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Efficient drying of medicinal and agricultural plants is critical for enhancing food security and 

maintaining product quality during storage. This study investigates the application of advanced 

machine learning models—XGBoost, Polynomial SVM (Poly-SVM), and Radial Basis Function 

SVM (RBF-SVM)—to classify the drying status of five medicinal plants: Moringa, Neem, 

Lemongrass, Mint, and Hibiscus. The models were trained and tested independently for each 

plant type using a dataset of 35,000 experimental trials, with environmental parameters such as 

Solar Radiation, Wind Speed, Altitude, Humidity, and Temperature serving as inputs. 

Performance was evaluated using key metrics including Accuracy, Precision, Recall, F1-Score, 

and ROC-AUC. 

The results show that XGBoost achieved the highest mean accuracy of 78.0% across all plant 

types, alongside superior precision (0.80) and ROC-AUC (0.73), making it highly effective in 

minimizing false positives. Poly-SVM demonstrated the strongest recall (0.98), effectively 

identifying optimal drying statuses, though with slightly higher false positive rates. RBF-SVM 

performed competitively with a mean accuracy of 77.8% but showed slightly lower boundary 

discrimination. These findings confirm that machine learning models can significantly enhance 

drying efficiency, contributing to food security by minimizing post-harvest losses and extending 

the shelf-life of agricultural products. Future research will explore real-time monitoring and 

feature optimization to further improve classification reliability. 
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1. INTRODUCTION 

Solar energy is one of the most promising renewable energy sources. Its widespread availability in sun-rich regions 

makes it especially relevant for agricultural applications. Among these, solar drying stands out as an effective and 

environmentally friendly technique for preserving perishable agricultural products. This process reduces the 

moisture content of products such as fruits, vegetables, and herbs, thereby limiting microbial growth and nutritional 

loss [1]. Solar drying is an efficient preservation technique that extends the shelf life of food, minimizes waste, retains 

nutritional value, and enhances storage and transportability [2]. Compared to traditional open-air sun drying, solar 

dryers offer greater control over drying conditions, reduce contamination risks, and improve drying efficiency [3]. 

Due to their high-water content, Fruits and vegetables, often suffer structural damage, taste loss, and nutrient 

degradation during conventional drying. However, with careful analysis and process control, high-quality dried 

products can be achieved [4]. 

Modeling, simulation, optimization, process control, and fault diagnosis are critical for advancing drying technology. 

These tools enable professionals to select optimal methods, optimize industrial-scale systems, maintain product 

quality, reduce energy use, and enhance efficiency [5], [6]. Rapid advancements in digital technologies and software 

have facilitated the integration of artificial intelligence (AI) into most existing drying methods, offering numerous 

advantages [7]. AI enables the optimization and precise control of the drying process, leading to improved product 

quality—an advantage not achievable through traditional drying techniques [8]. The integration of artificial 
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intelligence (AI) further revolutionizes these processes: machine learning (ML), neural networks (ANN), fuzzy logic, 

and genetic algorithms (GA) enable predictive modeling, real-time control, and parameter optimization. For instance, 

ANNs predict moisture kinetics in onion and garlic drying [9], [10], while fuzzy logic shortens drying times and 

improves efficiency in peony flower processing [11], [12]. Hybrid systems like Genetic Neuro-Fuzzy (GNF) combine 

AI methods for accuracy in complex environments [13]. 

Emerging technologies like IoT and digital twins enhance AI’s capabilities. IoT systems monitor microclimate 

parameters in real time, as seen in Senise pepper drying, where neural networks predict rot-risk conditions [14], and 

in IoT-BC dryers for leafy vegetables [15]. Digital twins integrate sensor data with physics-based models to optimize 

energy and quality in carrot drying [16]. ML models, including LSTM and CNN-LSTM, predict moisture content and 

optimize conditions for okra and apples [17], [18], [19] [20], [21], [21] [23], [24], [25]. Evolutionary algorithms like 

particle swarm optimization further refine drying parameters for banana slices [26]. 

Despite AI’s integration into industrial drying, its application to medicinal plants remains underexplored. Existing 

research focuses on generic crops, neglecting AI-driven classification models for plant-specific drying states and the 

interplay of environmental variables (temperature, humidity, airflow) with quality parameters [27], [28], [29] [30], 

[31], [32]. This gap hinders real-time systems capable of preserving bioactive compounds and efficacy. Additionally, 

the lack of standardized datasets limits robust model development. This study pioneers SVM and XGBoost to classify 

medicinal plant drying states using environmental and process data. By correlating quality metrics with drying 

conditions, the models aim to enhance precision, reduce energy waste, and minimize product loss, critical for 

preserving phytochemicals [33], [34], [35] [36], [37], [38]. The work addresses data scarcity and computational 

constraints, offering scalable solutions for producers and advancing sustainable practices. It bridges technological 

innovation with practical feasibility, modernizing pharmaceutical industries while boosting production efficiency and 

food security. 

The remainder of this paper is structured as follows: Section 2 describes the Methodology, including the Data 

Description, the theoretical foundations of the Support Vector Machine (SVM) and XGBoost models, and the Data 

Preprocessing techniques applied. Section 3 presents the Results and Discussion, analyzing the classification 

performance of the models across the five medicinal plants: Moringa, Neem, Lemongrass, Mint, and Hibiscus. Both 

numerical metrics and graphical results are evaluated to assess model accuracy, precision, recall, and discriminative 

power. Section 4 concludes the study with a summary of key findings and recommendations for future research. 

2. METHODOLOGY 

2.1. Data Description 

The dataset, sourced from Kaggle [21], comprises 35,000 solar drying experiments across five medicinal plants 

(Moringa, Neem, Lemongrass, Mint, and Hibiscus) capturing 20 variables related to environmental conditions, 

process parameters, and quality outcomes. Key features include solar radiation, temperature, humidity, airflow, tray 

position, and drying zone, alongside output labels like drying status, quality score, and spoilage risk. Scatter plots 

(Figures 1) were generated to explore relationships between variables and drying outcomes. These visualizations 

reveal complex, non-linear interactions and partial class separability, underscoring the need for advanced models 

like XGBoost and SVMs to capture the underlying patterns effectively. 
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Figure 1. Two-by-Two Scatter Plots of Input Features for Moringa Drying Status Classification. 

2.2. Mathematical Models  

This section presents the theoretical foundations and mathematical formulations of two powerful supervised learning 

algorithms—Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost)—as applied to the 

classification of drying status for medicinal plants under varying environmental and process conditions [39], [40], 

[41] [42], [43], [44] 

2.3. Flowchart of the Drying Status Classification 

The structured workflow for implementing and comparing machines learning models—Support Vector Machine 

(SVM) and Extreme Gradient Boosting (XGBoost)—in the context of medicinal plants drying status classification is 

illustrated in Figure 2. the flowchart outlines each stage of the pipeline, from data collection and preprocessing to 

training, prediction, and evaluation. The dual-path framework enables parallel experimentation and performance 

analysis between the two approaches, providing insight into their applicability and accuracy under real-world drying 

conditions. 

 

Figure 2. Flowchart of the Drying Status Classification Using SVM and XGBoost. 
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The data pipeline for this study begins with the collection of relevant features affecting the drying process of medicinal 

plants, including environmental parameters (e.g., temperature, humidity, solar radiation), operational settings (e.g., 

airflow, tray position, time of day), and categorical variables (e.g., plant type, weather conditions). These features are 

used to predict the drying status, categorized as Optimal or Moderate. Following data collection, preprocessing is 

performed to prepare the dataset for machine learning, involving encoding of categorical variables, normalization or 

standardization of numerical features, handling of missing values, and, where necessary, feature selection. This step 

is crucial for the performance of models like SVM and XGBoost, which rely on well-scaled and structured input. The 

dataset is then split into training and testing sets—typically using a stratified 70/30 split—to maintain class 

distribution and ensure fair evaluation. Model training is conducted using two parallel pipelines: SVM, utilizing either 

polynomial or RBF kernels with a One-vs-Rest approach, and XGBoost, which builds an optimized ensemble of 

decision trees. Finally, both models generate predictions on the test data—SVM by selecting the class with the highest 

decision function score, and XGBoost by applying the softmax function to its output probabilities—thereby evaluating 

their generalization capability on unseen samples. 

2.4. Model Evaluation 

To assess the performance of the classifiers, several evaluation metrics are computed. These include the confusion 

matrix, which shows true vs. predicted labels, as well as a classification report that summarizes precision, recall, and 

F1-score for each class. Accuracy may also be reported. These metrics provide insight into the strengths and 

weaknesses of each model—for instance, SVM may excel in linearly separable cases, while XGBoost typically performs 

well with nonlinear and complex feature interactions. 

3. RESULTS AND DISCUSSION 

In this section, the results of the drying classification for each medicinal plants (Moringa, Neem, Lemongrass, Mint, 

and Hibiscus) are presented and analyzed. The evaluation is conducted using three machine learning models. For 

each medicinal plant, the models were trained and tested independently, ensuring that the evaluation was performed 

on a per-plant basis. This approach allows for precise analysis of each medicinal plant’s drying characteristics and 

the model's capability to classify its drying status. 

All models were trained and assessed using the same input and output datasets, ensuring consistency across 

experiments. The input features consist of both environmental and process parameters previously described, 

including solar radiation, wind speed, altitude, humidity, and temperature. The output variable remains the binary 

classification of Drying Status (0 for incomplete, 1 for optimal). 

3.1. Model Performance Analysis for Moringa Drying Classification 

The classification performance of XGBoost, Polynomial SVM (Poly-SVM), and RBF-SVM for Moringa drying status 

was assessed using accuracy, precision, recall, and F1-score. XGBoost achieved the highest accuracy (77.9%), slightly 

outperforming Poly-SVM and RBF-SVM (77.6% each). It also led in precision (0.797), indicating better specificity. 

However, both SVM models had superior recall (Poly-SVM: 0.987, RBF-SVM: 0.985), showing greater sensitivity. 

F1-scores were nearly identical (~0.87) across models, reflecting a balanced trade-off between precision and recall. 

Table 1. Performance Metrics for Moringa Drying Classification Using XGBoost, Poly-SVM, and RBF-SVM 

Metrics Accuracy Precision Recall     F1    ROC TP    FP    FN    TN 

XGBoost       0.779       0.797    0.958 0.870     0.735   2396 611 105 121 

Poly-SVM      0.776       0.781    0.987 0.872     0.700   2469   693    32    39 

RBF-SVM       0.776       0.782    0.985 0.872     0.665   2464   68

8    

37    44 

3.2. Model Performance Analysis for Lemongrass Drying Classification 

The performance evaluation of XGBoost, Poly-SVM, and RBF-SVM for Lemongrass drying classification (Table 2) 

shows all models performing strongly. XGBoost achieved the highest accuracy (78.3%) and precision (0.801), 

indicating better balance and reliability in identifying the "Optimal" drying status. While Poly-SVM and RBF-SVM 

had slightly lower precision (0.784), they demonstrated superior recall (0.990 and 0.989), effectively capturing 

nearly all optimal cases. F1-scores were comparable across models (~0.87), suggesting balanced performance. 

However, XGBoost had the highest ROC-AUC (0.737), indicating better class discrimination. Confusion matrix 
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analysis revealed XGBoost had fewer false positives but slightly more false negatives, while SVMs favored sensitivity 

at the cost of increased false positives. 

Table 2. Performance Metrics for Lemongrass Drying Classification Using XGBoost, Poly-SVM, and RBF- SVM 

Metrics Accuracy Precision Recall     F1    ROC TP    FP    FN    TN 

XGBoost       0.783 0.801 0.957 0.872 0.737 2345 583 106 137 

Poly-SVM      0.781 0.784 0.990 0.875 0.723 2427 670 24 50 

RBF-SVM       0.781 0.784 0.989 0.875 0.686 2425 667 26 53 

3.3. Model Performance Analysis for Mint drying classification 

All three models—XGBoost, Poly-SVM, and RBF-SVM—performed similarly in accuracy, with RBF-SVM slightly 

ahead (77.6%) (Table 3). XGBoost led in precision (0.795), indicating better control over false positives, while Poly-

SVM and RBF-SVM showed higher recall (0.987 and 0.980), capturing more "Optimal" instances. F1-scores were 

close, slightly favoring the SVMs (~0.870) over XGBoost (0.865). In terms of ROC-AUC, XGBoost performed best 

(0.737), suggesting stronger overall class separation. Confusion matrices showed that XGBoost had fewer false 

positives but more false negatives, while Poly-SVM was most aggressive in detecting optimal cases, resulting in the 

fewest false negatives but the most false positives. RBF-SVM offered a balanced compromise between the two. 

Table 3. Performance Metrics for Mint Drying Classification Using XGBoost, Poly-SVM, and RBF-SVM 

Metrics Accuracy Precision Recall     F1    ROC TP    FP    FN    TN 

XGBoost       0.773 0.795 0.948 0.865 0.737 2288 590 126 154 

Poly-SVM      0.775 0.778 0.987 0.870 0.724 2383 679 31 65 

RBF-SVM       0.776 0.782 0.980 0.870 0.662 2366 658 48 86 

3.4. Model Performance Analysis for Hibiscus Drying Classification 

For Hibiscus drying classification (Table 4), all models—XGBoost, Poly-SVM, and RBF-SVM—demonstrated strong 

performance, with RBF-SVM achieving the highest accuracy (78.3%). XGBoost led in precision (0.805), effectively 

reducing false positives, while Poly-SVM had the highest recall (0.980), excelling at detecting "Optimal" instances. 

F1-scores were similar across models (~0.87), reflecting balanced performance. XGBoost showed the highest ROC-

AUC (0.728), indicating superior class discrimination. Confusion matrix analysis revealed XGBoost favored 

precision with fewer false positives (570) but more false negatives (133), whereas Poly-SVM minimized false 

negatives (50) at the cost of more false positives (651). RBF-SVM provided a middle ground between the two, 

balancing sensitivity and specificity. 

Table 4. Performance Metrics for Hibiscus Drying Classification Using XGBoost, Poly-SVM, and RBF- 

Metrics Accuracy Precision Recall     F1    ROC TP    FP    FN    TN 

XGBoost       0.781 0.805 0.946 0.870 0.728 2350 570 133 159 

Poly-SVM      0.782 0.789 0.980 0.874 0.715 2433 651 50 78 

RBF-SVM       0.783 0.792 0.977 0.875 0.680 2426 639 57 90 

 

Across all plant types, XGBoost consistently achieved the highest ROC-AUC scores (≈0.73–0.74), indicating superior 

overall discrimination between "Optimal" and "Moderate" drying statuses. While SVM models (Poly-SVM, RBF-

SVM) demonstrated higher recall, they incurred more false positives, highlighting a tendency toward over-

classification of "Optimal" cases. In contrast, XGBoost maintained a better balance, with fewer false positives and 

slightly lower recall, confirming its stronger precision and class separation. These trends are clearly reflected in both 

the ROC curves and the confusion matrices (Figure 3). 
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Figure 3. Confusion Matrices and ROC Curves for all Drying Classification Using XGBoost, Poly-SVM, and RBF-

SVM 

4. CONCLUSION 

This study evaluated the performance of XGBoost, Polynomial SVM, and RBF-SVM in classifying drying statuses for 

five medicinal plants using consistent features and metrics. All models effectively captured non-linear relationships 

between environmental and process variables. XGBoost consistently achieved the best balance between precision and 

recall, with high ROC-AUC scores, making it ideal where minimizing false positives is critical. Poly-SVM showed the 

highest recall, making it preferable for maximizing detection of optimal drying but at the cost of more false positives. 

RBF-SVM performed competitively but trailed slightly in class separation and precision. Visual analyses using ROC 

curves and confusion matrices supported these findings. Ultimately, model selection should align with specific 

goals—favoring XGBoost for precision and Poly-SVM for recall. Future research could enhance performance further 

through ensemble strategies and feature optimization. 
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