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Mobile Ad Hoc Networks (MANETs) offer flexible infrastructure-free communication which 

makes them suitable for dynamic environments. MANETs experience extreme vulnerability to 

application-layer Distributed Denial of Service (DDoS) attacks because attackers can easily 

replicate normal traffic growth patterns during flash events. The enhanced SHIELD framework 

uses machine learning and optimization techniques to identify and counteract the detected 

problem. The Xavier Soft-plus Convolutional Neural Network (CNN) achieves an accuracy rate 

of 98.96% when detecting anomalies with high precision. The Brownian Motion-enhanced 

Harris Hawks Optimization (BM-HHO) algorithm uses optimization techniques to select 

features in limited resource scenarios. The framework employs an I-CMIWO method which 

combines Improved Crossover Mutation to achieve intelligent load balancing and adaptive traffic 

control. The framework implements Dynamic Spectrum Resource Control (DSRC) as a 

mechanism to perform real-time threat mitigation after threat detection for network recovery 

purposes. Pearson correlation serves as the basis for analyzing traffic patterns to distinguish 

between malicious activity and genuine flash crowds because it provides high reliability. The 

proposed system shows superior performance in maintaining Quality of Service (QoS) while 

reducing false positives and ensuring network resilience. Experimental results demonstrate that 

the framework detects application-layer DDoS attacks in real-time operation across dynamic 

MANET environments and performs efficient flash event differentiation and mitigation. 

Keywords: Tunnel Infrastructure, Misalignments, Detection Techniques, Safety, Operational 

Efficiency. 

 

INTRODUCTION 

The main security concern in Mobile Ad Hoc Networks (MANETs) exists because there is no central control point as 

shown in Figure 1 [11]. The absence of fixed infrastructure makes it challenging to handle node connections and 

network monitoring activities [6] The network faces dual threats from internal malicious nodes that drop packets 

and external denial-of-service attacks. The accumulation of these threats throughout time leads to substantial 

degradation of network performance. The most destructive attacks in MANETs include black hole, wormhole, 

jellyfish and DoS and DDoS attacks. The system becomes overwhelmed by request floods until genuine users lose 

access to services [7][8]. 

Machine learning has helped in some ways. Researchers have implemented RNNs, ANNs and CNNs as models to 

determine user normal behavior. The implemented models demonstrate effective capabilities in detecting malicious 

network traffic. Detection systems present a major problem because they do not solve the issue of load balancing. 

The system's inability to distribute traffic evenly leads to node overload which results in performance degradation or 

system failures even when attacks are detected in time [9]. 
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Figure 1. MANET 

The identification of DDoS attacks in MANETs proves to be more complicated than people might think. The improper 

distribution of legitimate user requests creates system failures that resemble actual attacks even when no attack 

exists. The main challenge emerges from identifying authentic network traffic among fake data. The fast-changing 

nature of MANET environments makes it difficult to distinguish between actual DDoS attempts and normal traffic 

spikes because fixed thresholds fail to provide reliable results. Our solution combines multiple concepts to solve this 

problem. Our approach begins with Xavier Soft-Plus Convolutional Neural Network which performs the initial 

classification task.  

The system combines IP spoofing detection with this feature to eliminate fake source traffic during the early stages. 

Our customized Invasive Weed Optimization method tracks user activity changes through linear-layer crossover 

mutation while following Pearson correlation guidance. The model adjusts instantly through this approach which 

improves its ability to distinguish between actual flash crowds and attack traffic. The system enhances IP traceback 

accuracy through spoofed address reduction which enables better resource management [10] [31]. 

This paper follows a specific organization in its remaining sections. Section 1 asylums the introduction. Section 2 

covers the most relevant related work. Section 3 describes our detection and load-balancing methodology step by 

step. Section 4 demonstrates the model's performance across various operational scenarios. Section 5 summarizes 

the research conclusions and research opportunities and potential enhancements to this work. 

LITERATURE REVIEW 

This section includes a review of existing approaches in this field. The development of MANET stanches from recent 

advancements in wireless communication technology and portable devices [1]. MANET functions as a wireless 

network of mobile devices which automatically configures itself for self-organization. The nodes of MANETs maintain 

built-in routing capabilities to support automation and disaster recovery and reliable military communication [2]. 

MANET nodes actively participate in discovering neighboring nodes dynamically to establish a dynamic network for 

packet movement between sources and destinations [3]. The security of mobile node communication requires 

essential attention. The absence of centralized access points makes it essential to manage node membership and 

monitor node behavior within MANETs [4]. Security issues in MANETs occur because of malicious and selfish node 

attacks which lead to discarded data-carrying packets. Network nodes experience communication disruptions as a 

result of this situation [5]. 

We have investigated deep learning-based approaches for detecting DDoS attacks in different network settings and 

these methods will be tested against proposed X-SPCNN for accuracy. Yousuf and Mir [26] used recurrent neural 
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networks (RNN) to detect DDoS attacks in IoT systems. Shen [27] developed an intrusion detection system through 

the combination of Deep Belief Networks (DBN) with three-way decision theory. Kumar et al. [28] presented a 

lightweight CNN model which works for DDoS detection in distributed settings. Makuvaza et al. [29] created a real-

time DNN-based solution which is specifically designed for SDN architectures to improve DDoS threat response. The 

most recent advancements in intrusion and DDoS detection systems combine bio-inspired optimization techniques 

with deep learning methods to improve both detection precision and feature selection capabilities. Mohammed [30] 

applied invasive weed optimization to detect ransomware threats in cloud systems. Singh and Jayakumar [31] 

introduced an optimized deep CNN model with feature refinement for detecting DDoS in SDNs. Xu et al. [32] used 

improved butterfly and black widow optimization algorithms to select features efficiently for intrusion detection 

systems. Khare et al. [33] created a hybrid SMO-DNN model which combined spider monkey optimization with deep 

neural networks to achieve robust intrusion classification and these methods will be tested against projected I-

CMIWO for Optimized QoS Improvement. 

Table 1 illustrates the examined approaches together with their operational areas and limitations. Recent approaches 

have implemented alternative optimization strategies for attack detection yet these methods produce different 

performance trade-offs. Hussain Mohammed [41] used invasive weed optimization to detect cloud ransomware in 

his research. The method demonstrated potential application but system size scalability became a major issue when 

the system expanded. Hui Xu et al. [43] tested Butterfly optimization and Black Widow optimization as methods for 

selecting intrusion features in their study. The model achieved successful parameter identification yet its real-time 

response capabilities remained limited. SMO-DNN represents a new approach by Albakri, et al. [44] which merges 

spider monkey optimization techniques with deep neural networks. The detection rates were solid, but performance 

dropped off once the network became large and more complex. N. Sivanesan and his team [45] developed an Extra 

Tree Classifier system with randomized search capabilities to detect different types of DDoS attacks in MANETs. The 

model achieved 98.89% accuracy through hyper parameter tuning but required complex tracking of malicious node 

activity in AODV routing. Gautam et al. [39] implemented an anomaly-based traffic system which monitored 

networks live and used threshold parameters for detection. The system achieved better accuracy and specificity 

results through its classification methods but the evaluation only included synthetic data which creates uncertainty 

about its real-time deployment performance. 

The recent developments in DDoS detection and mitigation strategies employ multiple intelligent techniques which 

are specifically designed for dynamic and decentralized environments such as SDN, cloud networks and MANETs. 

Zhang and Jinsong [15] developed a hybrid detection system which combined entropy features with SSAE-SVM to 

detect DDoS attacks in SDN. Aydın et al. [16] developed an LSTM-based framework to detect and defend against 

DDoS attacks in public cloud networks. Alam and Raj [17] created an SVM-based DEHO classifier which improves 

detection efficiency in cloud environments. Fouladi et al. [18] developed a DWT and autoencoder-based mechanism 

to detect and counter DDoS threats in SDN. Batchu and Seetha [19] developed a generalized machine learning model 

that combined hybrid feature selection with hyperparameter optimization for robust DDoS detection. Salunke and 

Ragavendran [20] performed a detailed evaluation of shield techniques which focus on application-layer DDoS 

threats in MANETs. Shalini et al. [21] introduced DOCUS which is a modified CUSUM-based detection system that 

distinguishes flash traffic from DDoS in SDN to enhance mitigation efficiency. 

Recent frameworks have advanced the field but their current limitations remain in operating within highly mobile or 

constrained environments. Some contemporary studies also focused on DDoS detection in specific network 

environments through various algorithmic frameworks. Anyanwu et al. [34] created an RBF-SVM kernel-based 

model which specifically targets DDoS detection in vehicular networks that use SDN integration. Sharma et al. [35] 

developed an anomaly detection framework for fog-enabled IoT networks to fight against DDoS threats. Kalathiripi 

and Venkatram [36] presented the RCTFM approach which uses traffic flow metrics regression coefficients for IoT 

ecosystem DDoS defense. The main problem with current approaches is their failure to unite lightweight pre-

processing with adaptive mitigation techniques that maintain low latency during real-time operations. The majority 

of feature selection approaches fail to address scalability concerns. The increase in node density leads to processing 

unnecessary data which results in wasted resources. There’s also the question of mobility. MANET networks require 

better responses to changing conditions through adaptive metrics and PCC-guided thresholds yet these concepts 
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remain underdeveloped for fast-moving MANET scenarios. The main research gap consists of insufficient testing 

under simulated link failures.  

Testing without this standard makes it difficult to determine actual model resilience levels. The solution of these 

problems would result in significant improvements for building MANET frameworks that maintain scalability and 

energy efficiency during network pressure. Our proposed model unites an enhanced adaptive system for MANET 

DDoS attack detection and mitigation which includes protection against flash event misclassification. The research 

focuses on three main areas to enhance detection precision and improve traffic distribution and fix previous model 

weaknesses during network changes and resource limitations.  

Table 1. Prevailing Approaches for Safeguarding MANET 

Authors Approach Strength Weakness 

Sokkalingam et al. [22] SVM parameters are 

optimized for an IDS to 

detect DDoS. 

Improved SVM 

performance. 

Lack of optimization 

for scalability in large 

networks. 

Raveendranadh et al. 

[23] 

Attack detection using 

exponential polynomial 

kernel-centered deep 

neural network. 

Good performance in 

resource-constrained 

environments. 

High computational 

complexity due to the 

depth of learning. 

Kucukkara et al. [43] QNN-based model for 

DDoS attack detection. 

Terminated training 

with only 7 features for 

classification. 

Limited accuracy due 

to constraints in the 

simulator. 

Albakri et al. [44] A swarm optimization 

algorithm, Rock Hyrax, 

for improving the 

effectiveness of IDS in 

detecting DDoS. 

Improves the 

optimization of DDoS 

detection. 

Has a problem with 

local optimization in 

dynamic networks. 

Kaviarasan et al. [24] Monarch Butterfly 

Optimization for load 

balancing in the cloud. 

Good cloud load 

balancing. 

Not very suitable for 

real-time applications. 

H. Beitollahi et al. [25] Cuckoo search 

algorithm-trained radial 

basis function for 

identification of 

application-layer DDoS 

attacks. 

Highly robust detection 

at the application layer. 

Does not perform well 

in highly mobile node 

environments. 

Abdullah Emir Cilet et 

al. [7] 

DNN-based model 

trained on 

CICDDoS2019 dataset. 

Detection rate is 

93.99%. 

Needs a large amount 

of training data. 

Neha Agrawal & 

Shashikala Tapaswi [8] 

A frequency-domain 

approach using Power 

Spectral Density (PSD) 

for the identification of 

LDDoS. 

3.7% false positive rate, 

4.9% false negative 

rate. 

High computational 

complexity. 

P. Chandra Sekar & H. 

Mangalam [9] 

Load balancing in 

MANET with the help of 

3rd-generation 

mobility. 

Good for MANET 

networks. 

Necessary to recompile 

the source code when 

the user’s code is 

changed. 
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Sengathir Janakiraman 

et al. [10] 

Proposed an integrated 

context-centered 

mitigation framework 

(ICMF) for the 

protection of MANET. 

Enhanced network 

performance with 

GTIDF and ICMF. 

Failed to counter 

attacks on root nodes. 

Bhuvaneswari et al. [11] A method for detecting 

DoS attacks using 

fictitious node 

verification in OLSR-

based MANET. 

Good for low-mobility 

networks. 

Inapplicable to real-

time and high-mobility 

networks. 

M. Anbarasan et al. 

[12] 

A secured DDoS attack 

prevention technique 

based on encryption for 

MANETs. 

Decreased memory 

requirement in trusted 

MANETs. 

Does not extend well to 

larger networks. 

M. Islabudeen & M.K. 

Kavitha Devi [13] 

SA-IDPS: Intrusion 

Detection and 

Prevention System 

based on Security 

Awareness and Machine 

Learning for DoS, 

Probe, U2R, and R2L 

attacks. 

All-around detection 

and prevention. 

The complexity of the 

model increases with 

the amount of data. 

Mukul Shukla et al. 

[14] 

Elliptic Curve 

Cryptography (ECC) for 

the protection of 

MANET against 

Wormhole/Black Hole 

attacks. 

High security with a 

limited number of 

nodes. 

The computational cost 

is high, especially in 

large networks. 

Toklu & Simsek [42] 
Dual-layer High-Rate 

detection system. 

Effective at 

distinguishing valid 

from attack traffic. 

Fails when multiple 

attackers are involved. 

 

METHODOLOGY 

This phase integrates the fundamental elements of our X-SPCNN classification model with DSRC mitigation 

capabilities and I-CMIWO optimizer tuned by Pearson correlation for detecting and responding to DDoS attacks. K-

Means clustering joins the system to enhance the separation of flash events from actual attacks. The system operates 

through two primary stages that start with abnormal behavior detection followed by mitigation activation. X-SPCNN 

operates as the detection tool to analyze incoming user requests and identify them as valid or invalid. After processing 

the results through PCC-guided I-CMIWO optimizer we use DSRC to execute response and mitigation actions. The 

simplified system architecture appears in Figure 2. A random mobility model became part of the framework to 

improve the matching of MANETs' dynamic characteristics. The simulation aimed to duplicate actual node 

movements together with their associated network disruptions including link failures and intermittent connections. 

The simulation included multiple active nodes with link failures affecting approximately 10% of nodes 

simultaneously. The dataset received a new “Node Mobility” feature which applied to both training and testing 

phases. The system received evaluation for its response capabilities to network topology changes. The addition of this 

feature enhanced the model's resistance to real-world MANET network conditions where nodes frequently enter or 

exit and links form or break suddenly. 
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3.1 DDOS Attack Detection Phase 

In the classifier training step, a DDoS dataset is used to train the model to classify whether a particular request by 

the user can be classified as legitimate or non-legitimate. The training phase involves several processes such as pre-

processing, feature extraction, feature selection, and classification. Data from the DDoS dataset were pre-processed 

and prepared for the training classifier. The input data acquired as of the DDOS dataset is provided by,  

                                                

𝑺 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝑴} (𝟏)    

The initial dataset 𝑆 contains 𝑀 data samples from 𝒙𝟏 to 𝒙𝑴, according to this equation. It lists all input records that 

will undergo subsequent pre-processing steps in the DDoS detection pipeline. 

                                                      

𝑼 = {𝒙𝟏
′ , 𝒙𝟐′, … , 𝒙𝑴𝒖

′} (𝟐)  

The dataset U contains Mu unique records 𝒙𝟏
′ , 𝒙𝟐′, … , 𝒙𝑴𝒖

′  . The number of remaining non-duplicate data points is 

denoted by  𝑴𝒖  ≤  𝑴𝑴, which represents the effect of the deduplication process. 

                                                           

𝑽 = {𝒚𝟏  , 𝒚𝟐, … , 𝒚𝑴𝒖} (𝟑)   

All non-numeric attributes are converted, yielding the numeralized dataset 𝑽 with 𝑴𝒖  elements. The 𝒀𝒊 corresponds 

to a preprocessed record expressed entirely in numerical form, making the data suitable for input into the 

classification model.                                                 

𝒛𝒊𝒋 =
𝒗𝒊𝒋−𝝁𝒋

𝝈𝒋
(𝟒) 

Each numeric feature value 𝑽𝒊𝒋 is standardized to 𝒁𝒊𝒋 by subtracting the mean μj of feature j and dividing by its 

standard deviation 𝝈𝒋. This Z-score normalization centers the feature distribution (zero mean) and scales it to unit 

variance, which helps accelerate and stabilize the training process. 

                           

𝑭 = {𝒇𝟏, 𝒇𝟐, … , 𝒇𝑲} (𝟓) 

The set 𝐹 represents the collection of extracted features. The set 𝐹 contains 𝐾 features 𝒇𝟏, 𝒇𝟐, … , 𝒇𝑲, which were 

determined as the most relevant after feature extraction to create a compact representation of the data for the 

learning algorithm. 

Case 1 

 𝑯𝒊
(𝒕+𝟏) = 𝑹(𝒕) − 𝒓𝟏  𝑹(𝒕) − 𝟐. 𝒓𝟐𝑯𝒊(𝒕) (𝟔) 

Case 2 

𝑯𝒊 
(𝒕+𝟏)

= (𝒁(𝒕) − 𝑯(𝒕)) − 𝒓𝟑 ⋅ [𝑳 + 𝒓𝟒 ⋅ (𝑼 − 𝑳)] (𝟕) 

In Equation (6), the hawk update rule has two forms depending on a random probability 𝒒.   

(Case 1), For 𝒒 ≥ 𝟎. 𝟓 the new position  𝑯𝒊
(𝒕+𝟏) is computed based on a random family member’s position   𝑹(𝒕), 

adjusted by random factors 𝒓𝟏, 𝒓𝟐. 

(Case 2), For 𝒒 < 𝟎. 𝟓, the update is guided by the prey’s position 𝑍(𝑡) and the flock’s average position 𝐻(𝑡) with a 

random displacement scaled by r3 and the range between lower bound 𝑳 and upper bound 𝑼. 

                             

𝑯̅(𝒕)  =
𝟏

𝒏
∑ 𝑯𝒊

(𝒕)𝒏
𝒊=𝟏 (𝟖) 
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The average position 𝑯̅(𝒕) of the hawks at iteration 𝒕 is defined as the mean of the positions of all 𝒏 hawks. It provides 

a central reference point for the swarm’s state by aggregating all individual positions, which is useful for guiding 

collective search strategies. 

𝑬𝒆𝒔𝒄 = 𝟐 𝑬𝒊𝒏𝒊𝒕  (𝟏 −
𝒕

𝑻
) (𝟗) 

The equation shows that 𝐸𝑒𝑠𝑐  represents the prey's escape energy, which decreases linearly with the iteration 

number 𝒕. The prey starts with 𝑬𝒊𝒏𝒊𝒕 at the beginning of the hunt (𝒕 = 𝟎) and the energy decreases to 0 at the end of 

the hunt ( 𝑻) because the prey weakens throughout the chase. 

                                                          𝑯𝒊
𝒕+𝟏 = 𝒁𝒕  − 𝑬𝒆𝒔𝒄 |𝒁(𝒕)  − 𝑯𝒊

(𝒕)
|                                                                        (𝟏𝟎)   

When the prey’s escape energy is low, the hawk moves directly closer to the prey’s current position  𝒁(𝒕), the update 

subtracts a fraction of the current distance 𝒁(𝒕)  − 𝑯𝒊
(𝒕)

 scaled by  𝑬𝒆𝒔𝒄 from the prey’s position. This represents a hard 

besiege strategy in which a weakened prey cannot effectively increase the gap, allowing the hawk to significantly 

shrink the distance in one step. 

𝑯𝒊
(𝒕+𝟏)

= (𝒁(𝒕)  − 𝑯𝒊
(𝒕)

) − 𝑬𝒆𝒔𝒄 𝑱 𝒁(𝒕)  − 𝑯𝒊
(𝒕) (𝟏𝟏) 

Under a soft besiege strategy, the hawk’s position update includes a term  𝑱 to account for a sudden random jump 

of the prey. The expression 𝑱 𝒁(𝒕)  − 𝑯𝒊
(𝒕)

 represents the prey’s unpredictable movement (with 𝐽 as a random jump 

strength factor), and the hawk’s advance is reduced by 𝑬𝒆𝒔𝒄  times this jump distance. This cautious update means 

the hawk closes in on the prey more carefully, anticipating potential evasion. 

𝑱 = 𝑪√𝑺. 𝑨 (𝟏𝟐) 

The jump strength 𝑱 is defined as a function of a constant 𝑪, a scale parameter S, and a diffusion factor 𝑨.. This 

structure captures the idea of a Brownian random walk: the jump size increases with the square root of the scale 𝑺 

(e.g. time or number of small steps) and is influenced by the constants 𝑪 and 𝑨. It ensures that the prey’s random 

jump behaviour has the right scale, with 𝑪 and 𝑨. controlling the magnitude of these stochastic movements. 

                                              𝑯𝒊
𝒕+𝟏 = 𝒁(𝒕) + |𝑬𝒆𝒔𝒄| .  |𝒁(𝒕)  − 𝑯𝒊

(𝒕)
|                                      (𝟏𝟑) 

If the prey still has substantial energy (represented by a negative 𝑬𝒆𝒔𝒄 in the model), the hawk may overshoot the 

prey’s current position. In this update, the term +|𝑬𝒆𝒔𝒄| .  |𝒁(𝒕)  − 𝑯𝒊
(𝒕)

| adds to the hawk’s movement, effectively 

pushing the hawk slightly beyond 𝒁(𝒕). This models a scenario where the hawk anticipates the prey will keep moving 

and positions itself ahead, thereby maintaining pressure on a fast-moving prey. 

                                       𝑯𝒊
𝒕+𝟏 +  𝑬  | 𝑱. 𝒁(𝒕)  − 𝑯𝒊

(𝒕)
| =  𝒁(𝒕)  − 𝑯𝒊

(𝒕)
                             (𝟏𝟒) 

Rearranging the hawk’s update equation highlights the balance between the hawk’s advance and the prey’s escape 

jump. The left-hand side shows the hawk’s new position plus the portion of the prey’s jump that was counteracted ( 

𝑬  | 𝑱. 𝒁(𝒕)  − 𝑯𝒊
(𝒕)

| ), and it equals the original gap 𝒁(𝒕) − 𝑯𝒊
(𝒕)

on the right-hand side. This makes it explicit that the 

hawk’s movement (when added to the remaining gap after the prey’s jump) accounts for the entire initial distance, 

illustrating how the escape energy 𝑬 and jump factor 𝑱 together determine how much of that gap is closed. 

 𝑯𝒊
(𝒕+𝟏) = 𝑯𝒊

(𝒕)
+ 𝑳 𝝊 (𝟏𝟓) 

If a direct dive at the prey is not executed, the hawk updates its position using a Lévy flight step. Here 𝑳 𝝊 represents 

a random jump vector: 𝑳 is the step size drawn from a Lévy distribution and 𝝊 is a random unit direction. This allows 

the hawk to explore the search space more broadly, as Lévy flights produce occasional long jumps that help escape 

local optima, while still making smaller movements most of the time.  
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𝛔 = (
𝚪(𝟏 + 𝛃)𝐬𝐢𝐧 (

𝛑𝛃
𝟐

)

𝚪
(𝟏 + 𝛃)

𝟐
 𝛃 𝟐

(𝛃−
𝟏
𝟐

)
)

𝟏
𝛃

(𝟏𝟔) 

 

The formula determines the scale parameter 𝛔  which defines the Levy flight step-length distribution. The formula 

uses the stability parameter 𝛃 (usually set to 1.5 for Levy flights) and the gamma function 𝚪(⋅) to calculate 𝛔. The 

equation uses these constants to determine σ which produces step sizes that follow a heavy-tailed Levy distribution. 

The heavy tail property enables the hawk to occasionally make very large jumps, which is essential for global search 

capability. 

𝑳 =
𝒖

|𝝊|
𝟏
𝜷

(𝟏𝟕) 

The step length 𝑳 in the Lévy flight is generated by the random ratio shown, where 𝒖 and 𝒗 are independent random 

variables (e.g., drawn from normal distributions N(0, 𝜎2) and N(0,1) respectively). Because 𝒗 appears in the 

denominator raised to the power 
𝟏

𝜷
, this formula yields a heavy-tailed distribution for 𝑳: most values of 𝑳 will be 

small (when 𝒗 is not too tiny), but occasional samples will produce a very large 𝑳 (when 𝒗 is extremely small). Such a 

distribution enables the hawk to perform mostly local searches with intermittent long-range explorations. 

𝑯𝒊 
(𝒕+𝟏)

= {
𝒀𝒊,  if 𝒇(𝒀𝒊) ≥ 𝒇(𝑸𝒊)

𝑸𝒊,  otherwise.
(𝟏𝟖) 

Equation (17) implements a selection between two candidate solutions 𝒀𝒊 and 𝑸𝒊 based on their fitness values 𝒇(𝒀𝒊) 

and 𝒇(𝑸𝒊). The hawk will adopt position 𝒀𝒊 for the next iteration if and only if 𝒀𝒊  is at least as fit as 𝑸𝒊 (for example, 

yielding higher classification accuracy); otherwise, it will choose 𝑸𝒊. This elitist strategy ensures that the hawk moves 

to the more promising of the two dive outcomes, thereby improving the optimization result. 

                                          Yi ′ = 𝒁(𝒕) − 𝑬𝒆𝒔𝒄 |𝒋 𝒁(𝒕) – 𝑯̅𝒊
(𝒕)

|                                            (𝟏𝟗)    

The candidate position Yi′ is calculated using the average hawk position 𝑯̅(𝒕) in the escape term. In this hard besiege 

with rapid dive scenario, the hawk’s update is based on the prey’s position   𝒁(𝒕) and the swarm’s mean position 𝑯̅(𝒕). 

The distance between the prey and the swarm center  |𝑱 𝒁(𝒕)  − 𝑯̅(𝒕)|, is reduced by a factor of 𝑬𝒆𝒔𝒄. This represents a 

cooperative strategy where the hawk leverages the collective knowledge of the flock (via 𝑯̅(𝒕)) to intercept the prey 

more effectively. 

                                   Qi ′ = 𝒁(𝒕) − 𝑬𝒆𝒔𝒄 |𝒋 𝒁(𝒕) – 𝐻𝑖
(𝒕)

|                                                  (𝟐𝟎) 

The alternative candidate Qi ′ uses the hawk’s own current position 𝐻𝑖
(𝑡)

in the update formula. Here the distance from 

the prey to this hawk,  𝑗 𝑍(𝑡)  − 𝐻𝑖
(𝑡)

, determines the adjustment. By computing both Yi′ and Qi ′  (from Eq. 18 and 19), 

the algorithm can compare a cooperative move (using the swarm’s average position) versus an individual move (using 

the hawk’s personal position) and then choose the better one as per Eq. (17). This ensures robust exploitation by 

considering different pursuit tactics for the prey. 
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Figure 2. Block diagram of the proposed model 

BM-HHO served as an algorithm to automate feature selection by determining the relationship between each feature 

and the target variable. The approach was basic: The system maintained only the features which delivered 

performance benefits regardless of the data environment changes such as traffic fluctuations or noise introduction. 

The method delivered consistent results. The method consistently picked high-impact features regardless of the 

amount of variability present in the data. Such adaptability becomes essential when working with datasets that lack 

uniformity and predictability. After feature selection the X-SPCNN model received the most effective features for 

training. The X-SPCNN model addresses standard deep model problems through its combination of Xavier 

initialization and Soft Plus activation function. The development of CNNs has led to better performance but they face 

ongoing issues with gradient vanishing and unstable scaling problems. The Xavier Soft Plus combination helps 

address both. Figure 3 illustrates the complete X-SPCNN model structure along with its modifications for this 

particular implementation. 

 

Figure 3. Architecture of X-SPCNN 
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𝑶𝑪𝑳
(𝒄)

= 𝑺 (∑ 𝑾𝒊𝒋
(𝒄)

 𝑿𝒊𝒋𝒊,𝒋 ) (𝟐𝟏)   

This equation defines the output of the convolutional layer 𝑶𝑪𝑳
(𝒄)

 for channel (𝒄). It is obtained by applying the Soft-

plus activation function S(⋅) to the weighted sum of inputs 𝑿𝒊𝒋 with convolutional weights 𝑾𝒊𝒋
(𝒄)

 over all positions 𝒊, 𝒋. 

In other words, for feature map ccc, each output is the Soft-plus of a convolution between the input patch 𝑿𝒊𝒋 and the 

corresponding kernel  𝑾𝒄 . 

𝑺(𝒙) = 𝒍𝒏 (𝟏 + 𝒆𝒙) (𝟐𝟏) 

The Softplus activation function 𝑺(𝒙) is defined as the natural logarithm of (𝟏 + 𝒆𝒙). This smooth approximation of 

ReLU ensures the output is always positive and differentiable. In the context of the X-SPCNN model, using Softplus 

helps avoid issues like vanishing gradients by providing a gentler nonlinear transformation of the convolutional 

responses. 

𝑶𝑷𝑳
(𝒄)(𝒎, 𝒏) = 𝒎𝒂𝒙(𝒊,𝒋) 𝝐 𝛀𝒎,𝒏   𝑶𝑪𝑳

(𝒄)(𝒊, 𝒋) (𝟐𝟐)
 

Equation (22) describes the max-pooling operation. 

 𝑶𝑷𝑳
(𝒄)(𝒎, 𝒏) is the output of the pooling layer at spatial location (𝒎, 𝒏) for channel (𝒄), defined as the maximum value 

of the convolutional feature map 𝑶𝑪𝑳
(𝒄)(𝒊, 𝒋) within the region 𝛀𝒎,𝒏 . Here 𝛀𝒎,𝒏    denotes the set of indices 𝒊, 𝒋 in the 

receptive field (or “pooling window”) corresponding to output (𝒎, 𝒏). This down-sampling step retains the most 

prominent activation in each region, reducing feature map size while preserving important features. 

𝑾𝒊,𝒋  ∼   𝑼 (−√𝟔/(𝒏𝒊 + 𝒏𝒐), √
𝟔

𝒏𝒊 + 𝒏𝒐

 (𝟐𝟑) 

The weight initialization follows the Xavier (Glorot) scheme. Each weight 𝑾𝒊,𝒋 in the fully connected layer is drawn 

from a uniform distribution 𝑼(−𝒂, +𝒂) where =  𝟔/(𝒏𝒊 + 𝒏𝒐). Here 𝒏𝒊  and 𝒏𝒐 are the number of input and output 

neurons for that weight. By using this symmetric range ±√𝟔/(𝒏𝒊 + 𝒏𝒐)  , the initial weights have variance scaled to 

the network’s size, which helps maintain stable gradients through the network and improves convergence during 

training. 

𝑶𝑭𝑪𝑳 = 𝑿𝒇𝒍𝒂𝒕𝑾 + 𝒃 (𝟐𝟒) 

The output 𝑶𝑭𝑪𝑳 of the fully-connected layer is given by a linear combination of the flattened input and the network 

weights. In this expression, 𝑿𝒇𝒍𝒂𝒕 is the flattened output from the previous layer (𝑎 1 × 𝑁 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟), 𝑊 is the 

weight matrix, and 𝑏 is the bias term. The product 𝑿𝒇𝒍𝒂𝒕𝑾 + 𝒃 yields a vector of raw scores (logits) that will be passed 

to the final classification stage. 

𝑷(𝒚 = 𝒌) =
𝒆𝒙𝒑(𝒛𝒌)

∑ 𝒆𝒙𝒑(𝒛𝒋)𝒋  
(𝟐𝟓) 

The Soft-max function transforms the logits 𝒛𝒋 into a probability distribution across classes. The predicted probability 

(𝒚 = 𝒌) that the input belongs to class 𝒌 is calculated through this equation. The predicted probability is calculated 

by taking the exponential of (𝒛𝒌) followed by a division operation with the total exponential sum of all logits. The 

output probabilities remain non-negative and add up to 1, which is suitable for multi-class classification results. 

3.2 Differentiation Segment 

The request is observed for flash events before mitigation. The Pearson Correlation Coefficient (PCC) is used to detect 

flash events if a large number of valid requests are acknowledged. The Pearson Correlation Coefficient Threshold 

(PCC) is utilized to check for flash events if the system receives a large number of legitimate requests. 
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𝝆 = 
∑ (𝐱𝐢−𝐱̅)(𝐲𝐢−𝐲̅)𝒊  

√∑ (𝐱𝐢−𝐱̅)𝟐(𝐲𝐢−𝐲̅)𝟐
𝒊

                                                          (𝟐𝟔) 

  

The Pearson correlation coefficient ρ between two sequences {𝐱𝐢} and {𝐲𝐢} is calculated by this formula. The 

numerator represents the covariance between 𝒙 and 𝒚  through the sum of their deviations from 𝐱 ̅and 𝐲 ̅. The 

denominator represents the product of the standard deviations of 𝒙 and  . A higher 𝝆 indicates a stronger linear 

relationship. The flash event detection scenario uses 𝐱𝐢 and 𝐲𝐢 to represent successive time window request counts, 

so a large 𝝆 value indicates a correlated surge (potential flash event). 

We achieved better flash event detection through the integration of K-means clustering with Pearson Correlation 

Coefficient (PCC) analysis. The approach involved grouping similar genuine requests together for subsequent 

correlation checks within each cluster. The method enables detection of unusual patterns such as traffic surges that 

could potentially mimic flash events but prove to be non-attack activities. The PCC analysis applied at a local level 

minimizes unnecessary alerts while detecting unusual network traffic patterns during critical periods. Our load 

balancing approach concentrated on distributing traffic for preventing network congestion. The Interpolation–

Crossover Mutation Invasive Weed Optimization (I-CMIWO) algorithm serves as the solution to address this 

problem. The IWO method serves as the foundation for this algorithm which draws its inspiration from weed 

colonization patterns but includes modifications to enhance its response to changing bandwidth requirements. The 

I-CMIWO system adjusts its traffic distribution through current bandwidth usage measurements instead of using 

fixed thresholds to determine available data movement capacity. The standard deviation shifts in traditional IWO 

optimization methods create a major problem. We added an interpolation crossover mutation system to make the 

process more stable. The four-stage process of this enhanced system starts with initialization followed by 

reproduction then spatial dispersal and finishes with competitive selection. 

The algorithm begins by priming a population of weeds for legitimate requests. This population is randomly 

distributed across the search space. 

𝑺𝒊 = |
(𝒇𝒊 − 𝒇𝒎𝒊𝒏)

(𝒇𝒎𝒂𝒙 − 𝒇𝒎𝒊𝒏) 
 ⋅  𝑵𝒎𝒂𝒙| (𝟐𝟕) 

This interpolation formula computes the number of seeds  𝑺𝒊 produced by weed 𝑖 in the I-CMIWO load balancing 

algorithm. The value (𝒇𝒊) is the fitness of the current weed (for instance, inversely related to request response time), 

while 𝒇𝒎𝒊𝒏 and 𝒇𝒎𝒂𝒙 are the minimum and maximum fitness in the weed population. By taking the ratio 
(𝒇𝒊−𝒇𝒎𝒊𝒏)

(𝒇𝒎𝒂𝒙−𝒇𝒎𝒊𝒏) 
 we 

scale 𝑖’𝑠 fitness to a 0–1 range; multiplying by  𝑵𝒎𝒂𝒙 (the maximum number of seeds possible) and flooring the result 

yields an integer number of seeds. This means weeds with higher fitness (better performance) will reproduce more, 

mirroring natural selection where fitter individuals have more offspring. 

After reproduction, the seeds were randomly scattered in the search space. Instead of using the standard deviation 

process to generate new seed positions, Crossover Mutation (CM) is applied to enhance exploration. Crossover 

combines position vectors from multiple weeds to generate new, optimised positions for the seeds. The seed 

placement is optimized with merging vectors as shown in Figure 4 

 

Figure 4. Crossover Mutation Method 
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The competition for survival begins between weeds at this point. The survival chances of weeds depend on their 

fitness level because advanced fitness standards give them an advantage over inferior fitness values. The procedure 

continues its iterative cycle until either a predetermined maximum number of repetitions is completed or the best 

resolution becomes apparent. The optimal solution came from weeds that demonstrated the highest fitness value. 

The load-balancing system schedules user requests according to their bandwidth requirements. The system uses a 

priority-based approach that gives higher bandwidth requests the same level of importance as fitness-based weed 

selection does. 

3.3 Mitigation Segment 

Mitigation strategies aim to minimise the impact of malicious requests. A common technique is to alter packets that 

use false-source IP addresses. In this model, we employ the double-shift right-and-complement (DSRC) technique to 

handle legitimate requests that fall below the bandwidth threshold or are part of balanced legitimate requests. 

𝑩 = 𝒃𝒊𝒏𝟖(𝒅𝟏) ∥ 𝒃𝒊𝒏𝟖(𝒅𝟐) ∥ 𝒃𝒊𝒏𝟖(𝒅𝟑) ∥ 𝒃𝒊𝒏𝟖(𝒅𝟒) (𝟐𝟖) 

An IP address is transformed into binary form as shown in Equation (28). Each octet 𝑑𝑘 (for k=1,2,3,4) is converted 

to its 8-bit binary representation 𝑏𝑖𝑛8(𝑑𝑘) These four 8-bit binary strings are then concatenated (denoted by the 

symbol “∥”) to form a single 32-bit binary number BBB. This represents the original IP address in binary format, 

which is necessary for applying bit-level operations in the mitigation phase. 

𝑪 = ⌊
𝑩

𝟒
⌋ (𝟐𝟗) 

After converting the IP to binary, a double right-shift operation is performed. Dividing 𝐵 by 22  =  4 and taking the 

floor is equivalent to shifting all bits of 𝐵 two places to the right (with the two rightmost bits dropped). The result is 

𝐶, the shifted binary number. In effect, if 𝐵 was a 32-bit binary, 𝐶 corresponds to that IP’s binary value with the last 

two bits set to 0, implementing the required two-bit right shift in the DSRC technique. 

𝑫 = 𝑪̅ (𝟑𝟎) 

Finally, the one’s complement of the shifted binary address is obtained in Equation (30).  

𝑪̅  denotes that every bit of 𝐶 is flipped (0 becomes 1 and 1 becomes 0), yielding 𝐷. This transformed binary 𝐷 is the 

mitigated IP address after applying the double-shift right and complement operations. In practice, these altered 

binary bits would be placed back into the IP header, so that malicious requests use the modified source 𝐷, a technique 

which helps in mitigating DDoS attacks by invalidating the attacker’s source address information. 

This DSRC technique helps prevent malicious requests from taking control of the system, thereby ensuring that 

legitimate traffic is prioritised and securely managed. 

 

Figure 5. Process Flow Diagram 
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Fig. 5 depicts process flow diagram which represents a management of network traffic. After incorporating an XSP-

CNN model which has convolutional layers and Soft-Plus activation function for the traffic classification, the model 

is trained in batches and classifies the traffic as malicious. If the traffic is malicious, then the traffic is diverted through 

DSRC mitigation process which includes transformation and lightweight processing. Otherwise, if the traffic is 

identified as not aggressive, then it is forwarded to load balancing mechanisms that use I-CMIWO approach to 

allocate resources in the best possible manner.       

RESULTS 

Here, an experiment on the proposed model is performed empirically and compared with existing methods. This 

evaluation is performed using a public dataset to validate the performance of the proposed model. 

4.1 Performance Analysis  

Performance evaluation considered metrics such as DDoS attack detection classification and fitness versus iteration 

analysis for feature selection (FS) etc.  

The employed CIC-Darknet 2020 dataset includes data from darknet network traffic, which is utilized to launch 

application-layer DDoS Attacks. For the CIC-Darknet 2020 dataset, an orchestration of two layers is used to generate 

benign and darknet traffic in the primary layer. The subsequent layer creates the chat, email, audio stream, video 

stream, browsing, p2p transfer, audio stream, browsing, and VOIP on the Internet. Data from the Canadian Institute 

for Cybersecurity at the University of New Brunswick were collected to assess new techniques for Internet traffic 

classification. 

We evaluated the performance of the Brownian Motion-based Harris Hawks Optimization (BM-HHO) algorithm 

using a fitness-versus-iteration analysis. Figure 6 shows how BM-HHO influenced feature selection specifically how 

many features were retained versus removed. 

 

Fig. 6 Performance analysis of BM-HHO algorithm 

Initially, the dataset included a large number of features, but once BM-HHO was applied, the feature set was 

significantly reduced. What’s important is that this reduction didn’t compromise model performance. In fact, 

around 40% of the features were kept, meaning about 60% were removed mostly those that had little or no impact 

on classification. 

Table 2. Performance investigation of projected XP-CNN in contrast with the existing algorithms 

 

Metrics/ Techniques 

Recurrent 

Neural 

Network 

(RNN) 

Deep 

Belief 

Network 

(DBN) 

Convolutional 

Neural 

Network 

(CNN) 

Deep 

Neural 

Network 

(DNN) 

Proposed 

XSP-

CNN 

Accuracy 95.7671 93.3450 91.5492 90.6574 98.9609 

Feature Reduction Effect (BM-HHO)

Retained Features Reduced Features
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Precision 95.8477 93.4256 91.6955 90.6574 98.5778 

Recall 94.8756 93.8476 91.8653 90.5478 98.8745 

F-Measure 95.4578 93.6875 91.1548 90.6849 98.3545 

CPU Memory Usage (in 

kb) 

590221 638194 789666 888244 415068 

Training Time (in ms) 23107 32107 43208 55107 18007 

Sensitivity 95.8477 93.4256 91.6955 90.6574 98.5778 

Specificity 95.6834 93.2624 91.3978 90.6574 98.5438 

 

This reduction brought down the size of the dataset, which helped improve training speed and overall efficiency 

something especially important in resource-constrained environments like MANETs. The way BM-HHO balances 

which features to keep and which to drop shows that it can consistently identify the most meaningful subset for 

training. That balance helps maintain accuracy while cutting down on noise and unnecessary computation. 

To further evaluate the system, we compared our approach against several well-known models. Metrics like accuracy, 

precision, recall, F-measure, and training time were used to assess performance. The recall of the DDoS detection, in 

particular, was measured through our Xavier Soft-Plus CNN framework to see how it handled classification under 

real traffic patterns. 

As shown in Table 2, the Xavier SoftPlus CNN (XSP-CNN) outperforms the other deep learning models tested in this 

study, including RNN, DBN, CNN, and DNN. It leads across all key performance metrics. What really gives it the 

edge is the combination of Xavier initialization and the SoftPlus activation function. Together, they stabilize the 

model and improve both training speed and accuracy. The Xavier method helps distribute weights more evenly, which 

prevents issues like vanishing or exploding gradients. Because of this, the model converges faster training time 

dropped to 18,007 ms compared to 55,107 ms for the DNN. The SoftPlus activation also plays a big role. Unlike ReLU, 

which can completely deactivate neurons, SoftPlus has a soft slope that keeps neurons active during training. That’s 

one reason XSP-CNN hits 98.96% accuracy, outperforming RNN at 95.77% and CNN at 91.55%. 

But it’s not just about accuracy—XSP-CNN is lighter, too. It only used 415,068 KB of memory during training, which 

is significantly lower than CNN (789,666 KB) and DNN (888,244 KB). That makes it a better fit for real-time use 

where system resources are limited. The model also scored high in sensitivity and specificity 98.57% and 98.54%, 

respectively which shows it’s capable of catching subtle patterns without overfitting. Altogether, these results make a 

strong case for XSP-CNN as the most reliable choice for complex classification tasks, especially when both 

performance and efficiency matter. 

Figure 7 illustrates how the model performs under dynamic conditions, where the input data is intentionally 

scrambled for each run. This setup mimics the kind of unpredictability you’d expect in real-world network traffic—

like what happens in MANETs or during actual DDoS attacks. By reshuffling the dataset at every cycle, the model is 

forced to adapt and learn from different traffic distributions each time. The idea is to break the static assumptions 

and see whether the XSP-CNN can still hold up when the environment shifts. After each run, we record the model’s 

accuracy, and then plot the results to evaluate both performance and consistency. What this approach really tests is 

how well the system handles uncertainty, something that’s essential in adaptive networks. The goal isn’t just accuracy 

in ideal conditions, but stable behaviour across a range of unpredictable inputs. 

The resource consumption analysis measures the computational efficiency of the XSP-CNN model when it performs 

inference operations. The framework measures the model's real-time performance through inference time logging 

while processing the scaled test dataset. The model requires 5.43 seconds to produce predictions which reveals its 

speed and responsiveness. The evaluation holds essential importance for MANET environments because it 

determines the model's performance regarding latency and power usage. The logged inference time proves the XSP-

CNN model's readiness for real-world deployment through its ability to perform lightweight high-performance 



Journal of Information Systems Engineering and Management 
2025, 10(51s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 196 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

computations. The model becomes more computationally efficient when its inference time is shorter thus meeting 

the requirements of DDoS attack detection systems that need low latency. The development of scalable flexible 

frameworks requires truncated logged inference time to handle growing network demands while preserving high 

performance in dynamic high-mobility networks such as MANET. 

 

Figure 7. XSP-CNN Performance Under Dynamic Scenarios 

 

Figure 8. Fitness vs Iteration Study 

Figure 8 shows a graphical representation of fitness versus iteration analysis. The graphical representation illustrates 

how the fitness value changes with each iteration, thus depicting the convergence tendencies. This makes it easier to 

comprehend the performance and efficiency of the proposed algorithm in the optimization of resource allocation. 

We tested our model on the “Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv” dataset from CIC-IDS2017. It’s 

one of those benchmark sets that includes actual traffic like real-world highway data mixed with different kinds of 

attacks, including botnet and PDoS. The model held up well and scored over 98.78% accuracy, which was honestly 

better than we expected at this stage. to make it closer to real-world behaviour, we replayed the. pcap data using tools 

like Wireshark, and in some cases, converted it into structured features—stuff like flow stats and header-level 

metadata. That part helped a lot. It gives the model more to work with, and that’s what makes it spot strange 

behaviours or low-key attack patterns that aren’t easy to catch otherwise. It’s not just about raw accuracy—it’s also 

about being able to handle unexpected stuff as it comes. 

One thing we made sure of was that the system stays flexible. It uses a few different thresholds and learning layers so 

that it doesn’t mess up on edge cases. The PCC-based detection paired with K-means clustering helped a lot here. 

That combination made it easier to tell apart DDoS spikes from legit flash traffic. You can see the improvement clearly 

in Figure 9, it’s not perfect, but the distinction got a lot sharper. 
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Figure 9. Flash Events Differentiation Analysis 

We assessed the ability of the model to distinguish between flash events and actual DDoS traffic. To be honest, the 

accuracy of 99.82% was a bit of a surprise to us. It wasn’t just a clean win, what really made it stand out was how well 

it handled weird edge cases, where the traffic patterns looked similar. Real attacks were flagged consistently without 

any misclassification of legitimate surges. When we broke it down further, the precision was 99.65%, recall hit 

99.93%, and F1-score came out to 99.79%. High numbers across the board, but the real takeaway was how steady it 

was over multiple runs. The model didn’t just do well once it kept performing under different traffic setups. That kind 

of consistency is what matters most if this is going to be useful in an actual network, not just in testing. Figure 10 

shows the performance of the XSPCNN model for different MANET sizes ranging from 50 to 500 nodes. The system 

replicates real-world dynamic conditions by sampling subsets of the CIC-DDoS2019 dataset and introducing 

synthetic “Node Mobility” features. The CNN model, optimized with Conv1D layers, maintains efficiency and 

accuracy despite increasing node density. The results show high accuracy (100% for 50 nodes, 99% for 100 nodes, 

and 98% for 200 and 500 nodes), which proves the model’s robustness and scalability. This lightweight, power-

efficient approach highlights its suitability for real-time MANET deployments under resource-constrained 

environments. 

 

Figure 10. Scalability Analysis of XSP-CNN algorithm 

4.2.  Load Balancing Performance Inspection 

This section looks at how the proposed I-CMIWO algorithm holds up against existing approaches across several 

performance metrics—things like average waiting time, throughput, latency, processing time, and how well each 
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method balances the load. Based on the data, our interpolation-based crossover mutation model consistently 

outperforms the others in nearly every category. 

The system stands out because of its scheduling management. The average waiting time along with process time and 

response time experience significant reductions through I-CMIWO. The system cuts waiting time by 34% and 

enhances response time by 28% better than BOA, SMO, ROA and the classical IWO as shown in figure 11 and table 

3. The hybrid crossover-mutation strategy of this system leads to enhanced population diversity which results in 

faster convergence. The system controls weed distribution through dynamic adjustments which results in better load 

balancing. The system achieves better Quality of Service indicators through its latency and throughput 

improvements. The system delivers a 32% improvement in these performance metrics according to Figure 12 and 

table 4. The performance of I-CMIWO under pressure makes it an effective solution for real-time systems that require 

fast responses and stable operation. 

Proposed dynamic thresholding method functions within MANET environments as illustrated in Figure 13. The K-

Means clustering algorithm grouped scaled features from the dataset into distinct clusters which appear in different 

colors in the plot. The cluster centers appear as red 'X' symbols. The clustering step functions as a fundamental 

component. Real-time traffic patterns enable us to set adaptive thresholds which observe how each group behaves. 

The constantly changing conditions of MANETs make this feature essential. The approach enables better detection 

of application-layer DDoS attacks while preventing excessive reactions to typical traffic fluctuations. 

 

Figure 11. Performance investigation of projected I-CMIWO in contrast with the existing algorithms 

  The adaptable structure enables the detection model to adapt to network fluctuations which occur due to 

node movement and unexpected traffic patterns. Clustering enables significant reduction of misclassifications 

because it operates within the energy and scalability constraints of resource-limited MANETs. The cluster 

identification in the dataset holds multiple applications beyond detection purposes. The process of grouping nodes 

according to their resource profiles enables better resource distribution. The optimization of cluster-based routing 

helps decreases network congestion while enhancing total network performance. Monitoring cluster node behaviour 

provides an additional advantage for detecting security threats and anomalies at an early stage. The process requires 

feature scaling as an essential step. The absence of feature scaling allows features with extensive numerical ranges to 

control clustering results which produces biased or misleading outcomes. Scaling ensures that all features contribute 

equally.  
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Table 3. Performance investigation of projected I-CMIWO in contrast with the existing algorithms (Time in ms) 

No. of 

Requests 
Metric BOA SMO ROA IWO 

Proposed 

I-CMIWO 

100 
Avg. Waiting 

Time 
281 243 214 184 164 

 Process Time 6523 6071 5714 5237 4855 

 Response Time 4236 3784 3085 2784 2128 

200 
Avg. Waiting 

Time 
438 408 376 351 307 

 Process Time 9214 8624 7214 6819 5744 

 Response Time 5517 4925 4467 4068 3716 

300 
Avg. Waiting 

Time 
661 602 534 476 418 

 Process Time 13412 10217 9134 8129 6324 

 Response Time 6127 5617 5049 4571 4162 

400 
Avg. Waiting 

Time 
874 786 703 621 543 

 Process Time 21475 17514 14268 12713 10386 

 Response Time 6758 6234 5871 5496 5037 

500 
Avg. Waiting 

Time 
1129 1002 914 842 746 

 Process Time 29511 25117 21477 19227 16847 

 Response Time 7329 6874 6473 6178 5772 

 

Feature 1 (Scaled) in this configuration shows network node mobility while Feature 2 (Scaled) indicates total network 

traffic volume. The original dataset provides these values which underwent normalization to ensure clustering based 

on actual data characteristics instead of numerical magnitude. 

Table 4. Performance investigation of projected I-CMIWO for QoS Improvement 

No. of 

Requests 
Metric BOA SMO ROA IWO 

Proposed 

I-CMIWO 

100 Latency (ms) 1054 845 635 487 214 

 
Throughput 

(Kb/s) 
2157 1856 1428 1135 952 

 DSRC Time 0.532214 0.482753 0.431251 0.387415 0.348522 

200 Latency (ms) 2086 1648 1254 875 468 

 
Throughput 

(Kb/s) 
2954 2415 1936 1497 1247 

 DSRC Time 0.587412 0.547521 0.497285 0.451475 0.412477 

300 Latency (ms) 3067 2415 1847 1275 684 

 
Throughput 

(Kb/s) 
3324 2765 2382 1873 1486 

 DSRC Time 0.635211 0.598475 0.554744 0.512477 0.475623 

400 Latency (ms) 4074 3215 2468 1675 847 

 
Throughput 

(Kb/s) 
3762 3357 2912 2318 1865 

 DSRC Time 0.679854 0.623574 0.578456 0.536587 0.485214 
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500 Latency (ms) 5023 4067 3086 2057 1049 

 
Throughput 

(Kb/s) 
4215 3862 3175 2651 2375 

 DSRC Time 0.756234 0.712478 0.674455 0.632478 0.574123 

 

 

 

 

Figure 12. Performance investigation of projected I-CMIWO for QoS Improvement 

We ran an analysis on the DSRC (Double Shift Right Complement) operation to see how well it performs when used 

for lightweight data processing. The focus was on how long it takes to apply the transformation across a given dataset. 

Since MANET applications are often power-sensitive and delay-critical, we wanted to make sure the method was fast 

enough to be practical. To do that, we applied the DSRC transformation across the dataset and recorded the time it 

took for each instance. The results showed that the operation is genuinely lightweight as it processes data quickly and 

doesn’t put much strain on system resources. That kind of low-latency behaviour is exactly what you want in real-

time systems. 

 

Figure 13. Dynamic Thresholding Analysis for MANET compliance 
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The limited processing power of devices in MANET setups makes DSRC an appropriate solution. The transformation 

happens quickly and the approach maintains low power usage which enhances both scalability and efficiency. The 

proposed model demonstrates its performance in accuracy measurements through Figure 14 when compared to other 

popular methods. It highlights the same methods which considered the same dataset for evaluation [37] [38] [39] 

[40]. 

The system delivers more than accurate detection because it includes smart classification and active mitigation 

features as part of its full-stack protection system. The system detects application-layer DDoS attacks and separates 

flash events from legitimate traffic spikes so neither are reported as threats. The Pearson Correlation Coefficient 

(PCC) acts as the solution to prevent false positives by distinguishing actual attacks from sudden legitimate traffic 

bursts. The XP-CNN enhances precision through its ability to detect spatial and temporal patterns in traffic flow 

which leads to better classification results.  

The I-CMIWO algorithm takes over mitigation responsibilities in this system. The system handles resource 

management and performs automatic load distribution to combat changing security threats effectively. The system 

components work together to form a complete system. The system detects threats early while responding effectively 

to maintain network stability under pressure. 

This framework brings together several pieces that haven’t really been integrated before low-power optimization, 

adaptive mobility handling, and resource-conscious processing, all aimed at making MANETs more practical in real-

world conditions. What makes it work is the way everything fits together? The lightweight pre-processing steps like 

deduplication, scaling, and imputation keep the load off the edge devices, which are often running on limited power. 

The core detection engine, XSP-CNN, uses Conv1D layers along with the Soft-Plus activation function to strike a 

balance between fast convergence and smooth gradient flow, without draining resources. On the optimization side, 

BM-HHO helps shrink the feature space without losing key data. Some of those features, like synthetic node mobility 

metrics, capture the dynamic behaviour of the nodes, while PCC-based adaptive thresholds help the model adjust to 

topological changes as they happen. 

We also accounted for real-world events like link failures. Here, I-CMIWO plays a role by redistributing tasks and 

helping the network stay balanced even when things go sideways. For protection, the DSRC mechanism adds a 

lightweight defense layer that works well with power-constrained nodes. Finally, the batch-wise training and tests 

across different node densities showed the model holds up in both low-power and high-mobility conditions. 

Altogether, the system shows what a next-generation MANET framework might look like one that’s responsive, 

scalable, and ready for real-world demands. 

 

Figure 14. Accuracy Investigation with Existing Proposed Techniques 
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DISCUSSION 

The system's integrated XSP-CNN algorithm demonstrated superior effectiveness for identifying application-layer 

DDoS attack traffic between malicious and harmless traffic. XSP-CNN demonstrated superior performance than 

previous models through all important evaluation metrics. The system achieved an accuracy of 98.96% that surpassed 

conventional methods by a significant margin. The model performed well in static and dynamic scenarios of MANET 

environments because it did not experience any performance degradation. The implementation of BM-HHO as a 

feature selection method delivered distinct performance benefits to the system. The dataset reduction process with 

BM-HHO selected the most vital features which resulted in lower computational requirements without 

compromising accuracy. The I-CMIWO algorithm enhanced multiple QoS parameters through better load 

distribution since it decreased processing time and response time and latency. The average waiting time decreased 

which demonstrated that tasks processed at a faster rate with minimal delays. The DSRC mechanism established a 

lightweight yet reliable defense system that worked well for nodes with constrained resources. The PCC-based 

adaptive thresholding system improved identification of actual attacks against flash events which proves difficult for 

most real-world networks. The complete system functions as a complete protection system against application-layer 

DDoS attacks in MANETs. The system demonstrates scalability and efficiency while responding to unpredictable 

network behavior that occurs regularly in real-world networks. The DSRC approach demonstrates excellent efficiency 

but experiences scalability problems when working with node densities reaching 1000 or more. The PCC-based 

adaptive thresholds need additional optimization to work with heterogeneous complex networks that have different 

traffic patterns since the network model assumes homogeneity. Extension plans to address these limitations through 

additional scalability tests with elevated node density levels. The MANET environment can benefit from XSP-CNN 

model advancements through complex architecture improvements which would enhance system flexibility and 

performance across different operational conditions. 
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