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The prediction of biogas production is essential for optimizing operational conditions, enhancing 

process efficiency, and supporting sustainable energy systems. Traditional biogas yield 

prediction methods struggle to capture the nonlinear and complex interactions among 

influential factors such as feedstock composition, temperature, pH, and retention time. Machine 

learning (ML) models provide a promising alternative by analyzing patterns in historical data to 

make accurate, data-driven predictions. This study evaluates the effectiveness of six ML models 

Linear Regression (LR), Decision Trees (DT), Random Forests (RF), Support Vector Machines 

(SVM), k-nearest Neighbors (k-NN), and Artificial Neural Networks (ANNs) for predicting 

biogas production on dataset of an experiment performed in 5 years from January 1, 2019, to 

October 30, 2024. Each model's performance was assessed using common evaluation metrics for 

regression analysis, including Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Root Squared (R²) Score, to compare their accuracy, robustness, and suitability for biogas data, 

which often involves nonlinear relationships and multivariate interactions. The findings 

demonstrate that DT and RF outperform simpler approaches in terms of accuracy with of 0.999 

and 0.998 respectively, making them ideal for complex biogas prediction tasks. This study 

underscores the potential of ML models in optimizing biogas production systems and contributes 

to developing efficient, scalable solutions for renewable energy management. 

 

Keywords: Biogas production, Machine learning, Prediction models, Anaerobic digestion, 
Regression analysis.   

 

1. INTRODUCTION 

A well-functioning biogas system offers environmental and resource conservation benefits. Biogas is produced 

through anaerobic digestion (AD) of organic waste, yielding methane (CH₄) and carbon dioxide (CO₂), and is utilized 

for electricity, heat, or upgraded to biomethane [2]. AD is one of the oldest methods for industrial waste treatment 

and sludge stabilization [1]. Precise AD process control is crucial to maximize biogas yield, though production is 

complex and affected by factors like feedstock properties, temperature, pH, microbial activity, and hydraulic 

retention time. Predicting biogas output accurately is challenging, as traditional models often miss nonlinear 

interactions [3].  

Anaerobic digestion (AD) is a widely adopted method for organic waste treatment, offering advantages such as biogas 

production, low sludge output, pathogen removal, and the creation of organic fertilizers [4]. As demand for 

sustainable energy grows, efforts to enhance biogas yield and improve AD energy efficiency have intensified [5]. 

Biogas, primarily composed of methane (55-70%) and carbon dioxide (30-40%), serves as a renewable energy source 

that can replace environmentally harmful and rapidly depleting fossil fuels [6][7]. However, biogas production is a 

complex, microorganism-driven process influenced by factors such as pH, temperature, and the carbon-to-nitrogen 

ratio, and it often faces stability challenges that affect efficiency [8]. Proper monitoring, process control, and 

modeling of the anaerobic process are crucial to predicting performance indicators like methane yield, enabling more 

stable and efficient plant operations [9].  
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ML models are powerful tools for addressing the complexities of biogas production, offering the ability to analyze 

historical data, identify patterns, and make reliable predictions [10]. Unlike traditional linear methods, ML captures 

both linear and nonlinear relationships, optimizing operational parameters in AD to enhance efficiency and stability 

[11,12]. Models like LR, DTs, RFs, SVM, k-NN, and ANNs have unique strengths, from baseline modeling to capturing 

complex nonlinear patterns [15–17]. Metrics such as Mean Squared Error (MSE) and Mean Absolute Error (MAE) 

are used to evaluate these models, with advanced models like RF and ANNs often outperforming simpler ones in 

predicting biogas production [18–23]. This study evaluates these models using real-world data to identify the most 

suitable approaches for accurate and interpretable biogas predictions, supporting improved sustainability in 

renewable energy management. 

2. LITERATURE REVIEW  

2.1 Related Work 

The ML models have gained significant attention for predicting biogas production due to their ability to capture 

nonlinear relationships and complex interactions in AD processes. Traditional statistical methods, which rely on 

linear assumptions, struggle to predict biogas yields accurately when parameters like substrate composition, 

temperature, pH, and retention time exhibit nonlinear dependencies [24]. While LR is often used as a baseline model 

for biogas prediction, it performs well only with linear data or limited input features [25]. As data complexity 

increases, more advanced ML approaches are explored to improve prediction accuracy. 

 

ML models offer diverse capabilities for biogas prediction, each with unique strengths and limitations. DTs effectively 

handle nonlinearity and categorical variables, making them interpretable and useful for understanding biogas yield 

drivers, though prone to overfitting without proper hyperparameter tuning [26]. Ensemble models like RFs improve 

accuracy by reducing variance and overfitting but require significant computational resources for large datasets [27]. 

SVMs excel in capturing complex relationships within smaller datasets, though they require precise parameter tuning 

for optimal performance [28]. Simpler models like k-NN are useful for pattern recognition but face challenges with 

computational expense and sensitivity to neighbor selection in large datasets [29,30]. Advanced models like ANNs 

capture nonlinear interactions effectively, offering high prediction accuracy, but their high computational demands 

and lack of interpretability have spurred hybrid approaches combining ANNs with simpler methods for improved 

robustness and transparency [31–35]. 

ML enables computers to uncover hidden insights by learning from data using algorithms. In a study [36], five ML 

algorithms (XGBoost, SVM, ANN, RF, and LR) were used to forecast biogas production at an industrial-scale plant 

processing food waste. The Random Forest (RF) model performed best with an R² of 0.74 when all standard 

monitoring indicators were included. De Clerc et al. found that RF and XGBoost outperformed Elastic Net in 

predicting biomethane production, with R² values ranging from 0.80 to 0.88 across time horizons [37][38]. Long et 

al. showed that increasing data and features could improve prediction accuracy [39]. 

Existing research on biogas production largely focuses on lab or pilot-scale reactors, leaving a gap in applying AI-

based models to full-scale sludge digestion in biological treatment plants. Advancements in ML and hybrid models 

have enhanced prediction accuracy, interpretability, and scalability. This study aims to predict biogas production 

rates using AI and regression models, evaluating their performance with various statistical indicators. 

2.2 Machine Learning Techniques  

In this research work, the 6 most common ML-regression algorithms, such as LR, DT, RF, SVM, KNN, and ANN were 

adopted to develop and compare ML models for predicting biogas production. The following section briefly describes 

these models. The Table 1 gives a clear and compact summary of the most widely used machine learning algorithms. 

They are described in terms of what sorts of problems and datasets they are best suited for. References to relevant 

studies and applications are included as much to support the explanations here, as to point interested readers toward 

further exploration. 
Table 1:  Machine Learning Techniques Commonly Used. 

Algorithms Descriptions References 

Artificial Neural 

Network (ANN) 

Mimics the human brain's neurons, excelling in nonlinear, complex 

problems. Commonly used in AD and environmental processes. 

Notable for prediction accuracy but lacks interpretability. 

[40, 41, 59, 44] 
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Random Forest (RF) Ensemble method using multiple decision trees to improve 

predictions by considering all available attributes and reducing 

overfitting. Effective for high-dimensional data. 

[45, 58, 46, 47] 

Support Vector 

Machine (SVM) 

Maps data into a higher-dimensional space to make it linearly 

separable, ideal for regression and handling non-linear 

relationships. Robust to outliers but less effective with noisy data. 

[48, 49] 

K-Nearest Neighbor 

(KNN) 

Simple method predicting based on the k nearest neighbors, using 

distance metrics like Manhattan distance. Sensitive to the choice of 

'k'. 

[51, 42, 50] 

Linear Regression 

(LR) 

Predicts a dependent variable from multiple independent variables, 

assuming a linear relationship. Limited by its assumption of 

linearity and independence. 

[52, 53] 

Decision Tree (DT) Splits data into nodes to make predictions, minimizing errors by 

selecting optimal splits. Flexible, interpretable, and handles non-

linear relationships. 

[53, 54, 60] 

 

3. METHODOLOGY  

The methodology comprises different key stages: data collection, wrangling and preprocessing, feature selection, 

model training and tuning, performance evaluation, and model comparison. Each step is designed to maximize 

prediction accuracy and identify the most effective ML models for biogas production prediction.  

 

Fig. 1: Methodology for Machine Learning-based Models Development. 

The structured machine learning workflow is illustrated in the Fig. 1, beginning with the gathering and preparation 

of raw data for analysis. The data are split into two subsets for model training and testing. The training subset 

comprises 80% of the complete dataset. With this, various models; Linear Regression, Decision Tree, Random Forest, 

SVM, KNN, and ANN are trained. Upon training in parallel, the model types are evaluated as to their respective 

performances. They are tallied using appropriate metrics: 𝑅2, RMSE, MSE, and MAE. The model type evaluation and 

selection process are shown at the bottom left of the figure. 

3.1 Data Collection and Pre-processing 

The study employed a systematic sampling approach, collecting biogas production data at regular intervals to ensure 

a representative dataset. The dataset obtained is from an experiment performed in 5 years from January 1, 2019, to 

October 30, 2024. It was divided into categories namely, influent flow rate of the feed sludge, total solids content, 

total volatile solids content, alkalinity, volatile fatty acids, and total biogas production. Experiments were conducted 

under controlled mesophilic (35–40°C) and thermophilic (50–55°C) conditions to replicate real-world anaerobic 

digestion processes. 



Journal of Information Systems Engineering and Management 
2025, 10(51s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 264 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Data preprocessing steps included handling missing values, normalizing or standardizing features, and encoding 

categorical variables where applicable. Missing values were addressed through imputation techniques such as mean 

substitution for continuous variables and mode substitution for categorical ones. Features were normalized to bring 

them within a comparable scale, reducing the potential for skewed model training and ensuring all parameters 

contributed equally to the learning process. Categorical data, such as substrate types, were transformed using one-

hot encoding to facilitate compatibility with ML models. 

 

3.2 Model Training and Performance Evaluation 

Six ML models were trained and optimized using an 80/20 split of a feature-selected dataset, with 80% for training 

and 20% for testing to evaluate generalizability. After training the model, it is important to measure the accuracy of 

prediction. The model accuracy was evaluated using three metrics: the determination coefficient (R2), mean squared 

error (MSE), and mean absolute error (MAE). These are well-suited for regression problems aimed to predict 

continuous outcomes, and these metrics quantify the accuracy of predictions by evaluating the closeness of predicted 

values to actual ones and provide complementary viewpoints regarding how well the model performs.  

 

R2 measures the model's overall fit in terms of the explained variance. MSE is a more fine-grained, average 

assessment of how well the model's predicted values match the actual values. In contrast to MSE, MAE offers a more 

direct and straightforward interpretation of the model's error without any wild swings that might occur if some 

predictions are particularly far from the actual values. Together these three metrics ensure a comprehensive and 

nuanced picture of regression accuracy. They can be mathematically expressed by the following formulas.  

Coefficient of determination (R2 or R-squared):                                                               (1) 

Where,  is the predicted   value, the   element is the actual   value and  is the meaning of the true values 

constant.   

                            (2) 

The coefficient of determination R2 quantifies the proportion of variance in the predicted variable explained by the 

model's input parameters. A higher R2 value indicates that the model incorporates significant input parameters and 

is well-trained to predict experimental values within the dataset [19, 55]. R2 values range from 0 to 1, with values 

closer to 1 signifying better model performance [56]. 

Mean square error (MSE):                                  (3) 

MSE evaluates the average squared difference between observed and predicted values, serving as a measure of error 

in statistical models. An ideal model with no error has an MSE of zero, while higher MSE values indicate greater error 

[57]. Model selection prioritizes maximizing the coefficient of determination R2 and minimizing MSE during both 

the testing and validation phases to ensure accurate fitting and prediction. 

Mean absolute error (MAE):                          (4) 

MAE is useful when outliers represent corrupted data, as it does not heavily penalize training outliers, offering a 

bounded performance measure for models. However, if the test set contains numerous outliers, model performance 

may still degrade. MAE ranges from a best value of 0 (no error) to +∞ (worst performance).  

3.3  Model Comparison and Analysis 

A comparative analysis evaluated the strengths and weaknesses of various ML models for biogas prediction. Models 

were ranked based on performance across three evaluation metrics, while also considering interpretability, 

computational efficiency, and scalability. This multi-model assessment highlights the most suitable techniques for 

biogas production prediction, providing a foundation for future research and practical applications in biogas systems. 

4. RESULTS INTERPRETATION AND DISCUSSION  

4.1  Model Comparison and Analysis 

The implementation begins with importing libraries for data preprocessing and model building, including Keras for 

deep learning. A Keras regressor wrapper integrates an ANN into the machine learning pipeline for evaluation 
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alongside traditional models like LR, DT, RF, SVM, and k-NN. The dataset is cleaned by excluding non-numeric 

columns and rows with missing target values, then split into training and testing sets. Models are trained and 

evaluated using R² scores, which are visualized for comparison. The best model is identified based on R², with an 

example prediction demonstrating real-world utility. 

Table 2:  Machine Learning Techniques Commonly Used. 

SN Models MAE MSE    R² Score   

1 LR 1996.3064 6867818.00 0.574689 

2 DT 5.023474 7310.16 0.999547 

3 RF 70.383118 27754.34 0.998281 

4 SVM 3103.4048 15499340.00 0.040156 

5 k-NN 468.70141 782832.40 0.951521 

6 ANN 1746.6639 5767541.00 0.642828 

 

From Table II, the DT and RF achieved the best results with very low error and a high R² score. Linear Regression 

and ANN showed moderate R² scores, with errors indicating they captured some but not all patterns in the data. 

SVM and k-NN have the lowest R².  

 

4.2  Model Comparison and Analysis 

The visualization from Fig. 2 provides a quick comparison of each model's effectiveness, highlighting which ones are 

better suited for each target parameter. It illustrates the R² scores of six different models applied across various target 

parameters. Each target parameter is displayed on the y-axis, while the R² score is shown on the x-axis, allowing for 

direct comparison of model performance on each specific parameter. The RF and DT models tend to have higher R² 

scores, indicating strong predictive capabilities, while Linear Regression and Support Vector Machines generally 

show lower scores for these tasks. 

 

Fig. 2: Model Comparison for each targeted parameter on R2 score. 

4.3 Prediction of biogas production by the Best Performer ML model. 

The table shows the performance of a DT model in predicting various target parameters with exceptionally high 

accuracy.  

Table 3:  Best Performer ML Models. 

SN Targeted parameter Models MAE MSE R2 Score 

1 Alkalinity   DT 4.67E-15 6.14378E-28 1.00000 

2 Total Biogas Production DT 5.02 7310.16 0.999547 
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For most parameters (Alkalinity, Total Mixed Feed, Total Solids Content, Total Volatile Solids Content, and Volatile 

Fatty Acids), the model achieves an R² Score of 1.000, indicating perfect predictive accuracy. Both MAE and MSE 

are extremely low, often close to zero, suggesting minimal prediction error. The only parameter with a slightly lower 

performance is Total Biogas Production, where the model achieved an R² of 0.999547 with a small MAE of 5.02 and 

MSE of 7310.16, still indicating a very high level of accuracy.  

 

4.4 Developed ML models Vs Previous Works. 

The table provides a comparison of the recent 4 papers related to biogas prediction, along with the algorithms used 

and the best model performance in terms of R2 accuracy. In common, RF achieved the highest R2 accuracy. Compared 

with our paper both DT and RF demonstrated very high accuracy in predicting biogas production, with DT reaching 

R2 of 0.999 and RF at 0.998. This overview highlights RF as a frequently effective algorithm in this field. 

Table 4:  Developed ML Models Vs Previous Published Works. 

SN Scientific Task Algorithm Best Accuracy References 

1 Prediction of gaseous products RF, SVM RF with 𝑅2=0.87 [59] 

2 Prediction of biochar yield 

and carbon contents RF RF with 𝑅2=0.8548 
[60] 

3 
Biogas Prediction for 

Industrial-scale Digestor 
RF, XGBoost XGBoost with R2=0.88 [38] 

4 Biogas prediction accuracy SVM, ANN, RF, KNN RF with R2=0.620 [58] 

5 
Predicting Biogas Production 

LR, DT, SVM, ANN, RF, 

KNN 

RF with R2=0.998, DT 

with R2=0.999 
Our paper 

 

While both Decision Trees (DT) and Random Forests (RF) achieved high accuracy in predicting biogas production, 

RF is generally preferred due to its robustness, stability, and better generalization to unseen data. Unlike DT, which 

is prone to overfitting, RF reduces variability by averaging multiple trees, ensuring consistent predictions. It also 

handles high-dimensional data effectively and provides reliable feature importance insights. Though DTs are simpler 

and more interpretable, RF offers superior accuracy, scalability, and resilience to missing data, making it the 

preferred choice for complex, data-intensive applications like biogas production optimization. 

 

5. CONCLUSION  

This study highlights the potential of ML in biogas production, a sustainable alternative to fossil fuels. By evaluating 

six ML models (LR, DT, RF, SVM, k-NN, and ANN), it identified Decision Trees (DT) and Random Forests (RF) as 

the most effective. With RF achieving an R² of 0.998 and DT at 0.999, the research highlights their superior 

predictive power over simpler regression models. Using a five-year dataset, it ensures robustness and real-world 

applicability. Additionally, DT and RF provide insights into key influencing factors, guiding optimization efforts. By 

comparing results with existing studies, these results suggest RF as a powerful tool for maximizing biogas yield and 

minimizing environmental impact. Future work recommends the use of AI-driven advancements which could focus 

on integrating real-time data, exploring hybrid ML models for improved accuracy, and developing user-friendly tools 

for broader adoption across biogas systems.  
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3 Total Mixed Feed (TMF)   DT 0.000000 0.000000 1.000000 

4 Total Solids content (TSC) DT 1.07E-15 9.66632E-30 1.000000 

5 Total Volatile Solids content 

(TVSC)   

DT 
4.59E-16 1.84E-30 1.000000 

6 Volatile Fatty Acids (TFA)   DT 5.77E-15 3.68E-28 1.000000 



Journal of Information Systems Engineering and Management 
2025, 10(51s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 267 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

REFRENCES 

[1] Moses Jeremiah Barasa Kabeyi, Oludolapo Akanni Olanrewaju, Joseph Akpan, Biogas Production and Process Control 

Improvements, From Biomass to Biobased Products. Journal of Energy,10.5772/intechopen.113061, (2024). 

https://doi.org/10.1155/2022/8750221. 

[2] Singh AK, Pal P, Rathore SS, Sahoo UK, Sarangi PK, Prus P, Dziekański P. Sustainable Utilization of Biowaste Resources for 

Biogas Production to Meet Rural Bioenergy Requirements. Energies. 2023; 16(14):5409. 

https://doi.org/10.3390/en16145409. 

[3] Mohammed Khaleel Jameel, Mohammed Ahmed Mustafa, Hassan Safi Ahmed, Amira jassim Mohammed, Hameed Ghazy, 

Maha Noori Shakir, Amran Mezher Lawas, Saad khudhur Mohammed, Ameer Hassan Idan, Zaid H. Mahmoud, Hamidreza 
Sayadi, Ehsan Kianfar, Biogas: Production, properties, applications, economic and challenges: A review,Results in 

Chemistry, Volume 7, 2024, 101549, ISSN 2211-7156, https://doi.org/10.1016/j.rechem.2024.101549. 

[4] J. Ward, P. J. Hobbs, P. J. Holliman, and D. L. Jones, ‘Optimisation of the anaerobic digestion of agricultural resources’, 

Bioresource Technology, vol. 99, no. 17, pp. 7928–7940, Nov. 2008. Https://doi.org/10.1016/j.biortech.2008.02.044. 

[5] G. Choi, H. Kim, and C. Lee, ‘Long-term monitoring of a thermal hydrolysis-anaerobic co-digestion plant treating high-

strength organic wastes: Process performance and microbial community dynamics’, Bioresource Technology, vol. 319, p. 

124138, Jan. 2021, https://doi.org/10.1016/j.biortech.2020.124138. 

[6] Yadvika, Santosh, T. R. Sreekrishnan, S. Kohli, and V. Rana, ‘Enhancement of biogas production from solid substrates using 

different techniques––a review’, Bioresource Technology, vol. 95, no. 1, pp. 1–10, Oct. 2004, 

https://doi.org/10.1016/j.biortech.2004.02.010. 

[7] Y. Qian, S. Sun, D. Ju, X. Shan, and X. Lu, ‘Review of the state-of-the-art of biogas combustion mechanisms and applications 

in internal combustion engines’, Renewable and Sustainable Energy Reviews, vol. 69, pp. 50–58, Mar. 2017, 

https://doi.org/10.1016/j.rser.2016.11.059. 

[8] Andrade Cruz et al., ‘Application of machine learning in anaerobic digestion: Perspectives and challenges’, Bioresource 

Technology, vol. 345, p. 126433, Feb. 2022, https://doi.org/10.1016/j.biortech.2021.126433. 

[9] P. Ghofrani-Isfahani, B. Valverde-Pérez, M. Alvarado-Morales, M. Shahrokhi, M. Vossoughi, and I. Angelidaki, ‘Supervisory 

control of an anaerobic digester subject to drastic substrate changes’, Chemical Engineering Journal, vol. 391, p. 123502, 

Jul. 2020, https://doi.org/10.1016/j.cej.2019.123502. 

[10] Lukas-Valentin Herm, Kai Heinrich, Jonas Wanner, Christian Janiesch, Stop ordering machine learning algorithms by their 

explainability! A user-centered investigation of performance and explainability, International Journal of Information 

Management, Volume 69, 2023, 102538, ISSN 0268-4012, https://doi.org/10.1016/j.ijinfomgt.2022.102538. 

[11] Long Chen, Pinjing He, Hua Zhang, Wei Peng, Junjie Qiu, Fan Lü, Applications of machine learning tools for biological 

treatment of organic wastes: Perspectives and challenges, Circular Economy, Volume 3, Issue 2, 2024, 100088, ISSN 2773-

1677, https://doi.org/10.1016/j.cec.2024.100088. 

[12] Zhang, Pengshuai, Tengyu Zhang, Jingxin Zhang, Huaiyou Liu, Cristhian Chicaiza-Ortiz, Jonathan TE Lee, Yiliang He, 

Yanjun Dai, and Yen Wah Tong. “A machine learning assisted prediction of potential biochar and its applications in anaerobic 

digestion for valuable chemicals and energy recovery from organic waste.” Carb Neutrality 3, 2 (2024). 
https://doi.org/10.1007/s43979-023-00078-0. 

[13] Portugal, P. Alencar, and D. Cowan, ‘The use of machine learning algorithms in recommender systems: A systematic review’, 

Expert Systems with Applications, vol. 97, pp. 205–227, May 2018, https://doi.org/10.1016/j.eswa.2017.12.020. 

[14] G. S. Fanourgakis, K. Gkagkas, E. Tylianakis, and G. Froudakis, ‘A Generic Machine Learning Algorithm for the Prediction 

of Gas Adsorption in Nanoporous Materials’, J. Phys. Chem. C, vol. 124, no. 13, pp. 7117–7126, Apr. 2020, 

https://doi.org/10.1021/acs.jpcc.9b10766. 

[15] Rossi E, Pecorini I, Iannelli R. Multilinear Regression Model for Biogas Production Prediction from Dry Anaerobic Digestion 

of OFMSW. Sustainability. 2022; 14(8):4393. https://doi.org/10.3390/su14084393. 

[16] Wang, Zhengxin, Xinggan Peng, Ao Xia, Akeel A. Shah, Huchao Yan, Yun Huang, Xianqing Zhu, Xun Zhu, and Qiang Liao. 

"Comparison of machine learning methods for predicting the methane production from anaerobic digestion of lignocellulosic 

biomass." Energy, Volume 263, Part D, 2023, 125883, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2022.125883. 

[17] Hunter W. Schroer and Craig L. Just. Feature Engineering and Supervised Machine Learning to Forecast Biogas Production 

during Municipal Anaerobic Co-Digestion. ACS ES&T Engineering 2024 4 (3), 660-672. 

Https://doi.org/10.1021/acsestengg.3c00435. 

[18] Hannay K. 2020. Everything is a regression: in search of unifying paradigms in statistics. Available at 

https://towardsdatascience.com/everything-is-just-a-regression-5a3bf22c459c (accessed 12 Janvier 2025).  

[19] Chicco Davide, Warrens Matthijs J., Jurman Giuseppe 2021. The coefficient of determination R-squared is more informative 

than SMAPE, MAE, MAPE, MSE, and RMSE in regression analysis evaluation. Peer J Computer science., 2021,  

https://doi.org/10.7717/peerj-cs.623. 

[20] Elicia Yee Ting Gan, Yi Jing Chan, Yoke Kin Wan, Timm Joyce Tiong, Woon Chan Chong, Jun Wei Lim. Examining the 

synergistic effects through machine learning prediction and optimization in the anaerobic Co-digestion (ACoD) of palm oil 

mill effluent (POME) and decanter cake (DC) with economic analysis, Journal of Cleaner Production, Volume 437, 2024, 

140666, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2024.140666. 

https://doi.org/10.1155/2022/8750221
https://doi.org/10.3390/en16145409
https://doi.org/10.1016/j.rechem.2024.101549
https://doi.org/10.1016/j.biortech.2008.02.044
https://doi.org/10.1016/j.biortech.2020.124138
https://doi.org/10.1016/j.biortech.2004.02.010
https://doi.org/10.1016/j.rser.2016.11.059
https://doi.org/10.1016/j.biortech.2021.126433
https://doi.org/10.1016/j.cej.2019.123502
https://doi.org/10.1016/j.ijinfomgt.2022.102538
https://doi.org/10.1016/j.cec.2024.100088
https://doi.org/10.1007/s43979-023-00078-0
https://doi.org/10.1016/j.eswa.2017.12.020
https://doi.org/10.1021/acs.jpcc.9b10766
https://doi.org/10.3390/su14084393
https://doi.org/10.1016/j.energy.2022.125883
https://doi.org/10.1021/acsestengg.3c00435
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.1016/j.jclepro.2024.140666


Journal of Information Systems Engineering and Management 
2025, 10(51s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 268 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

[21] Yang, Yong & Zheng, Shuaishuai & Ai, Zhilu & Molla Jafari, Mohammad Mahdi. On the Prediction of Biogas Production from 

Vegetables, Fruits, and Food Wastes by ANFIS- and LSSVM-Based Models. BioMed Research International. 2021. 1-8. 

Https://doi.org/10.1155/2021/9202127. 

[22] Olatunji, Kehinde Oladoke & Ahmed, Noor & Madyira, Daniel & Adebayo, Ademola & Ogunkunle, Oyetola & Adeleke, 

Oluwatobi. Performance evaluation of ANFIS and RSM modeling in predicting biogas and methane yields from Arachis 

hypogea shells pretreated with size reduction. Renewable Energy, 189(1), 2022.  

Https://doi.org/10.1016/j.renene.2022.02.088. 

[23] Daniel Jia Sheng Chong, Yi Jing Chan, Senthil Kumar Arumugasamy, Sara Kazemi Yazdi, Jun Wei Lim. Optimization and 

performance evaluation of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy 

inference system (ANFIS) in the prediction of biogas production from palm oil mill effluent (POME), Energy, Volume 266, 

2023, 126449, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2022.126449. 
[24] Gupta, R., Ouderji, Z.H., Uzma et al. Machine learning for sustainable organic waste treatment: a critical review. npj Mater. 

Sustain. 2, 5 (2024). https://doi.org/10.1038/s44296-024-00009-9. 

[25] Duong, Cuong Manh, and Teng-Teeh Lim. “Use of regression models for development of a simple and effective biogas 

decision-support tool.” Scientific Reports vol. 13,1 4933. 27 Mar. 2023, https://doi.org/10.1038/s41598-023-32121-6.  

[26] Kyoungok Kim, Jung-sik Hong, A hybrid decision tree algorithm for mixed numeric and categorical data in regression 

analysis, Pattern Recognition Letters, Volume 98, 2017, Pages 39-45, ISSN 0167-8655, 

https://doi.org/10.1016/j.patrec.2017.08.011. 

[27] Peng, Shurong, Lijuan Guo, Yuanshu Li, Haoyu Huang, Jiayi Peng, and Xiaoxu Liu. "Biogas Production Prediction Based on 

Feature Selection and Ensemble Learning." Applied Sciences (2076-3417), Vol 14, no. 2, p90, 2024, 

https://doi.org/10.3390/app14020901. 

[28] David Akorede Akinpelu, Oluwaseun A. Adekoya, Peter Olusakin Oladoye, Chukwuma C. Ogbaga, Jude A. Okolie, Machine 

learning applications in biomass pyrolysis: From biorefinery to end-of-life product management, Digital Chemical 

Engineering, Volume 8, 2023, 100103, ISSN 2772-5081, https://doi.org/10.1016/j.dche.2023.100103. 

[29] Abdul Hai, G. Bharath, Muhamad Fazly Abdul Patah, Wan Mohd Ashri Wan Daud, Rambabu K., PauLoke Show, Fawzi 

Banat, Machine learning models for the prediction of total yield and specific surface area of biochar derived from agricultural 

biomass by pyrolysis, Environmental Technology & Innovation, Volume 30, 2023, 103071, ISSN 2352-1864, 

https://doi.org/10.1016/j.eti.2023.103071. 

[30] Halder, R.K., Uddin, M.N., Uddin, M.A. et al. Enhancing K-nearest neighbor algorithm: a comprehensive review and 

performance analysis of modifications. J Big Data 11, 113 (2024). https://doi.org/10.1186/s40537-024-00973-y. 

[31] Chen W-Y, Chan YJ, Lim JW, Liew CS, Mohamad M, Ho C-D, Usman A, Lisak G, Hara H, Tan W-N. Artificial Neural Network 

(ANN) Modelling for Biogas Production in Pre-Commercialized Integrated Anaerobic-Aerobic Bioreactors (IAAB). Water. 

2022; 14(9):1410. https://doi.org/10.3390/w14091410. 

[32] Sarah M. Hunter, Edgar Blanco, Adiuan Borrion, predicting total biogas potential of food waste using the initial output of 

biogas potential tests as input data to train an artificial neural network, Bioresource Technology Reports, Volume 26, 2024, 

101845, ISSN 2589-014X, https://doi.org/10.1016/j.biteb.2024.101845. 

[33] Mukasine A, Sibomana L, Jayavel K, Nkurikiyeyezu K, Hitimana E. Maximizing Biogas Yield Using an Optimized Stacking 

Ensemble Machine Learning Approach. Energies. 2024; 17(2):364. https://doi.org/10.3390/en17020364. 
[34] Organiściak, Patryk et al. "Machine Learning-Based Prediction of Biogas Production from Sludge Characteristics in Four 

Anaerobic Digesters: Development of the AD2Biogas Prediction Tool." Advances in Science and Technology Research 

Journal, vol. 18, no. 8, 2024, pp. 1-15. https://doi.org/10.12913/22998624/192936. 

[35] Peng S, Guo L, Li Y, Huang H, Peng J, Liu X. Biogas Production Prediction Based on Feature Selection and Ensemble 

Learning. Applied Sciences. 2024; 14(2):901. https://doi.org/10.3390/app14020901. 

[36] L. Wang, F. Long, W. Liao, and H. Liu, ‘Prediction of anaerobic digestion performance and identification of critical 

operational parameters using machine learning algorithms’, Bioresource Technology, vol. 298, p. 122495, Feb. 2020, 

https://doi.org/10.1016/j.biortech.2019.122495. 

[37] C. Li, P. He, W. Peng, F. Lü, R. Du, and H. Zhang, ‘Exploring available input variables for machine learning models to predict 

biogas production in industrial-scale biogas plants treating food waste’, Journal of Cleaner Production, vol. 380, p. 135074, 

Dec.2022, https://doi.org/10.1016/j.jclepro.2022.135074. 

[38] D. De Clerc, Z. Wen, F. Fei, L. Caicedo, K. Yuan, and R. Shang, ‘Interpretable machine learning for predicting biomethane 

production in industrial-scale anaerobic co-digestion’, Science of The Total Environment, vol. 712, p. 134574, Apr. 2020, 

https://doi.org/10.1016/j.scitotenv.2019.134574. 

[39] F. Long, L. Wang, W. Cai, K. Lesnik, and H. Liu, ‘Predicting the performance of anaerobic digestion using machine learning 

algorithms and genomic data’, Water Research, vol. 199, p. 117182, Jul. 2021, https://doi.org/10.1016/j.watres.2021.117182. 

[40] H. Guo, S. Wu, Y. Tian, J. Zhang, and H. Liu, ‘Application of machine learning methods for the prediction of organic solid 

waste treatment and recycling processes: A review’, Bioresource Technology, vol. 319, p. 124114, Jan. 2021, 

https://doi.org/10.1016/j.biortech.2020.124114. 

[41] ‘Accurate prediction of chemical exergy of technical lignin’s for exergy-based assessment on sustainable utilization processes 

| Elsevier Enhanced 

Reader’.https://reader.elsevier.com/reader/sd/pii/S0360544221032904?token=B2F5FF20AFDBFECF72548FA53DDEA1

https://doi.org/10.1155/2021/9202127
https://doi.org/10.1016/j.renene.2022.02.088
https://doi.org/10.1016/j.energy.2022.126449
https://doi.org/10.1038/s44296-024-00009-9
https://doi.org/10.1038/s41598-023-32121-6
https://doi.org/10.1016/j.patrec.2017.08.011
https://doi.org/10.3390/app14020901
https://doi.org/10.1016/j.dche.2023.100103
https://doi.org/10.1016/j.eti.2023.103071
https://doi.org/10.1186/s40537-024-00973-y
https://doi.org/10.3390/w14091410
https://doi.org/10.1016/j.biteb.2024.101845
https://doi.org/10.3390/en17020364
https://doi.org/10.12913/22998624/192936
https://doi.org/10.3390/app14020901
https://doi.org/10.1016/j.biortech.2019.122495
https://doi.org/10.1016/j.jclepro.2022.135074
https://doi.org/10.1016/j.scitotenv.2019.134574
https://doi.org/10.1016/j.watres.2021.117182
https://doi.org/10.1016/j.biortech.2020.124114
https://reader.elsevier.com/reader/sd/pii/S0360544221032904?token=


Journal of Information Systems Engineering and Management 
2025, 10(51s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 269 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

F0C692 559EEAB441F8828BA941FF01C4C73AC400217DEED4D7BF62A6D5755D7A07&originRegion=eu-west-

1&originCreation=20230209 160436 (accessed January 09, 2025). 

[42] Z. Wang et al., ‘Comparison of machine learning methods for predicting the methane production from anaerobic digestion 

of lignocellulosic biomass’, Energy, vol. 263, p.125883, Jan. 2023, https://doi.org/10.1016/j.energy.2022.125883. 

[43] S. Dreiseitl and L. Ohno-Machado, ‘Logistic regression and artificial neural network classification models: a methodology 

review’, Journal of Biomedical Informatics, vol. 35, no. 5, pp. 352–359, Oct. 2002, https://doi.org/10.1016/S1532-

0464(03)00034-0. 

[44] M. Kannangara, R. Dua, L. Ahmadi, and F. Bensebaa, ‘Modeling and prediction of regional municipal solid waste generation 

and diversion in Canada using machine learning approaches’, Waste Management, vol. 74, pp. 3–15, Apr. 2018, 

https://doi.org/10.1016/j.wasman.2017.11.057. 

[45] S. K. Lakshmanaprabu, K. Shankar, M. Ilayaraja, A. W. Nasir, V. Vijayakumar, and N. Chilamkurti, ‘Random Forest for big 
data classification in the internet of things using optimal features’, Int. J. Mach. Learn. & Cyber., vol. 10, no. 10, pp. 2609–

2618, Oct. 2019, https://doi.org/10.1007/s13042-018-00916-z. 

[46] L. Breiman, ‘Random Forests’, Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001, 

https://doi.org/10.1023/A:1010933404324. 

[47] S. S. Matin and S. C. Chelgani, ‘Estimation of coal gross calorific value based on various analyses by random forest method’, 

Fuel, vol. 177, pp. 274–278, Aug. 2016, https://doi.org/10.1016/j.fuel.2016.03.031. 

[48] C. Cortes and V. Vapnik, ‘Support-vector networks’, Mach Learn, vol. 20, no. 3, pp.273–297, Sep. 1995, 

https://doi.org/10.1007/BF00994018. 

[49] L. Liu and Y. Lei, ‘An accurate ecological footprint analysis and prediction for Beijing based on SVM model’, Ecological 

Informatics, vol. 44, pp. 33–42, Mar. 2018, https://doi.org/10.1016/j.ecoinf.2018.01.003. 

[50] D. Subramanian, ‘A Simple Introduction to K-Nearest Neighbors Algorithm’, Medium, Jul. 12, 2021. 

https://towardsdatascience.com/a-simple-introduction-to-k-nearest-neighbors-algorithm-b3519ed98e (accessed January 

10, 2025). 

[51] Chomboon, Kittipong, Pasapitch Chujai, Pongsakorn Teerarassamee, Kittisak Kerdprasop, and Nittaya Kerdprasop. "An 
empirical study of distance metrics for k-nearest neighbor algorithm." In Proceedings of the 3rd International Conference 
on Industrial Application Engineering, vol. 2, p. 4. 2015. https://doi.org/10.12792/iciae2015.051. 

[52] Abdulhafedh, A. (2022) Comparison between Common Statistical Modeling Techniques Used in Research, Including 
Discriminant Analysis vs Logistic Regression, Ridge Regression vs LASSO, and Decision Tree vs Random Forest. Open 
Access Library Journal, 9, 1-19. https://doi.org/10.4236/oalib.1108414. 

[53] Abdul Hai, G. Bharath, Muhamad Fazly Abdul Patah, Wan Mohd Ashri Wan Daud, Rambabu K., PauLoke Show, Fawzi 
Banat, Machine learning models for the prediction of total yield and specific surface area of biochar derived from agricultural 
biomass by pyrolysis, Environmental Technology & Innovation, Volume 30, 2023, 103071, ISSN 2352-1864, 
https://doi.org/10.1016/j.eti.2023.103071. 

[54] Huynh-Cam T-T, Chen L-S, Le H. Using Decision Trees and Random Forest Algorithms to Predict and Determine Factors 
Contributing to First-Year University Students’ Learning Performance. Algorithms. 2021; 14(11):318. 
https://doi.org/10.3390/a14110318. 

[55] N. H. Khashaba, R. S. Ettouney, M. M. Abdelaal, F. H. Ashour, and M. A. El-Rifai, ‘Artificial neural network modeling of 
biochar enhanced anaerobic sewage sludge digestion’, Journal of Environmental Chemical Engineering, vol. 10, no. 4, p. 
107988, Aug. 2022, https://doi.org/10.1016/j.jece.2022.107988. 

[56] ‘Coefficient of Determination’, Corporate Finance Institute. https://corporatefinanceinstitute.com/resources/data-
science/coefficient-of-determination. (accessed November 12, 2024). 

[57] J. Frost, ‘Mean Squared Error (MSE)’, Statistics By Jim, Nov. 12, 2021. https://statisticsbyjim.com/regression/mean-
squared-error-mse/ (accessed November 13, 2024). 

[58] Ranjan Gaida, Gamunu L. Samarakoon Arachchige, Zahir Barahmand, Carlos Dimnarca. “Application of Machine Learning 
in Biogas Process”, FMH606 Master's Thesis, 2023. 
https://openarchive.usn.no/usnxmlui/bitstream/handle/11250/3076266/no.usn%3Awiseflow%3A6838201%3A54569109
.pdf?sequence=1&isAllowed=y. (accessed 12 November 2024). 

[59] Q. Tang et al., ‘Machine learning prediction of pyrolytic gas yield and compositions with feature reduction methods: Effects 
of pyrolysis conditions and biomass characteristics’, Bioresource Technology, vol.339, p. 125581, Nov. 2021,  
https://doi.org/10.1016/j.biortech.2021.125581. 

[60] X. Zhu, Y. Li, and X. Wang, ‘Machine learning prediction of biochar yield and carbon contents in biochar based on biomass 
characteristics and pyrolysis conditions’, Bioresource Technology, vol. 288, p. 121527, Sep. 2019, 
https://doi.org/10.1016/j.biortech.2019.121527. 
 
 

 

 

 

https://doi.org/10.1016/j.energy.2022.125883
https://doi.org/10.1016/S1532-0464(03)00034-0
https://doi.org/10.1016/S1532-0464(03)00034-0
https://doi.org/10.1016/j.wasman.2017.11.057
https://doi.org/10.1007/s13042-018-00916-z
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.fuel.2016.03.031
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.ecoinf.2018.01.003
https://doi.org/10.12792/iciae2015.051
https://doi.org/10.4236/oalib.1108414
https://doi.org/10.1016/j.eti.2023.103071
https://doi.org/10.3390/a14110318
https://doi.org/10.1016/j.jece.2022.107988
https://corporatefinanceinstitute.com/resources/data-science/
https://corporatefinanceinstitute.com/resources/data-science/
https://openarchive.usn.no/usnxmlui/bitstream/handle/11250/3076266/no.usn%3Awiseflow%3A6838201%3A54569109.pdf?sequence=1&isAllowed=y
https://openarchive.usn.no/usnxmlui/bitstream/handle/11250/3076266/no.usn%3Awiseflow%3A6838201%3A54569109.pdf?sequence=1&isAllowed=y
https://doi.org/10.1016/j.biortech.2021.125581
https://doi.org/10.1016/j.biortech.2019.121527

