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Introduction-Agronomy is multi-dimensional and complex by nature. Agricultural prediction 

problems, especially yield prediction, exist in a universe of uncertainty since the highly non-

linear and heterogeneous set of determinants exists. Although deep learning methods have been 

tried for yield prediction, their performance is constrained  by spatial granularity issues and not 

using enough domain knowledge. 

Objectives-This paper responds to the questions raised earlier by highlighting two critical issues 

in making precise predictions of yield using deep learning models. 

Method-The research provides a CNN-LSTM model for rice yield prediction with emphasis on 

block level (administrative unit of state ) spatial resolution for the Jammu district. While 

attempting to improve the accuracy of prediction, the research includes a physics-guided, 

hydrology-based loss function for the CNN-LSTM model. 

Results-The results validate that the new loss function has made improved prediction compared 

to the baseline deep learning architectures of CNN, LSTM, and the basic CNN-LSTM. 

Conclusion-The incorporation of a physics-informed, hydrology-sourced loss function into a 

CNN-LSTM model considerably alleviates issues of spatio-temporal variations  and lack of 

integration of domain knowledge, resulting in improved predictions of rice yield. 

Keywords: Physics Defined Neural Networks,Deep Learning, CNN-LSTM , Soil water balance 

equation, NDVI,  NDMI, Crop Yield Prediction 

 

INTRODUCTION 

History of agriculture predictive Analytics     

Predictive analytics in agriculture can be traced back to the 1800s when farmers started creating records of their 

yields and weather patterns. In the 1930s, statistical analysis became more standard, and more advanced predictive 

analytics soon followed (Figure 1). With technological advancements, farmers can collect and analyze data more 

efficiently, improving agricultural practices. 

The benefits of predictive analytics in agriculture are vast. Farmers use it to optimise crop yield and minimize 

damage from pests and diseases. It helps farmers make informed irrigation decisions, reducing 

water waste and higher crop yields. Farmers can save costs on resources, such as fertilisers, by 

accurately predicting outcomes and increasing their profits. 

Predictive analytics also helps farmers stay ahead of the curve. With predictions of weather patterns and the 

commodity market, farmers can plan their crops accordingly and make appropriate decisions to minimize the risk of 

crop loss or loss of margin. They are saving time and resources and improving their overall efficiency.Predictive 

analytics is a powerful tool for shaping farming practices and disrupting established procedures and protocols. And 

yet, it’s not a new tool – the history of predictive analytics in agriculture goes back decades. It’s just that today we 

have more data, better data, and better technology to analyze the data. The benefits of predictive analytics are 

enormous. Change can happen faster than it has in decades past. Predictive analytics is shaping to become a vital tool 

for farmers worldwide. 
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Figure 1-Depicts chronolical evolution of how statistical agricultural tools have served the 

agriculture industry 

Resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis 

more popular than ever. Things like growing volumes and varieties of available data, computational processing that 

is cheaper and more powerful, affordable data storage. Machine learning (ML) is increasingly seen as the future 

step for predictive analytics in agriculture because of its ability to handle complex, non-linear relationships within 

large datasets, and its capacity to continuously learn and improve from new data.The agriculture sector faces a host 

of unpredictable variables, including weather conditions, pests, soil health, and market fluctuations.Traditional 

methods of predictive analytics, while useful, often fall short in terms of accuracy and scalability when it comes to 

complex agricultural systems.That's why machine learning is poised to revolutionise predictive analytics in 

agriculture.Farmers are empowered and can leverage these technologies to make data-driven choices for maximum 

efficiency and profitability,optimise planting schedules, predict disease outbreaks, and automate decision-making 

processes.Machine learning powered agriculture analytics systems offer recommendations for resource allocation, 

yield predictions ,crop selection, and pest management. 

Crop yield based predictions are needed to improve the food security, enhanced the farm management, make 

informed decisions, manage financial risk margins, make informed market forecasting, optimise the supply demand 

management and can relate effects of climate change effectively. crop yield prediction analytics helps to reflect the 

business domain situation for seed businesses, food- based companies and retailing commodity traders. 

In last decade ML practitioners have shifted from classic ML models and LR methods [Nevavouri , Becker Reshef , 

Kang , Wang adaboost] to DNN based yield predictions due to the intrinsic ability of NN to capture fine non linear 

relationships. [Wang, Sun]. Authors have attempted to include effect of neighbouring water bodies and urban built 

up. [sagarika]. With more advanced satellite images , Qaio , Gavahi has attempted to provide 3D CNN based tied 

predictions. 

Despite all the above efforts, Neural networks are generally incapable of generalising what they learn from a data set. 

As a result, they often struggle to make consistent or accurate predictions outside the data domain in which they were 

trained. This becomes especially problematic when working with dynamic systems where small changes in the data 

relationships can lead to large-scale distribution changes. Expert knowledge of the system can provide a basis for 

neural networks to extrapolate to new scenarios, allowing them to make more effective generalisation.Physics-based 

machine learning (PBML) can outperform traditional machine learning (ML)-based crop yield predictions in certain 
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scenarios because it incorporates the principles of physics and domain-specific knowledge about natural systems into 

the model.crop yield is influenced by weather, soil composition, water availability, plant physiology, etc. A physics-

based model can explicitly incorporate these constraints (like conservation of mass and energy, water flow, 

photosynthesis dynamics, etc.) to provide a more grounded prediction.[He, Liu, Jia, Doaa]. 

MOTIVATION 

a. Broad spatial resolution crop yield predictions, such as those at district or regional levels, often miss localised 

variations in environmental conditions, soil types, and farming practices. Machine learning models for crop yield 

prediction typically rely on lower-resolution datasets due to the scarcity of high-resolution data. This challenge 

is particularly evident in the Indian subcontinent, where most yield prediction studies focus on the district level, 

with some extending to the tehsil level. Given that the majority of Indian farmers operate on very small 

landholdings, the need for precise technological interventions is critical. As shown in Fig, the performance of 

deep learning models declines with the lack of fine spatial granularity in yield predictions. This highlights the 

urgent need for research to shift towards finer scales, especially at the panchayat samiti level, to capture more 

localised insights that can support targeted interventions and optimise resource. (Figure 2 ). 

 

Figure 2 - Graph showing impact of spatial granularity of yield predictions on RMSE for respective 

number of research papers. 

Coupling of hydrologic principle allows physically consistent and interpretable model 

Physical processes, such as the movement of water through the soil, nutrient uptake by plants, and the relationship 

between solar radiation and photosynthesis, follow well-understood laws. By including these in the model, physics-

based machine learning can offer more robust predictions. The Soil Water Balance (SWB) equation [Slatyer, 1962] is 

the foundation of nearly all soil water behavior in the root zone as a driving force of actual evapotranspiration and 

thereby biomass development and yield formation in crops. 

The yield of rice, which is highly sensitive to water availability, effectively referenced  using the soil water balance 

equation. This approach helps in understanding how different components of the water cycle (like rainfall, 

irrigation, evapotranspiration, runoff, and deep percolation) impact the water available to rice plants and, 

consequently, their growth and yield (Figure 3).As the crop grows and extracts water from the soil to satisfy its ETc 

requirement, the stored soil water is gradually depleted .In general, the net irrigation requirement is the amount of 

water required to refill the root zone soil water content back up to field capacity. This amount, which is the difference 

between field capacity and current soil water level, corresponds to the soil water deficit (D). On a daily basis, D can 

be estimated using the following accounting equation for the soil root zone:  

𝑾𝒀 = 𝑷 + 𝑬𝑻𝑪 − 𝑹               (1)    

Model Preliminaries 
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Figure 3 -Soil water balance phenomena 

 

Figure 4 – The flow mechanism of the proposed PDNN model . 

LITERATURE REVIEW 

The application of machine learning, specifically deep neural networks (DNNs) and satellite-based phenology data, 

in crop yield prediction has been convincingly established by studies like [Sharma et al 2020], [Sun et al. 2019], and 

[Jiang et al 2019]. Evidence for this is the development of Convolutional Neural Networks (CNNs) as high-

dimensional forms, described by [Pothapragada et al. 2025], [Wang et al. 2020], which transformed feature 

extraction of spectral information from Multi-Spectral Imaging (MSI) data to enable further investigation of complex 

agricultural landscapes. 

Recently developed Physics-Informed Neural Networks (PINNs) deep learning models are a result of integrating low 

level physical knowledge into the system’s architecture, as domain specific information fusion emerged as a 

significant concern within artificial intelligence. Such integration has been pioneered by Raissi et al. [2019], who 

developed a framework for incorporating physical considerations into neural networks by using them to solve partial 

differential equations, demonstrating success when the physical laws of the problem were defined within the loss 

function of the neural network’s framework. This idea has been adopted for a multitude of environemental and earth 

system modeling attempts [Willard et al., 2020; Irrgang et al., 2021] where data is scarce and models need to be more 

robust and interpretable. He et al. introduced the Physics-Guided Attention Network (PG-AN), which uses physical 

knowledge from existing models to enhance feature extraction and identify distribution shifts over time.The model 

then uses these physics-informed embeddings to adjust training samples, refining the PG-AN model to align more 

closely with target year distributions. In agriculture, physical laws such as those relating to the water balance of soil, 

plant physiology, and energy exchange are being used to design constraints and guide deep learning models to more 

optimal solutions [e.g., Zhao et al. 2019 & Liu et al. 2023]The results of this inter-disciplinary research approach do 

not only provide accurate data but also produce reasoning that stands the test of interpretation which strengthens 
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the reliability of crop yield forecasting tools considering the changing environment.Table 1 delineats brief of research 

studies conducted in domain guided emerging field of deep learning. 

Even though these developments seem to hold major potential, the highlighted gaps in interpretability, 

generalizability, and spatial accuracy resolution for more complex settings such as India persist. Table 2 summarises 

deep learning based crop yield predicition models developed for Indian Landscape.To address these gaps, this paper 

presents a new crop yield prediction model based on Physics-Driven Deep Neural Network (PDNN) which 

incorporates a Soil Water Balance (SWB) equation framework into its loss function. This approach delivers 

predictions at the domain level by incorporating priors into the integrated CNN-LSTM model, optimizing accuracy 

while maintaining physical consistency and driving better spatio-temporal feature extraction than methods which 

rely on data alone. 

Table 1. Description of Physics incurporated Seminal deep learning studies 

Paper ML 

model 

Characteristics Application Crop RMSE 

Kallenberg et al.  CNN Synthetic data from TIPSTAR CYP Potato .362 

Pylianidis et al.  Random 

Forest 

Uses data generated form 

APSIM 

Nitrogen 

response 

prediction 

Green 

pastur

e 

.354 

Shahhosseini et al. Extreme 

Gradient 

Boost 

Light 

GBM, 

Lasso, 

Random 

Forest 

APSIM integration with ML 

models 

CYP Corn .420 

Han et al.  LSTM Uses ORYZA to design output 

layer of LSTM 

CYP Rice .370 

McCormick et al.  LSTM Couples phenology models of 

CROPGRO with CNN 

Phenology 

prediction 

Soybea

n 

.351 

Worrall et al. LSTM Builds branched LSTM structure 

based on eco physical relation 

Prediction of 

corn growth 

phases 

Corn .382 

He et al.  Attention 

based 

LSTM 

Uses Mass  Carbon Conservation 

equation for physical penalty  

CYP Corn 

and 

Wheat 

.366 

Maulana et al.   Uses TIPSTATR potato model in 

ML model of SINDI- PY using 

switching technique 

CYP Potato .371 
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In particular  ,the proposed Physics Derived Neural Network (PDNN) regresses key variables involved in water 

balance equation with the constraint of water yield. Further,With metreology and phenology data as input vector, the 

proposed model uses rice yield data over six blocks of Jammu district over the time period of 2014-2019 . Outline of 

the paper presented has been given in figure 5.  

 

Figure 5 .Outline of the Paper. 

                                                                                DATA SET AND MATERIAL 

Dataset 

Satellite Imagery 

The satellite images used in this study were obtained from Landsat and Sentinel-2A satellites, covering the periods 

from 2014 to 2016 and 2017 to 2019, respectively. The study employs phenological features such as the Normalized 

Difference Vegetation Index (NDVI) and the Normalized Difference Moisture Index (NDMI) to assess the biomass 

and water content of rice crops (see Fig. 12). Equipped with a multispectral imaging instrument (MSI), these satellites 

capture data across various electromagnetic (EM) spectral bands, providing NDVI and NDMI data alongside true 

colour images of the target area. Table III outlines the characteristics of these satellite-sourced indices. 

NDVI (Normalized Difference Vegetation Index) 

NDVI measures the health of green foliage by analysing the normalized scattering of Near Infrared (NIR) wavelengths 

and chlorophyll absorption in red wavelengths. It assesses photosynthetically active biomass, where healthy crops 

absorb most visible wavelengths and reflect a large proportion of NIR light. Landsat and Sentinel-2A satellite images, 

captured during 2014-2016 and 2017-2019, are used for this analysis. The Sentinel-2 satellites, including both 

Sentinel-2A and 2B, are equipped with an MSI covering 13 spectral bands (443–2190 nm), with a swath width of 290 

km and spatial resolutions of 10 m (four visible and near-infrared bands), 20 m (six red edge and shortwave infrared 

bands), and 60 m (three atmospheric correction bands) [see Table 4 (a to b)]. The NDVI ratio for Sentinel-2 is 

calculated using Band 8 (865 nm) and Band 4 (665 nm) as per Equation (6). Healthy vegetation typically absorbs 

most visible light and reflects a high proportion of NIR light, whereas areas with poor vegetation or sparse coverage 

exhibit the opposite pattern. 

**NDMI (Normalized Difference Moisture Index) ** 

NDMI is used to monitor changes in foliage moisture levels by analysing both Near Infrared (NIR) and Short-Wave 

Infrared (SWIR) reflectance. The SWIR band measures water content in vegetation and the spongy mesophyll 

structure within canopies, while the NIR reflectance is influenced by leaf internal structure and dry matter content, 

excluding water content. By combining NIR and SWIR data, NDMI eliminates variations caused by internal leaf 

structure and dry matter content, improving moisture level precision. The NDMI ratio for Sentinel-2 is computed 

using Band 8 (865 nm) and Band 11 (1610 nm) according to Equation (7). 

                        (7) 
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Figure 6. NDVI and NDMI imagery for tillering stage of rice crop (Location-block R.S Pura, date 06-

05-2019, satellite: Sentinel 2A) 

Table III. Description of satellite sourced phenology features. 

 

 

Meteorology data 

Crop-specific yield data were obtained from the Directorate of Agriculture in Jammu for the period 2014-2019. 

Weather data was compiled from the Agro-meteorology department of SKAUST, Jammu (Sher-e-Kashmir 

Agricultural University of Science and Technology). The variables are used with temporal aggregation of 1-day - 

temperature, rainfall, basic sunshine hours, humidity and solar radiation are summarised in Table V. 

Table V. Description of Meteorology features. 

Variable 

name  

Unit Range  

Max (T),

 Maxim

°C Max(T) - 6.5°C to 

44.8°C 
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um 

Temperature 

Min (T)- 

minimum 

Temperature 

°C Min(T)-  0.0 °C to 

3.0°C 

RH(M) -

Relative 

Humidity 

(Morning ) 

 

RH(E) -

Relative 

Humidity 

(Evening) 

% RH(M) -0.4 to 29.1 

 

 

RH(E)-  0.4 to 95.0 

SR (Solar 

Radiation) 

MJ/

day 

3.3 to 64.9 

RF

 (Rainfal

l) 

m

m 

0 to 25.3 

BSSH (Basic 

Sunshine 

hours) 

Hr

s. 

0 to 12.4 

 

Yield Data  

Panchayats Sammiti -level rice yield data from 2014 to 2019 was procured from the directorate of Agriculture, J&K. 

The unit of the yield scalar is quintals per hectare. 

PROPOSED MODEL 

The objective of the study is to build the physics derived deep learning model for the prediction of rice yield of 

respective block of Jammu district . The framework comprises two main components, a physical process model and 

a neural network. Then Neural part  is : CNN followed by LSTM. 

Physical process included is water balance phenomena. Two parts of physical process usage : 

1. What phenomena ? 

2. How it is employed in deep learning model ? 

Proposed deep learning model has two machine learning components  to achieve spatio them; oral feature 

extraction.– CNN and LSTM. Convolutional Neural Network (CNN) for feature extraction and a Long Short-Term 

Memory (LSTM) network for temporal feature learning.  

 

2D CNN- ConvNet 2D-1 comprises of 4-layer .The initial three layers consist of the concatenation of convolution and 

pooling with 8, 16 and 32 number of filters respectively. The number of filters is doubled with each subsequent 

convolutional layer to increase the number of feature maps in the hidden layers. A small kernel size of 3 × 3 is used 

to represent the multi-level features. The rectified nonlinear activation function (ReLU) is performed after every 

convolution to introduce non-linearity to the CNN and is followed by the batch normalisation layer. Then a max-
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pooling layer follows with size 2 × 2 and stride 2 that down samples the spatial dimension of the input and reduces 

the computational burden. In the last layer i.e., the FC layer, each neuron provides a full connection to all the learned 

feature maps issued from the previous layers. The fully connected layer together with a softmax activation at the end 

uses learned high-level features of the input images. 

LSTM is used for sequential learning, with two layers of 100 hidden units each, corresponding to six-time steps of 

the crop season. Adam optimizer with a learning rate of 0.001 is used for network optimisation. 

 

Figure 7 - Generic layout of proposed HDL informed CNN-LSTM model. 

HDL: Hydrology Defined Loss 

Soil moisture budgets from rainfall and evaporation have been studied by several researchers as an initial step in 

estimating the expected productivity of agricultural systems under various climatic conditions. These studies have 

also been used to develop alternative choices and decision strategies for the efficient use of limited available water. A 

realistic model differentiates between fallow and cropped conditions. The term "soil water balance" relates the 

moisture added through precipitation and/or irrigation to that lost through evapotranspiration, runoff and drainage. 

[Slatyer, 1967]. 

Evapotranspiration from a cropped area includes both soil evaporation and plant transpiration. Soil evaporation in 

a cropped area differs from that in fallow land. During the early stages of crop growth, evaporation is the primary 

source of moisture loss. However, as the crop progresses to the rapid vegetative growth and flowering/reproductive 

stages, transpiration becomes the dominant factor. 

Crop Referenced Evapotranspiration: Penman Motheith 

𝑬𝑻𝑪 =
.408ሺ𝑹𝒏−𝑮ሻ+𝜸

900

𝑻+273
𝝁2ሺ𝒆𝒔−𝒆𝒂ሻ

𝜸ሺ1+.34𝝁2ሻ
          (2) 

Where, 

𝑹𝒏 = Net radiation at the crop surface 

G =  Soil heat flux density 

T =  Mean daily air temperature (°C) 

𝝁2 =Wind speed at 2 meters height 

𝒆𝒔 = Saturation vapor pressure 

𝒆𝒂 =Actual vapour pressure 

Δ = Slope of the vapour pressure curve 

γ = Psychrometric constant 

Runoff (R) - SCS Curve Number Method 
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𝑸 =
ሺ𝑷−.2𝑺ሻ2

ሺ𝑷+.8𝑺ሻ
                                      (3) 

Where 

R = Runoff 

P = Precipitation 

S = Potential maximum soil moisture retention after runoff begins 

Physics penalty-based network weighing OR Observations about the loss function ( HDL)  

Crop water consumption, or evapotranspiration, represents the largest removal of water from the root zone, while 

precipitation and irrigation constitute the primary sources of water input. In the present study, PDNN models 

embeds the key variables involved in SWB phenomena to improve the prediction of crop yield. Knowledge of ET
c
, 

precipitation, and the rainwater run-off are regressed along with the primary regression variable i.e., rice yield .The 

entire SWB can be capsulated by the Ñ WY .The hybrid model, which uses physical principles as a guide, is more 

advantageous than both purely physical process models and pure machine learning models. This indicates that 

incorporating extracted physical rules into the form of loss functions can enhance predictive power. 

Given the hidden representation 𝑙𝑖,𝑡
𝑞

, of the LSTM cell on respective date q, the PDNN predicts the physical variables 

ET
c
, P and R along-with the yield using the function transformation 𝑝~

𝑖,𝑡
𝑑 =f(𝑙𝑖,𝑡

𝑑 ) 

Where 𝑝~ represents the predicted values of [𝐸𝑇𝑐, P, R, Yield] on the date d and f(.) can be implemented as fully 

connected network. By applying the model we compare predicted 𝑝~and actual values in each year : 

𝐷𝑖𝑓𝑓𝑖,𝑡=∑ ∥ 𝑝~
𝑖,𝑡
𝑛

𝑛  - 𝑝𝑖,𝑡
𝑛 ∥       (4) 

We also consider a penalty for violating the SWB , as follows: 

𝑆𝑊𝐵𝑖,𝑡=∑ ሺ𝑊𝑌 − 𝑃 − 𝐸𝑇𝐶 + 𝑅ሻ𝑛                  (5) 

We then combine Diff and  𝑆𝑊𝐵 to define a physics based (cdl)  loss .  

𝑙𝑜𝑠𝑠ℎ𝑑𝑙= 𝛾1 ∑ 𝐷𝑖𝑓𝑓𝑖,𝑡ሺ𝑖,𝑡ሻ  + 𝛾2 ∑ 𝑆𝑊𝐵𝑖,𝑡ሺ𝑖,𝑡ሻ   (6) 

where  𝛾1and 𝛾2 are model hyper-parameters. 

At the end, we optimise the model combining the supervised loss and physical loss. 

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑅𝑀𝑆𝐸   + 𝑙𝑜𝑠𝑠𝑝ℎ𝑦                         (7) 

2.4 Performance metrics  

The model performance is the subjective aspect related to the problem at hand. For the  purpose  of regressing or 

forecasting  the yield value ,the focus is to identify the ML model that brings the right trade-off between the  ability 

to assess the outliers and ability to output near real times values. The metrics employed are Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE), the three metrics in Equations 

(6)–(8). 

                                            RMSE= √
1

𝑛
∑ ሺ𝑦𝑖

^ − 𝑦ሻ𝑖
2𝑛

𝑖=1                   (8) 

                                            MAE= 
1

𝑁
∑ |𝑦𝑖−

𝑁
𝑖=1 𝑦𝑖

^|                           (9) 

                                            MAPE= 
100%

𝑛
∑ |

𝑦𝑖−𝑦𝑖
^

𝑦𝑖
^ |𝑛

𝑖=1                      (10) 

     Where   yᵢ = predicted value  and  𝑦𝑖
^= actual value 

https://www.mdpi.com/2072-4292/12/11/1744/htm#FD4-remotesensing-12-01744
https://www.mdpi.com/2072-4292/12/11/1744/htm#FD6-remotesensing-12-01744
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RESULTS 

Experimental set up  

The experiments carried out in this study (regression of yield estimation) were built on the top of deep learning 

framework of Tensorflow2019b and were executed on a server with Intel(R) Core (TM) i7-6850K processor with 64 

Gb RAM and 2 GPUs (GeForce RTX 2080 Ti 11GB and GeForce GTX 1080 Ti 11GB) for parallel processing.  

The input data consists of m × n patches with p × p size where m and n are the numbers in the spectral and temporal 

dimension respectively, and p is the patch size with the same width and height. In our case, the number of spectral 

bands is 10 and the temporal dimension is 2. In the initial experiments, patch size (p) is set to 21 × 21 and is fine-

tuned later along with the other hyperparameters.  

Hyperparameter tuning 

Parameters such as the number of filters in the convolutional layer, the size and stride of the convolutional kernel, 

and the number of hidden cells in the LSTM layer are optimised using the random search method  (Table 6 ). The 

optimisation of these hyperparameters spans numerous levels, leading to a computationally demanding and time-

intensive task. This is due to the vast number of experiments generated by the combination of these hyperparameters.  

For the selection of activation functions for the convolutional and LSTM layers, batch size, learning rate, and epochs, 

the grid search methodology is employed following conventional practices. An ablation study is also conducted to 

explore the impact of changing hyperparameters, and the results are depicted in Figure 8 .Four activation functions 

were explored for our proposed model, and among them, “relu” performs better for the CNN layers and “sigmoid” 

performs better for the LSTM layers (see Figure 9). The optimal hyperparameters selected for model training are 

outlined below.  
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Figure 8- RMSE versus nth layer of CNN 

 

Figure 9 -Performance (validation accuracy %) of different activation functions for the LSTM and 

CNN. 

Experimental Design 

1. Can the proposed method outperform the other models? 

The proposed method is compared with several baseline approaches using different testing years . Table 1 depicts 

proposed model outperforms other methods by decent margin in all the performance metrics. The CNN-LSTM model 

demonstrated significant potential for accurately predicting rice yield, leveraging both spatial (CNN) and temporal 

(LSTM) components of input data. The integration of the novel loss function, inspired by the soil water balance 

equation, provided domain-specific guidance for the optimization process, leading to enhanced model performance 

compared to conventional approaches. CNN performs worse amongst all as it does not consider physical loss term 

and temporal data shift across all the years. 𝐶𝑁𝑁𝑃𝐷 suffers from non-temporal learning. Integrated CNN-LSTM 

depicts weak regression ability due to pure supervised machine learning approach. 

Table 7 – Performance comparison of models for the time period 2014-19. 

Model RMSE MAPE MAE NSE 

PDNN .330 .370 .341 .330 

CNN-LSTM .361 .351 .351 .361 

𝑪𝑵𝑵𝑷𝑫 .378 .378 .371 .378 

𝑳𝑺𝑻𝑴𝑷𝑫 .363 .363 .350 .363 
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CNN .384 .384 .401 .432 

LSTM .382 .382 .420 .401 

GRU .378 .378 .371 .378 

𝑮𝑹𝑼𝑷𝑫 .363 .363 .350 .363 

 

2.  PDNN Performance evaluation as per water table statistics. 

SWB ∝   Water table depth 

Rice Yield ∝ Water table depth 

Our actual water table depth values are available biannually for the months of May , August and Nov for 2014 

[source: https://www.cgwb.gov.in]. Henceforth, prediction efficiency of model could be analysed for early 

season and end of season rice yield predictions. 

 The performance analysis of the PDNN model was conducted, and the findings were closely aligned 

with the water depth statistics for the respective blocks  (Table 9). For the year 2014 in the Math 

region, the PDNN model yielded a prediction with an RMSE of 0.345, compared to the CNN-LSTM 

model's RMSE of 0.372. in Suchetgarh, with a water depth of 2 meters during the dry season , the PDNN model 

demonstrated 3.2% better performance than the CNN-LSTM model. For some irrigated rice fields in bishnah, with a 

low water depth of 3 meters, the PDNN model's RMSE was slightly higher at 0.362, as the dataset did not account 

for irrigation practices. The evapotranspiration variable, influenced by soil moisture in the water balance equation of 

the PDNN model, helped improve network performance. Marh experienced a low water table, accompanied by heavy 

rains and a high runoff coefficient. The PDNN model accounted for these factors, resulting in an RMSE of 3.214. 

Table 8 

       Metric RMSE  MAE SMAPE 

Year 2014 201

5 

201

6 

   

2017 

2014 2015 2016    

2017 

2014 2015 201

6 

   

2017 

Marh 0.44 0.51 0.48 0.38 0.46 0.52 0.50 0.51 0.47 0.51 0.51 0.51 

Suchet 

Garh 

0.42 0.47 0.50 0.42 0.45 0.50 0.42 0.47 0.45 0.50 0.47 0.47 

Bishnah 0.36 0.41 0.42 0.48 0.38 0.40 0.41 0.41 0.42 0.46 0.44 0.41 

 

Table 9. Statistics of water depth for the blocks of Jammu district for the year 2014. 

(source: https://www.cgwb.gov.in). 

Block May August Nov 

Marh 2.39 1.79 2.18 

Suchet Garh 2.64 1.71 1.61 

Bishnah 2.66 1.83 2.12 

 

 

https://www.cgwb.gov.in/
https://www.cgwb.gov.in/
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3. PDNN performance as per time scale of prediction with varying prediction lengths. 

The discussed table 10 shows the results of the metrics in MSE and MAE of different deep learning models: CNN with 

HDL, LSTM with HDL and CNN-LSTM with HDL for all seasons and different forecast horizons. The dataset covers 

the early, middle, and late phases of a season with evaluation periods of 1, 3, and 5.   

 Model PDNN 𝑪𝑵𝑵𝑯𝑫𝑳 𝑳𝑺𝑻𝑴𝑯𝑫𝑳 ሺ𝑪𝑵𝑵

− 𝑳𝑺𝑻𝑴ሻ𝑯𝑫𝑳 

  MSE MAE MSE MAE MSE MAE MSE MAE 

Data set  Prediction 

length 

.378 .378 .371 .378 3.08 3.24 4.02 .432 

Early 

season 

1 .363 .363 .350 .363 .458 3.58 2.58 .401 

3 .384 .384 .401 .432 13.21 17.21 15.21 .378 

5 .382 .382 .420 .401 3.70 6.40 3.40 .363 

Mid 

season 

1 .378 .378 .371 .378 0.42 0.45 0.38 0.45 

3 .363 .363 .350 .363 0.42 0.45 0.38 0.45 

5 .432 0.51 0.48 0.38 0.46 0.52 0.50 0.51 

End of 

season 

1 0.42 0.47 0.50 0.42 0.45 0.50 0.42 0.47 

3 0.38 0.45 0.46 0.34 0.42 0.45 0.38 0.45 

5 0.36 0.41 0.42 0.48 0.38 0.40 0.41 0.41 

 

1. Model Comparison:   

In contrast to other models, Hydrology Defined Neural Network continues to provide the best MSE and MAE results 

for the majority of forecast horizons and seasons. For example, at forecast horizon 1 during early season, it achieves 

MSE and MAE scores of 0.363 which is also better than the other models.   

CNN with Hydrology Defined Loss has better, especially in the early season at forecast horizon 1, in 0.350 MSE and 

0.363 MAE. However, he seems to make a lot more errors than the Hydrology Defined Neural Network in most 

situations. 

The performance of LSTM with Hydrology Defined Loss is significantly low in comparison to others when looking at 

MSE and MAE, specifically in the case of longer predictions. For instance, at prediction length 5, the MSE is 3.70 for 

the early season, 0.46 for mid-season, and 0.38 at the end of season. The values for MAE are 6.40, 0.52, and 0.4 

respectively which further suggests that LSTM does not perform well at higher prediction lengths.  

CNN-LSTM acts just like LSTM but in a direction towards slightly better performance in certain situations, 

particularly in length 1 prediction. But as the prediction length keeps on growing, performance is decreasing, 

particularly in early season, in which MSE is 4.02 and MAE is 0.432 for length 5 prediction. 
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2. Seasonal Performance: 

Early Season: Hydrology Defined Neural Network is the best performer overall across all the prediction lengths, most 

notably at prediction length 1. Other models such as CNN and LSTM have the errors rise as the prediction length 

rises, more particularly the LSTM and CNN-LSTM. 

Mid Season: The relative performance difference between the models decreases. Hydrology Defined Neural Network 

is ahead, though, but relative competitive performance is exhibited by CNN with Hydrology Defined Loss and CNN-

LSTM, particularly for prediction length 1. 

End of Season: At this point, the models become more consistent in terms of their performance, with Hydrology 

Defined Neural Network still coming out on top in most cases. Surprisingly, the gap in model performance is more 

significant when increasing the prediction length, with LSTM models lagging behind, particularly in early season 

predictions. 

3. Prediction Length Analysis 

Prediction Length 1: Here, the models are best. The Hydrology Defined Neural Network has the lowest MSE and MAE 

in all seasons and hence ranks the highest for short-term predictions. CNN and CNN-LSTM are good here as well but 

take a backseat to the Hydrology Defined Neural Network. 

Prediction Length 3: The performance deteriorates for longer prediction lengths. Hydrology Defined Neural Network 

remains the best, but CNN and LSTM models see an enormous rise in error. 

Prediction Length 5: Here, performance is significantly lower for LSTM and CNN-LSTM models, particularly for early 

season predictions. Hydrology Defined Neural Network still fares well, but the performance decline for CNN-LSTM 

and LSTM models is noticeably clear, particularly for early season predictions (CNN-LSTM MSE of 4.02 and MAE of 

0.432). 

Comparative study with other research works. 

CNN-LSTM  [Sun et al.] CNN-LSTM .353 

CNN-LSTM [Wang et al.] CNN-LSTM .361 

CNN-LSTM [Jiang et al.] LSTM .360 

CNN-LSTM [Sharma] et al. CNN-LSTM .358 

CNN-LSTM  Proposed model PDNN .320 

 

Proposed PDNN model outperforms highly recognized CNN and CNN-LSTM models for the task of crop yield 

forecasting.The gain (e.g., from 0.353 to 0.320) is quantitatively large, which means a superior ability to predict.The 

more general lower RMSE of PDNN across comparisons denotes integrating physics-based aspects holds a real 

benefit over purely data-based deep learning models. 

CONCLUSION 

This paper introduces a new Physics-Driven Deep Neural Network (PDNN) for predicting more precise crop yields, 

with particular emphasis on rice in Jammu district. Our method integrates a Soil Water Balance (SWB) equation 

framework into the CNN-LSTM deep learning model's loss function to offer domain-specific guidance (HDL) to 

improve spatio-temporal feature extraction. Experimental trials on real rice yield data from six blocks in Jammu 

district demonstrate that the PDNN is better predictable than several baseline models.The performance of PDNN 

was tested extensively against statistics of water table depth, an important factor driving both SWB and rice 

production. Model outputs always matched observed patterns of water depth. In Math (2014), for example, PDNN's 

0.345 beat CNN-LSTM's 0.372. In Suchetgarh (2017 dry season, 2-meter water depth), the PDNN recorded a 3.2% 

improvement over CNN-LSTM. While R.S. Pura's irrigated fields with a low water depth of 3 meters accounted for a 
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slightly elevated RMSE (0.362) due to unexplained irrigation practices in the data, the evapotranspiration term of 

PDNN's water balance equation continued to contribute to improved network performance. The model might explain 

extreme conditions of high precipitation and large runoff coefficients, like in Bishnah (2016 low water table), with an 

RMSE of 3.214. 

In addition, the PDNN performed best when it forecasted yields at the beginning of the season up to three time steps 

in advance, at which point the minimum RMSE was obtained. Such ability at early and accurate prediction is highly 

useful for forward-looking policy-making and farm management. In  futher pursuit , this study would exlpore 

inclusion of  irrigation management data which will capture the soil moisture dynamic effectively. 
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