temporal 

and nonlinear relationships in the data, making it a valuable tool for solar energy forecasting and planning. Future 

work may include incorporating weather parameters and deploying the model for real-time prediction. 
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