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Introduction: The increasing complexity of urban infrastructure poses challenges for efficient 

and sustainable municipal waste management. This paper presents a framework based on 

reinforcement learning (RL) for real-time route planning in smart city waste collection systems. 

By integrating Iot-enabled smart bins with environmental data such as bin fill levels and real-

time traffic, the approach frames the routing task as a Markov Decision Process (MDP). It 

employs Q-learning and Deep Q-Networks (DQN) to optimise navigation policies. A simulation 

based on Hanoi, Vietnam, assesses the method's adaptability and efficiency under varying bin 

distributions and traffic conditions. Results demonstrate that DQN outperforms traditional Q-

learning regarding route stability, bin coverage, and learning convergence, particularly in 

complex urban environments. The system minimises route length and travel time while 

prioritising the collection of full bins, highlighting the potential of deep reinforcement learning 

for scalable and sustainable waste logistics in future smart citie. 

Keywords: Q-learning; Deep Q-Networks (DQN); Markov Decision Process (MDP); IoT; Waste 

Collection in Smart Cities. 

 

INTRODUCTION 

With the rapid pace of urbanization, smart cities are facing growing challenges in managing municipal solid waste in 

an efficient, sustainable, and intelligent manner. Real-time and cost-effective waste collection is critical to minimizing 

environmental pollution, enhancing public hygiene, and promoting livable, eco-friendly urban environments. 

However, most current waste collection systems still rely on predefined static routes or manually designed schedules 

that are unable to adapt to real-world dynamics such as varying waste levels, traffic congestion, or operational 

disruptions. This results in inefficient routes, increased fuel consumption, overfilled bins, and unnecessary 

operational costs—negatively impacting both environmental and economic performance. To address these 

limitations, this research proposes the development of a real-time dynamic route planning system for waste collection 

using Reinforcement Learning (RL). By leveraging sensor data from smart bins, real-time traffic conditions, and 

operational constraints, the RL-based system aims to dynamically learn optimal collection policies that minimize 

travel distance, energy consumption, and response time. The proposed approach contributes toward intelligent, 

adaptive waste management that aligns with the vision of sustainable smart cities 

This study presents the following significant contributions to the field of intelligent urban waste management and 

reinforcement learning: 

✓ Development of a Reinforcement Learning (RL)-based Route Planning Framework: A novel RL algorithm 

(e.g., Q-learning, Deep Q-Network) is applied to the dynamic routing of waste collection vehicles, enabling them to 

learn and adapt optimal routes based on real-time conditions. 

✓ Integration of Smart Bins and Real-Time Data Streams: The system integrates data from IoT-enabled smart 

bins (e.g., fill levels, GPS coordinates) and external conditions (e.g., traffic, road closures) to create an environment-

aware decision-making system. 
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✓ Simulation Environment for Smart City Waste Collection: A simulation model of urban zones with waste 

bins, road networks, and service vehicles is implemented to evaluate routing efficiency under various scenarios using 

the proposed RL model. 

✓ Performance Benchmarking with Classical Routing Methods: The RL-based method is compared with static 

and heuristic-based approaches (e.g., shortest-path, greedy search) to demonstrate improvements in terms of total 

route length, collection time, and energy efficiency. 

✓ Scalability and Transferability: The proposed framework is designed to be scalable to different city sizes and 

adaptable to future smart-city platforms through modular integration of sensing and routing modules. 

This paper is organized into six sections presenting a reinforcement learning-based approach for real-time waste 

collection in smart cities. Section 1 introduces RL as a solution to the limitations of static routing. Section 2 reviews 

traditional and ML-based routing methods, highlighting the lack of RL use in dynamic waste environments. Section 

3 outlines a smart IoT–RL system that generates real-time optimal routes. Section 4 formulates the problem as an 

MDP and applies Q-learning and DQN for policy learning. Section 5 presents simulation results in Hanoi, showing 

DQN’s superior performance in efficiency and stability. Section 6 concludes with the system’s feasibility and suggests 

future work, including real-world testing and multi-agent RL integration. 

2. RELATED WORK 

2.1 Traditional Routing Algorithms 

Traditional routing algorithms have long served as the foundation for optimization problems in logistics, including 

waste collection. Classical algorithms such as Dijkstra’s algorithm and A* are widely used for determining the shortest 

paths in road networks due to their computational efficiency and deterministic guarantees [1]– [4]. The Traveling 

Salesman Problem (TSP), an NP-hard combinatorial problem, has been used extensively to model static vehicle 

routing problems (VRPs), with exact and heuristic solutions such as branch and bound, genetic algorithms, and ant 

colony optimization [5]– [8]. However, traditional methods often struggle with dynamic conditions such as real-time 

traffic, bin fill levels, and unpredictable demand, leading to suboptimal results in smart city environments. Several 

enhancements to classic algorithms have been explored, such as time-dependent Dijkstra [9], dynamic programming 

with pruning [10], and hybrid metaheuristics [11][12]. More recently, machine learning and deep learning techniques 

have been proposed to improve route planning. These methods aim to learn complex nonlinear patterns from 

historical data, outperforming rule-based systems in dynamic urban environments [13][14]. Nevertheless, most 

traditional methods still assume static inputs or rely heavily on predefined heuristics, limiting their responsiveness. 

Reinforcement Learning (RL) presents a promising paradigm shift by enabling agents to learn optimal routing 

strategies through environmental interaction. While RL has been increasingly applied in traffic signal control [15], 

vehicle routing [16][17], and drone path planning [18], its use in real-time waste collection with dynamic bin status 

and environmental uncertainty remains limited. Only a few studies have addressed this gap, combining multi-agent 

RL with IoT for decentralized routing optimization [19][20]. 

This paper aims to bridge that gap by introducing a deep RL-based architecture capable of real-time decision-making 

in waste logistics—optimizing routes based on bin fill level, traffic, and vehicle constraints dynamically. 

2.2 Machine Learning in Logistics and Urban Routing 

The advent of machine learning (ML) has introduced adaptive and predictive capabilities to routing and logistics: 

• Uber Freight’s AI Integration: Uber Freight utilizes AI and ML algorithms to optimize truck routing, 

reportedly reducing empty miles by 10–15% and enhancing overall efficiency in freight transportation [21][22]. 

• ML in Freight Transportation: Machine learning techniques have been applied to various aspects of freight 

logistics, including arrival time prediction [23], demand forecasting [24], and anomaly detection [25], contributing 

to more efficient and intelligent logistics operations. 
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• Route Learning with ML: ML-based models such as neural networks and reinforcement learning have been 

used to infer constrained customer delivery routes under uncertainty, improving flexibility and reducing operational 

costs [26-28]. 

These applications demonstrate the strong potential of ML in handling complex and dynamic routing problems by 

learning from historical and real-time data and adapting to changing conditions. 

2.3 Reinforcement Learning in Traffic and Waste Collection 

Reinforcement Learning (RL) has emerged as a powerful tool for dynamic decision-making in routing 

problems across various domains: 

• Urban Traffic Signal Control: RL algorithms such as Q-learning, DDPG, and PPO have been widely applied 

to traffic signal optimization. These approaches allow adaptive signal timing based on traffic density, leading to 

significant reductions in waiting time and congestion levels [29] 

• Medical Waste Collection: RL, especially Deep Q-Networks (DQN), has been utilized to address routing 

problems in hazardous and medical waste collection, with attention to constraints like vehicle capacity, service time 

windows, and environmental risks [30] 

• RouteRL Framework: The RouteRL framework represents a multi-agent reinforcement learning system 

developed for urban route optimization, enabling realistic simulations for autonomous navigation and dynamic 

traffic behavior [31-33]  

Despite these advancements, municipal solid waste collection (MSW) remains a relatively unexplored field for RL, 

especially in scenarios involving dynamic bin fill levels, real-time sensor feedback, and energy-aware routing 

decisions. Addressing these gaps could lead to significantly smarter and greener urban waste management systems. 

2.4 Research Gap 

While traditional algorithms and ML techniques have contributed significantly to routing optimization, their 

limitations in dynamic, real-time environments are evident. RL offers a promising alternative due to its ability to 

learn optimal policies through interaction with the environment. However, its application in real-time waste 

collection scenarios, where bin fill levels and traffic conditions are constantly changing, is still in its infancy. This 

research aims to bridge this gap by developing an RL-based routing system tailored for dynamic waste collection in 

smart cities. 

 SYSTEM ARCHITECTURE 

To address the growing challenges of waste management in rapidly urbanizing smart cities, traditional waste 

collection methods—often based on static routes and fixed schedules—are increasingly inadequate. These 

conventional approaches fail to consider real-time bin status or dynamic road conditions, leading to inefficient 

operations, increased fuel consumption, and environmental burdens (Fig.1).  

The proposed system architecture leverages Reinforcement Learning (RL) to enable real-time, adaptive route 

planning for smart waste collection. As illustrated in the system diagram, a network of IoT-enabled smart bins 

continuously transmits fill-level and location data to a central Data Aggregator, which compiles this input into the 

current state of the waste environment. This state is then processed by a Reinforcement Learning Agent, which has 

been trained to generate optimal collection routes by balancing distance, urgency, and operational constraints. The 

resulting route is executed by the Route Executor or Vehicle Navigation Module, and real-time feedback is provided 

to a Monitoring Dashboard for performance tracking and system supervision. This architecture combines the 

predictive capability of AI with the responsiveness of IoT to improve collection efficiency, reduce carbon emissions, 

and support intelligent municipal services in next-generation urban infrastructure. 
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Fig 1. System architecture for RL-based smart waste collection. 

METHODOLOGY 

 

Fig 2. The formulation of the municipal solid waste collection problem as a Markov Decision Process (MDP) to facilitate dynamic route 

optimisation through Reinforcement Learning (RL). 

The illustrate Fig 2 presents the formulation of the municipal solid waste collection problem as a Markov Decision 

Process (MDP) to facilitate dynamic route optimisation through Reinforcement Learning (RL). The system begins 

with the State, which comprises relevant information such as the vehicle’s current location, the fill status of waste 

bins, the time of day, and traffic conditions. Based on the current state, the RL agent makes a decision or Action, 

typically selecting the next bin to visit. Once the action is executed, the system calculates a Reward that assesses the 

action’s effectiveness using criteria such as travel distance, bin urgency, and whether the bin is full. This feedback is 

provided by the Environment, which simulates a real-time smart city context. The reward and the resulting new state 

are then utilised by the RL Algorithm, such as Deep Q-Network (DQN), to update its policy and enhance future 

decision-making. This closed-loop learning process enables the agent to adapt to dynamic conditions and iteratively 

refine its routing policy for efficient waste collection. 

This Python implementation demonstrates using Reinforcement Learning (RL) to optimise urban waste collection 

routes by framing the problem as a Markov Decision Process (MDP). It employs Q-learning, a value-based RL 

algorithm, where each bin location is a state, and the agent (e.g., a collection vehicle) selects the next bin to visit 
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(action) based on a reward system. Bin statuses (full or empty) are randomly assigned, with rewards incentivising 

visits to full bins and penalising inefficient movements. Over multiple training episodes, the Q-table updates to learn 

the optimal policy, effectively identifying the best following action from each location. This simulation highlights how 

RL can dynamically and efficiently optimise bin collection in innovative waste management systems. 

EXPERIMENT AND RESULTS 

A simulation environment was created to evaluate the proposed reinforcement learning-based routing strategy under 

realistic conditions, mirroring urban waste collection in Hanoi, Vietnam (Fig.3).  

 

Fig 3. 2D map of wase binloction. 

The scenario features a network of dynamic waste bins located in densely populated districts such as Hoàn Kiếm, Hai 

Bà Trưng, and Ba Đình. Bins provide real-time updates on their fullness levels, while connecting road segments 

reflect the fluctuating traffic conditions in Hanoi during peak and off-peak hours. The simulation accommodates 

varying numbers of bins (10), update intervals (5–15 minutes), and real-time traffic data from mobility datasets or 

predefined profiles. This setup enables the reinforcement learning agent to devise adaptive routing strategies in a 

dynamic environment, effectively tackling the real challenges of municipal waste collection in Vietnamese cities. 

The following simulation presents an approach based on Q-learning to optimise waste collection routing in a 

simplified urban environment modelled after Hanoi, Vietnam. In this scenario, six trash bins represent key districts 

such as Hoan Kiem, Ba Dinh, and Tay Ho, each with dynamically changing statuses (full or empty) and varying traffic 

conditions between them. The system aims to train a garbage collection vehicle to efficiently determine routes that 

minimise travel time and fuel consumption while ensuring that all full bins are serviced. The agent’s environment is 

defined as a Markov Decision Process, where the state includes vehicle position, bin status, and road traffic levels. 

Actions involve selecting the next bin to visit, and the reward function encourages visiting full bins while penalising 

travelling along long or congested routes. The Q-learning algorithm is trained over multiple episodes using defined 

parameters: alpha (learning rate), gamma (discount factor), and epsilon (exploration rate). Initially, the vehicle starts 

from Hoan Kiem and iteratively learns the most efficient collection path. Over time, the Q-table converges to an 

optimal policy. This foundational framework not only enables efficient routing in current settings but can also be 

extended to more complex urban maps with additional bins, time-dependent traffic (e.g., rush hour), and scheduled 

pickups.  

The updated figure above illustrates a smoothed reward curve for Q-learning after 300 episodes, utilising three 

random seeds (0, 42, and 99). By applying a moving average filter, the volatility in the reward data is minimised, 

allowing for a more precise visual comparison of learning trajectories. This smoother visualisation reveals overall 

trends in learning performance across various initialisation conditions, making it easier to assess the effectiveness 

and convergence behaviour of the Q-learning algorithm in waste collection routing scenarios. This Python script 
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implements a Q-learning-based route optimisation model for municipal waste collection in a simulated urban 

environment. It takes into account factors such as bin locations, traffic congestion, and bin statuses (full/empty). 

Each bin is regarded as a discrete state, and the Q-learning algorithm iteratively develops an optimal policy to 

minimise distance, avoid empty bins, and consider traffic. The Q-learning algorithm evaluation is presented through 

the optimal learned route, Cumulative Reward, full bin collection rate, and the number of iterations to converge, as 

shown in Figures 4–12.  

 
 

Fig 4. Case 1: Optimal wase Collection route via Q-learning. Fig 5. Case 2: Optimal wase Collection route via Q-learning. 

 

  

Fig 6. Case 3: Optimal wase Collection route via Q-learning. Fig 7. Case 4: Optimal wase Collection route via Q-learning. 
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Fig 8. Case 5: Optimal wase Collection route via Q-learning. Fig 9. Case 6: Optimal wase Collection route via Q-learning. 

 

Fig 10. Case 7: Optimal wase Collection route via Q-learning. 

Figures 4 to 10 illustrate the waste collection routes derived from Q-learning across seven simulation cases, 

showcasing its ability to adapt to various bin configurations. However, it sometimes misses optimal paths or skips 

bins, reflecting instability due to environmental changes or inadequate training. These shortcomings highlight the 

importance of fine-tuning hyperparameters and increasing the complexity of training scenarios to mimic real-world 

dynamics better. For instance, diversifying the number and placement of bins and incorporating stochasticity in 

waste generation rates could enhance the model's robustness. Furthermore, incorporating reward mechanisms 

penalising skipped bins or inefficient routes might drive the agent toward consistently optimal solutions. Future 

iterations may also benefit from integrating complementary algorithms, such as deep reinforcement learning, to 

handle the nuanced decision-making required for larger, more complex urban environments. 

 

Fig 11.  Q-learming Reward over Episodes. 
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Figure 11 illustrates smoothed total rewards over training episodes for three random seeds (0, 42, 99). While slight 

upward trends are noted, significant fluctuations reveal Q-learning's slow and unstable convergence due to its 

reliance on discrete Q-tables in large or complex state spaces. Q-learning performs adequately in simpler 

environments (Cases 1–3) but struggles with increased complexity (Cases 4–7), resulting in suboptimal routes and 

limited scalability for dynamic problems. To address these limitations in optimising route planning for real-time 

waste collection in smart cities, this article proposes using the Deep Q-Networks (DQN) method to enhance 

performance and stability. By leveraging DQNs, which utilise deep neural networks to approximate Q-values, the 

proposed approach overcomes the constraints of traditional Q-learning's discrete action-value mappings. This 

transition to a more continuous and dynamic framework enables improved scalability and generalisation across 

diverse and complex state spaces. In comparison to Q-learning, DQNs facilitate more robust learning by capturing 

intricate patterns and interactions through their networked architecture, significantly enhancing the agent's ability 

to make optimal decisions under uncertainty. 

The Q-learning model has shown effectiveness in optimising waste collection routes within small-scale environments, 

where the number of bins and intersections is limited. It prioritises collecting from full bins while minimising overall 

travel distances. However, as urban environments scale up, this approach encounters significant limitations due to 

its reliance on static, high-dimensional state-action tables. These constraints make Q-learning impractical for large 

smart cities, where the number of bins, intersections, and dynamic factors is considerably higher. 

Deep Q-networks (DQN) are proposed as an advanced alternative to overcome these scalability and generalisation 

challenges. Unlike traditional Q-learning, DQN replaces the Q-table with a neural network that can approximate the 

optimal action-value function across continuous and high-dimensional state spaces. This allows the model to 

generalise better across varying city layouts and bin distributions. Furthermore, DQN incorporates techniques such 

as experience replay and target networks to enhance training stability and convergence, making it more suitable for 

real-time decision-making under uncertainty. 

Thus, this visual layout is the foundational setup for applying reinforcement learning to urban-scale waste collection, 

where DQN can outperform classical methods in route efficiency and decision generalisation. Optimising waste 

collection in smart cities starts with a precise 2D map of six bins (Bin 0 to Bin 5) and their coordinates, forming a 

routing challenge to minimise travel and adapt to priorities. Traditional Q-learning struggles with high state-action 

complexity, but Deep Q-Networks (DQN) excel by using neural networks to estimate Q-values in complex states. 

Training a DQN on this map enables learning adaptive routes based on bin locations, traffic, and waste levels. By 

observing states (e.g., position, visited bins) and choosing actions (next bin), the agent maximises rewards (e.g., 

shortest paths, prioritisation). This approach enhances routing and decision-making efficiency in urban waste 

collection. 

 

Fig 12. 2D map of wase bin loctions (DQN). 

As illustrated in Fig. 12, the DQN framework offers a scalable and intelligent routing solution seamlessly integrated 

with map-based urban data. For comparison, Fig. 13 demonstrates a sample of an optimal waste collection route 
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derived using traditional DQN. At the same time, Fig. 14 shows the corresponding reward convergence over training 

episodes, highlighting the learning behaviour and limitations of the DQN model 

 

Fig 13. Optimal learned route. 

Figure 13 illustrates the optimal rubbish collection system using the Deep Q-Network (DQN) algorithm on a real map 

of Hanoi. The area map is derived from OpenStreetMap (OSM) data, and rubbish bin locations are collected as 

geographic coordinates (latitude, longitude) and converted into graph nodes via the Networkx library. This graph 

replicates the street structure, enabling an interactive simulation environment for the DQN agent. The DQN 

optimises the route by maximising rewards based on the shortest distance, complete bin prioritisation, and travel 

costs. The optimal path is then visualised and evaluated using route length and collection efficiency metrics, 

demonstrating its potential for innovative urban applications. 

In Scenario 1: the simulation represents an innovative waste collection system employing six predefined bin locations 

on a 2D grid, where a vehicle begins at Bin 0 and must collect waste from other bins while optimising its route 

(Fig.14).). Two reinforcement learning algorithms—Q-Learning and Deep Q-Network (DQN)—are compared. The Q-

Learning agent learns a straightforward route from Bin 0 through Bin 1 and Bin 2, concluding at Bin 5, primarily 

focusing on short, simple paths. In contrast, the DQN agent learns a more comprehensive route from Bin 0 to Bin 3, 

Bin 4, and Bin 5, demonstrating better generalisation by covering areas with potentially higher waste density. The 

simulation results reveal that DQN outperforms Q-Learning in adapting to environments with uneven bin 

distribution, minimising missed bins and enhancing route efficiency. This scenario underscores the advantages of 

deep reinforcement learning for dynamic urban waste management, where spatial variability and real-time decision-

making are critical. 

 

 

Fig 14. Adaptability to Bin rearrangement with scenario 1. Fig 15. Adaptability to Bin rearrangement with scenario 2. 

In Scenario 2: In Scenario 2, the waste bins are unevenly distributed with significant vertical differences, 

complicating path optimisation. The Deep Q-Network (DQN) learned a smooth, efficient route from Bin 0 through 
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Bins 1, 2, and 3, effectively covering the upper region of the map. In contrast, Q-Learning opted for a shorter path 

from Bin 0 to Bins 5, 3, and 4, but bypassed Bins 1 and 2, potentially neglecting key waste areas.  

In Scenario 3: In Scenario 3, the bins are more dispersed with increasing elevation. DQN selected a route from Bin 

0 to Bins 1, 4, and 3, demonstrating smooth and consistent movement suitable for real-world navigation (Fig16). Q-

Learning followed a zigzag path from Bin 0 to Bins 2, 5, and 3, resulting in a longer, less stable route. These findings 

suggest that DQN offers better generalisation and consistent routing, whereas Q-Learning focuses on short-term 

gains and may struggle in complex spatial layouts. 

 

Fig 16. Adaptability to Bin rearrangement with scenario 3. 

The graph Fig 17. illustrates the total reward achieved by the DQN agent over 300 training episodes, employing three 

different random seeds (Seed 0, Seed 42, and Seed 99). Although the reward fluctuates significantly across all seeds, 

the overall reward remains within a similar range (approximately -50 to +125), indicating consistent learning 

dynamics. Despite the variance, the DQN agent seems to maintain a stable learning process without drastic 

divergence, suggesting robustness across initialisations. However, the absence of a clear upward trend implies that 

the agent may not be significantly improving over time, possibly due to the complexity of the environment or 

limitations in hyperparameter tuning. Further smoothing or averaging may be required to better observe the long-

term learning

 

Fig 17. DQN reward over Episode.
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Fig 18. Comparison of Q-leaning and DQN: total Reward over Episodes.

The graph Fig 18. illustrates the Deep Q-Network (DQN) based on the smoothed reward sum over 300  

training sets. The results reveal that DQN significantly outperforms Q-learning. DQN's reward curve remains stable 

between 20 and 45, demonstrating good convergence and an effective learning policy. In contrast, Q-Learning shows 

large fluctuations, frequent negative rewards, and overall instability during training. This highlights DQN's 

superiority in environments with large or complex state spaces, leveraging deep neural networks for greater learning 

efficiency and stability compared to the lookup-based Q-learning method. 

CONCLUSION AND FUTURE WORK  

This study thus highlights the potential of reinforcement learning technologies in creating smarter, more sustainable 

urban waste management strategies. This research presents a reinforcement learning approach to optimising waste 

collection in smart cities using Q-learning and Deep Q-Networks (DQN). IoT-enabled smart bins provide real-time 

data, enabling dynamic adaptation to traffic and waste accumulation. The aim is to reduce travel times and enhance 

efficiency for sustainable waste management. Q-learning is effective in simple scenarios, but DQNs excel in complex 

networks by leveraging deep neural networks. This underscores the potential of deep reinforcement learning in route 

optimisation. Future directions include multi-agent systems for coordinated urban optimisation, taking into account 

waste fluctuations, weather conditions, and road closures. Real-world testing or simulations and advanced 

algorithms like PPO or MARL can tackle large-scale, multi-objective challenges. This research showcases the promise 

of reinforcement learning for smarter urban waste strategies. 
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