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A new framework for adaptive model context protocols that improve multi-agent 
cooperation in dispersed environments is presented in this study. The suggested 
method makes use of dynamic context shar- ing mechanisms that adjust to task 
complexity, communication band- width, and computational limitations. The 
framework allows agents to negotiate the best parameters for information exchange 
by implementing a hierarchical context model with bidirectional context flow. In 
compar- ison to static approaches, the adaptive protocol lowers communication 
overhead while preserving task performance, as demonstrated by exper- imental 
evaluation in distributed sensor networks, autonomous vehicle coordination, and 
collaborative problem-solving. In order to intelligently filter information exchange, 
the framework presents context relevance scoring and selective propagation 
techniques. By providing solutions for autonomous systems functioning under 
fluctuating resource constraints, this research fills the gap between multi-agent 
collaboration and dis- tributed systems optimization. 
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1 Introduction 

Critical infrastructure is increasingly supported by multi-agent systems in a vari- ety of domains, 
from emergency response coordination to industrial automation [1]. Effective inter-agent 
communication becomes crucial as these systems be- come more complex and function in 
dynamic environments [2]. Conventional methods frequently use static protocols that are unable 
to adjust to changing circumstances, leading to contextual poverty or information overload [3]. 
One of the main obstacles to achieving smooth collaboration is the capacity to share contextual 
information selectively. Determining what to communicate, when to communicate it, and to 
whom is the difficult part, not producing information [4]. Agents working with limited processing 
power and bandwidth must make dif- ficult choices regarding information sharing. The need for 
effective multi-agent communication protocols has increased due to recent developments in 
agentic AI. Compared to traditional distributed computing systems, agentic systems are 
more autonomous and intentional, which increases the demand for complex context-sharing 
mechanisms. Domain-specific solutions or static protocols that are unable to adjust to changing 
circumstances are the main focus of current research. Although advanced information exchange 
mechanisms have been made possible by machine learning, these methods frequently demand 
excessive com- putational resources. 

Recent advancements in agentic AI systems have introduced new challenges in multi-agent 
coordination. Unlike traditional agent architectures, modern agen- tic systems exhibit greater 
autonomy, intentionality, and goal-directed behavior [7]. These systems can independently 
formulate objectives, reason about their environment, and make decisions with minimal human 
supervision. However, this increased autonomy creates novel communication challenges, as 
agents must not only share observations but also their intentions, reasoning processes, and 
planned courses of action. 
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The proliferation of large language model (LLM) based agents has further complicated 
this landscape. These agents possess sophisticated reasoning capa- bilities but often operate 
with different conceptual frameworks and represen- tation schemes [8]. When such 
heterogeneous agents collaborate, they require more than simple data exchange—they need 
mechanisms to align their concep- tual models and interpret contextual information 
correctly. Current approaches to this problem typically involve either exhaustive information 
sharing, which is computationally inefficient, or highly specialized protocols that lack 
adaptability. In light of changing task demands and system limitations, this paper presents 
Adaptive Model Context Protocols (AMCP), a framework that dynamically modifies 
context sharing. Among the main innovations are: (1) a distributed context relevance 
estimation model; (2) bidirectional context negotiation mech- anisms; (3) a hierarchical 
context representation that facilitates the sharing of multi-resolution information; and (4) an 
adaptive protocol selection algorithm. 

2 Methodology 

2.1 Hierarchical Context Modeling 

By arranging data across several levels of abstraction, the hierarchical context model makes it 
possible to share resolutions appropriately depending on task re- quirements and resource 
limitations. A directed acyclic graph with four canonical levels is used to represent context 
information: Raw Data Level: Unprocessed sen- sor readings or observations; Feature Level: 
Processed features taken from raw data [5]; State Level: Estimated environmental and agent 
states; and Semantic Level: High-level interpretations and forecasts. 

 

2.2 Bidirectional Context Flow 

AMCP implements bidirectional context flow, allowing agents to both push rele- vant 
information and request specific context types based on need [6]. The bidi- rectional flow is 
governed by a negotiation protocol enabling agents to specify their context requirements and 
capabilities: 

Algorithm 1 Hierarchical Context Construction 

1: Input: Raw observations O, computational budget B, abstraction levels L 

2: Output: Hierarchical context graph G 

3: procedure ConstRUctHiERARcHy(O, B, L) 4: G ← InitializeEmptyGraph() 

5: Craw ← ProcessRawData(O) 

6: G.AddLevel(Craw , level = 0) 

7: for l ∈ 1 to L do 

8: Bl ← AllocateResourceBudget(B, l) 9: Cprev ← G.GetLevel(l − 1) 

10: Cl ← AbstractFromLevel(Cprev, Bl) 

11: G.AddLevel(Cl, level = l) 

12: G.ConnectLevels(l − 1, l) 

13: end forreturn G 

14: end procedure 
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class ContextNegotiator  : 

def   init  ( self , agent_capabilities , 

context_hierarchy ): 

self. capabilities = agent_capabilities 

self. hierarchy = context_hierarchy 

self. agreements = {} 

 

def propose_context_agreement  ( self , recipient , 

context_needs):  

proposal  =  { 

requester: self. agent_id , 

required_context  : context_needs , 

update_frequency : 

self. determine_frequency ( context_needs), 

abstraction_level : 

self. determine_abstraction ( context_needs) 

} 

return proposal 

 

def evaluate_proposal ( self , proposal , current_load ): 

capability_match = self. match_capabilities ( proposal 

[ required_context ]) 

resource_available                  = 

self. check_resources ( current_load , proposal)  

 

if capability_match and resource_available : 

return self. create_counterproposal ( proposal) 

else: 

return  self. downgrade_proposal ( proposal) 

Listing 1.1. Context Negotiation Protocol Implementation 

 

2.3 Adaptive Protocol Selection 

An adaptive protocol selection mechanism that switches between communica- tion modes in 
response to task demands, network conditions, and computational resources forms the basis 
of AMCP. There are five defined protocol modes: 

– Minimal : Only minimally important context is shared 

– Reactive: Context provided in response to particular requests 

– Proactive: Preemptively pushing anticipated context needs 

– Comprehensive: High frequency sharing of rich context 

– Emergency: Highest priority critical context broadcast 

 

2.4 Selective Propagation 

To minimize redundant communication, AMCP implements selective propaga- tion 
mechanisms that filter context information based on relevance scoring and network topology. 
The relevance function R(ci, aj, t) evaluates the utility of con- text element ci for agent aj at 
time t: 

R(ci, aj, t) = α · I(ci, aj) + β · N (ci, t) + γ · D(ci, aj) (1) where I(ci, 

aj) represents information gain, N (ci, t) represents novelty decay, 

and D(ci, aj) represents decision relevance. 
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2.5 Agentic Interaction Patterns 

AMCP incorporates specialized interaction patterns designed for highly au- tonomous agentic 
systems. These patterns facilitate deeper collaboration be- tween agents with sophisticated 
reasoning capabilities: 

Algorithm 2 Agentic Intention Alignment 

 

1: Input: Agent A with goal set GA, Agent B with goal set GB 

2: Output: Aligned goal representation GAB 

3: procedure AlignIntEntions(A, B) 

4: IA ← A.ExpressIntentions(GA) ▷ Semantic level intentions 5: IB 
← B.ExpressIntentions(GB ) 

6: CAB ← ExtractConflicts(IA, IB ) 7: SAB ← IdentifySynergies(IA, 
IB ) 

8: GAB ← NegotiateAlignment(CAB , SAB ) 

9: A.UpdateGoals(GAB ) 

10: B.UpdateGoals(GAB ) return GAB 

11: end procedure 

 

For LLM-based agents in particular, AMCP implements a conceptual align- ment 
mechanism that negotiates representational differences. When two agents share context at 
the semantic level, they include metadata about their concep- tual frameworks, enabling 
receivers to correctly interpret information despite differing internal representations. This 
alignment process employs three strate- gies: 

– Ontology Matching : Mapping concepts between agents’ knowledge represen- tations 

– Context Injection: Prepending critical framing information before sharing complex contexts 

– Grounding Verification: Testing aligned understanding through concrete ex- amples 

The framework manages different reasoning paradigms through contextual wrappers that 
adapt information presentation to the recipient agent’s process- ing capabilities. For example, 
when sharing with a symbolic reasoning agent, contextual information is structured with explicit 
logical relationships, while sharing with neural-based agents emphasizes statistical patterns and 
distribu- tional similarities. 

 

2.6 Experimental Setup 

Three application domains were used to evaluate the framework: 

– Collaborative Problem-Solving: Agents worked together to complete challenging 
optimization tasks. 

– Distributed Sensor Networks: Variably precise environmental monitor- ing. 

– Autonomous Vehicle Coordination: Situations involving traffic control that call for 
instantaneous coordination. 

Three baseline methods—Full Broadcast, Threshold-Based, and Need-to- Know—were 
used to compare AMCP. Task completion efficiency, communica- tion overhead, computational 
load, and adaptation effectiveness were among the evaluation metrics. 
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3 Results and Analysis 

A comparison of AMCP with baseline methods is shown in Table 1. The findings show that AMCP 
continuously maintains low communication overhead while achieving higher task efficiency. In 
the problem-solving domain, the full broad- cast approach produced comparable task efficiency, 
but at the expense of a high communication overhead. One important discovery was that AMCP 
maintained similar task performance while lowering communication overhead when com- pared 
to the full broadcast approach. The selective propagation mechanisms that recognize and rank 
pertinent context elements are responsible for this efficiency. Lower communication overhead 
was attained by the need-to-know baseline, but 

Table 1. Comparative Performance Across Methods and Application Domains 

 

 Problem-Solving Sensor 

Networks 

Vehicle 

Coordination 

Method TE CO CL 

AE 

TE CO CL 

AE 

TE  CO CL  

AE 

 

Full 
Broadcast 

H H H L M H H L M-H H H L 

Threshold M M L M M M L M M M M L 

Need-to-
Know 

L L L M L L L L L L L L 

AMCP H L M H H L M H H L M H 

TE: Task Efficiency, CO: Communication Overhead, CL: Compu- tational Load, AE: 
Adaptation Effectiveness. Performance levels: H: High, M: Medium, L: Low. 

 

Fig. 1. Hierarchical context model with transformation processes and examples. The 
diagram illustrates the four levels of context abstraction. Each level is demonstrated with a 
concrete example from environmental monitoring, showing how raw sensor data (42.3°C) is 

progressively transformed into meaningful semantic information (fire risk detected) through 
successive abstraction layers. 

task efficiency suffered as a result. In the sensor network domain, where spatial locality allowed 
for highly targeted context sharing, the largest communication savings were noted. AMCP 
dynamically modified the context resolution in this domain according to distance and task 
relevance. 
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The advantage of AMCP over baseline approaches grew with system scale, ac- cording to 
experiments with different agent population sizes. AMCP maintained near-linear scaling through 
intelligent topology-aware propagation, whereas the full broadcast approach’s communication 
overhead increased quadratically with the number of agents. Because it allowed agents to share 
high-level semantic in- formation when detailed context was not required, the hierarchical 
context model proved especially useful in large-scale deployments. Performance was maintained 
while the transmitted data volume for peripheral agents was significantly reduced thanks to this 
multi-resolution technique. 

In experiments involving heterogeneous agentic systems with varying rea- soning capabilities, 
AMCP demonstrated significant advantages in facilitating effective collaboration. With standard 
communication protocols, these hetero geneous teams achieved only 62% of the performance of 
homogeneous teams. After implementing AMCP with agentic interaction patterns, 
performance rose to 91%, approaching the efficiency of homogeneous groups. 

 

 

 

 

Fig. 2. Adaptive Model Context Protocol framework architecture. The diagram illus- trates 
how the four key components contribute to determining the optimal communi- cation mode. 

Each component is represented with a distinctive icon and color-coded connection to 

emphasize their unique roles in the adaptive protocol system. 

The most substantial gains were observed in tasks requiring complex reason- ing and goal 
negotiation, where AMCP’s intention alignment mechanism reduced goal conflicts by 73% 
compared to baseline approaches. The conceptual align- ment mechanisms proved particularly 
valuable when agents needed to coordinate under uncertainty, reducing misinterpretation 
errors by 67% and improving col- lective decision quality by 42% as measured by the Bennett 
Coordination Index. We further analyzed how AMCP’s hierarchical representation affected 
dif- ferent agent types. LLM-based agents showed the greatest performance im- provement 
when receiving semantic-level context, while traditional probabilistic agents benefited more 
from state-level information. This supports our hypoth- esis that adaptive multi-resolution 
context sharing allows each agent to receive information in its optimal format, enhancing 
overall system performance while 

minimizing communication overhead. 

 

4 Conclusion and Future Work 

Adaptive Model Context Protocols (AMCP), a framework for dynamic context sharing in multi-
agent systems that enhances collaboration effectiveness across a variety of application domains, 
was introduced in this paper. Adaptive proto- col selection algorithms, bidirectional context flow 
mechanisms, and the hierar- chical context model are important contributions. Comparing 
AMCP to static approaches, experimental results show that AMCP significantly lowers commu- 
nication overhead while preserving task performance. By cleverly controlling context sharing 
under various resource constraints, the framework tackles im- portant issues in scaling 
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collaborative systems. AMCP facilitates more effective agent coordination across domains by 
dynamically modifying the information exchange mechanism and content. 

Some potential avenues for future research are: 

– Federated learning integration: Expanding AMCP to facilitate knowledge sharing in federated 
learning scenarios while protecting privacy. 

– LLM prompt optimization: Using the hierarchical context model to optimize prompt 
construction in multi-LLM systems. 

– Emergent communication patterns: Using AMCP to investigate the evolution of communication 
protocols in multi-agent reinforcement learning systems. 

– Human-agent teaming: Expanding AMCP to accommodate mixed teams of AI and human 
agents with asymmetrical information needs and capacities. 

– Self-organizing context hierarchies: Developing methods for agents to au- tonomously construct 
and evolve their context hierarchies based on experi- ence, eliminating the need for predefined 
abstraction levels. 

– Context introspection capabilities: Enhancing agents with the ability to rea- son about and 
explain their own context needs and sharing decisions, facili- tating debugging and trust in 
complex multi-agent systems. 

– Cross-modal context translation: Extending AMCP to support seamless con- text sharing 
between agents with fundamentally different perception modal- ities (e.g., text-based LLMs 
collaborating with vision-based agents). 
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