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Introduction: Intensity-Modulated Radiation Therapy (IMRT) is a widely adopted cancer 

treatment technique due to its precision in delivering radiation doses to tumors while minimizing 

exposure to surrounding healthy tissues. A major challenge in IMRT, however, is the movement 

of tumors and organs during treatment, primarily due to respiration. This motion can lead to 

inadequate tumor dosing or increased radiation to nearby healthy organs. 

Objectives: This research aims to improve IMRT planning by incorporating motion-aware 

optimization techniques that account for respiratory-induced tumor and organ motion. 

Specifically, the study aims to identify the most effective metaheuristic optimization algorithm 

for enhancing IMRT performance and treatment safety. 

Methods: Three metaheuristic algorithms—Genetic Bee Colony (GBC), Starling Murmuration 

Optimization (SMO), and Walrus Optimization Algorithm (WaOA)—were employed to optimize 

the IMRT objective function, which was modified to consider respiratory motion. The 

performance of IMRT without optimization was compared with IMRT optimized using each of 

these algorithms. The Dose Volume Histogram (DVH) was used as the evaluation metric to assess 

radiation dose distribution across the tumor and surrounding organs. 

Results: Among the tested methods, the SMO-based IMRT delivered the prescribed dose of 72.7 

Gy to the tumor while significantly reducing radiation exposure to critical organs such as the 

lung, spinal cord, and heart. Unlike unoptimized IMRT and the other two optimization 

techniques (GBC and WaOA), SMO demonstrated superior performance in maintaining tumor 

dose coverage and minimizing collateral damage. 

Conclusions: The integration of the Starling Murmuration Optimization algorithm into IMRT 

planning offers a more effective and safer approach for treating tumors affected by respiratory 

motion. SMO-based IMRT enhances dose precision and reduces radiation to healthy tissues, 

making it a promising strategy for lung cancer therapy under motion uncertainty. 

Keywords: Radiation Therapy, Optimization, Motion Uncertainty, Organ at Risk, Dose 

Volume Histogram 

 

1. INTRODUCTION 

Lung cancer is the leading cause of cancer-related deaths in both men and women [1]. Radiation is an important 

aspect of lung cancer care, as more than half of all patients receive it at some point. But the respiratory motion is a 

major problem in lung cancer IMRT. The movement of tumors and other organs during respiration creates significant 

uncertainty in target definition and therapy delivery [2]. To allow for tumor mobility, treatment margins may need 

to be greatly extended, increasing the risk of treatment-related damage and exposing a larger volume of normal tissue 

to radiation. 

Conventional IMRT for lung cancer typically accounts for intrafractional tumor movement by including a margin 
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around the clinical target volume [3]. The term "internal target volume" (ITV) refers to the tissue inside this 

boundary. Due to the lack of historical data on intrafractional motion, a spatially uniform margin has generally been 

utilized. However, this basic definition of the ITV may be insufficient for recording tumor movements, which 

frequently exhibit anisotropic properties. According to studies, the extent of tumor displacement differs significantly 

in the superior-inferior (SI), anterior-posterior, and medial-lateral directions. For example, research [4] discovered 

that non-fixed tumors in the lower lobe of the lung had the highest degree of mobility, with the greatest amplitude 

often occurring along the SI axis. 

Both patient-related variables (breathing consistency) and tumor-related factors (location and size) are likely to 

influence the degree of tumor motion. Clinically, it is critical to understand the correlations between the degree of 

tumor migration and the related ITV margin in various patient subgroups. Several studies have investigated 

respiration-induced tumor migration and methods for mitigating its effects, utilizing advanced technologies available 

at the time [5]. However, new imaging techniques have recently been developed that allow for the capture of dynamic 

images while breathing, thereby increasing our understanding of the kinematic and physiological characteristics of 

respiration. One such method, four-dimensional computed tomography (4DCT), has recently been promoted as a 

practical and therapeutically successful tool for measuring respiration and tumor movements. 

The research focuses on optimized IMRT for lung tumors under motion uncertainty conditions, including 

respiration-induced motion. IMRT is optimized to improve the accuracy of dose delivery during treatment. To 

address the challenges posed by motion, particularly due to respiration, the objective function is designed by 

considering tumor motion uncertainty. The optimization techniques, such as GBC, SMO, and WaOA-based IMRT, 

are designed and evaluated against IMRT without optimization. 

The research paper is organized as follows: Section I explains the importance of considering respiratory motion 

during IMRT. Section II reviews recent research works on IMRT for cancer treatment, identifies research gaps, and 

proposes new ideas. Section III presents the model for motion uncertainty and details the implementation of each 

optimization technique applied to IMRT, along with a workflow diagram. Section IV discusses the results regarding 

the dose delivered to both tumor and non-tumor areas. Section V concludes the research, highlighting limitations 

and future work. 

2. OBJECTIVES 

Some of the recent research work on IMRT for various tumors is analyzed and discussed in this section. The study 

[6] found that IMRT and Volumetric Modulated Arc Therapy (VMAT) successfully target the treatment volume for 

cervical cancer and deliver lower radiation doses to OARs than 3D-CRT. IMRT resulted in a far lower radiation dose 

than VMAT for the rectum and bladder. Both methods also significantly reduced radiation exposure to the small 

bowel and demonstrated superior conformance to target volumes, hence reducing harm to adjacent healthy tissues. 

Tumors close to vital structures are best treated with IMRT, which provides precision radiation while sparing 

surrounding tissue. It is preferred for high doses and sensitive organs. VMAT, on the other hand, is ideal for 

individuals who struggle to remain still since it simplifies planning and delivers large dosages quickly. The choice 

between the two is based on collaboration among the radiation oncologist, medical physicist, patient, and facility 

resources. A study [7] suggested using a multi-criteria optimization (MCO) technique to improve the efficiency and 

quality of IMRT planning for cervical cancer. Traditional IMRT planning is sometimes time-consuming due to 

multiple optimization steps, particularly when attempting to balance target coverage with OAR protection. The study, 

which included 25 patients with histologically established cervical cancer, compared traditional IMRT plans (W-

IMRT) to individualized MCO-based IMRT plans (I-IMRT). The MCO technique significantly reduced radiation 

doses to the small bowel, bladder, rectum, and femoral heads while improving target dosage homogeneity. The 

findings demonstrated that MCO-based IMRT can provide more individualized therapy with superior sparing of 

healthy tissues, allowing for a more rapid and efficient alternative to typical individualized planning processes for 

cervical cancer. 

This study [8] offers an interval analysis-based optimization methodology to improve the precision and resilience of 

IMRT, addressing the limitations of previous planning methods that rely on predetermined margins or conservative 

worst-case solutions. When tested on prostate cancer patients, this strategy improved tumor coverage while reducing 
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radiation doses to OARs, outperforming traditional Planning Target Volume and minimax techniques. The 

customizable parameter (𝜃) allows clinicians to balance robustness and conservatism based on patient needs. Despite 

computational challenges, increased processing power is expected to enable higher usage. The article [9] offers the 

Cheap-Minimax (c-minimax) model, a novel and robust optimization strategy designed for photon-based IMRT that 

addresses the shortcomings of traditional margin-based planning and the too conservative minimax approach. To 

assess its effectiveness, the c-minimax method was applied to 20 clinical cases, including 5 prostate and 15 breast 

malignancies. The model demonstrated superior dose sparing for OARs while maintaining or improving treatment 

robustness. In prostate cancer, c-minimax reduced doses to the rectum and bladder significantly when compared to 

minimax, whereas in breast cancer, it increased toughness while decreasing lung and heart doses. The approach also 

reduced high-dose exposure to surface tissues and skin, reducing potential toxicity. 

The publication [10] offers a bi-level optimization strategy for IMRT for cancer treatment, with an emphasis on 

increasing OAR sparing while maintaining tumor coverage. The upper level of the algorithm selects beam angles that 

minimize radiation to healthy tissues, while the lower level optimizes radiation intensity for effective tumor 

treatment. The method was tested on ten head-and-neck cancer cases, using both coplanar and noncoplanar beam 

settings. The results showed significant improvements in treatment quality over standard seven-beam plans, with 

noncoplanar configurations performing best. The approach is similar to medical physicists' manual decision-making 

process and has the potential to improve planning. Future efforts include creating new algorithms and applying the 

principle to various cancer types, as well as using more advanced optimization methods such as fuzzy systems for 

fluence computation. The study [11] investigates the use of an Equivalent Uniform Dose (EUD)-based objective 

function (OF) to optimize IMRT treatment plans. EUD defines a nonuniform dose as a uniform dose with equal 

biological effects in both tumors and normal tissues. The study found that using EUD-based optimization for prostate 

and head-and-neck cancer patients resulted in similar or greater tumor coverage while conserving essential 

structures more effectively than normal dose-volume-based optimization. However, unless more constraints are 

imposed, it can result in dose inhomogeneity and hot spots in the target area. By treating the target as a virtual normal 

structure, dose uniformity was improved with insignificant trade-offs in OAR sparing. 

From the research analysis, it is observed that IMRT not only aims to eradicate the tumor but also to minimize the 

radiation delivered to other organs, which is equally important. One of the major challenges in IMRT is internal organ 

movement due to respiration. This movement can mislead the dose distribution to the target. The research aims to 

design an optimized IMRT approach that accurately targets the tumor to receive the maximum dose while minimizing 

the dose delivered to OARs, even under respiratory motion. The research contributions are as follows:  

• An objective function for IMRT in lung tumor treatment is designed by considering motion uncertainty. This 

helps accurately identify the target and deliver the required dosage. 

• Three optimization techniques—SMO, GBC, and WaoA—are applied to IMRT to maximize the dose to the tumor 

and minimize the dose to OARs. 

• In this research, three main organs likely to be affected during lung tumor treatment—the lung, spinal cord, and 

heart—are considered, and the dose delivered to these organs is analyzed. 

• A comparison of the three optimization techniques with IMRT without optimization is performed to identify the 

most effective method for lung tumor therapy.  

3. METHODS 

IMRT Optimization Problem under Motion Uncertainty 

The motion occurs during the IMRT, resulting in dose blurring [12]. The motion probability mass function (PMF) 

and static dose distribution are combined to obtain the final distribution. The dose deposition matrix can be modified 

before optimization (i.e., a deconvolution problem) to include motion in the planning process [13]. This guarantees 

that the desired distribution is achieved by convolving the static dose distribution with the motion PMF. 

The designed uncertainty model uses a nominal PMF, 𝑝, with lower and upper error bars, 𝑝 + 𝑒̅ and 𝑝 − 𝑒, 

respectively. An "uncertainty region" (𝑈 ⊆ 𝑋) is established to specify the places where the actual PMF may differ 
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from the nominal one. As a result, it is assumed that the actual PMF fits the nominal PMF for the set 𝑋\𝑈. This 

paradigm enables the handling of a wide range of situations. If the breathing is exceedingly unpredictable, the 

nominal data are less meaningful; hence, 𝑈 = 𝑋, and the error bars are spaced further apart. The PMF uncertainty 

set, 𝑃𝑈, is mathematically represented as shown in Equation (1): 

𝑃𝑈 = {

𝑝 ∈ ℜ|𝑋|: 𝑝(𝑥) ∈ [𝑝(𝑥) − 𝑒(𝑥), 𝑝(𝑥) + 𝑒̅(𝑥)], ∀𝑥 ∈ 𝑈

𝑝(𝑥) ≥ 0, ∀𝑥 ∈ 𝑋
∑ 𝑝(𝑥) = 1 ;𝑥∈𝑋 𝑝(𝑥) = 𝑝(𝑥), ∀𝑥 ∈ 𝑋\𝑈 

}                                   (1) 

A formulation of the IMRT optimization problem is provided, with a solution possible for every realized  𝑝̃ ∈ 𝑃𝑈. Next, 

the error bars are constructed. Let 𝐹 be the PMF’s family indicated by the symbols 𝑓0, 𝑓1, . . . , 𝑓𝑘, with 𝑓0 serving as the 

nominal PMF. Consider overlaying the upper and lower envelopes generated by each of these PMF functions on 

similar axes. Recall that the upper and lower error bars are represented by 𝑝 + 𝑒̅ and 𝑝 − 𝑒, respectively, and it is 

given in Equations (2 and 3). For each 𝑥, in the set 𝑋 with 𝑓𝑖(𝑥) > 0  for  𝑖 = 0, . . . , 𝑘, define 𝑒̅(𝑥) and 𝑒(𝑥). 

𝑝(𝑥) + 𝑒̅(𝑥) = max
𝑖=0,...,𝑘

𝑓𝑖(𝑥)   (2) 

𝑝(𝑥) − 𝑒(𝑥) = min
𝑖=0,...,𝑘

𝑓𝑖(𝑥)   (3) 

The goal of this structure is to prevent any of the 𝑓𝑖 from being realized during therapy and anything in between. For 

any 𝑥 ∈ 𝑋 and 𝑖 = 0, . . . , 𝑘, the inequality 𝑝(𝑥) − 𝑒(𝑥) ≤ 𝑓𝑖(𝑥) ≤ 𝑝(𝑥) + 𝑒̅(𝑥) must hold. The PMF obtained from the 

patient will serve as the nominal PMF, and the error bars can be used in the optimization process. 

The IMRT optimization challenge is defined in terms of PMF’s uncertainty that describes tumor motion [14]. 

Consider the IMRT optimization problem as beamlet optimization without motion. Define 𝐷𝑣,𝑏 as the dose received 

by voxel 𝑣 per unit intensity of beamlet 𝑏, 𝑤𝑏  as the beamlet’s weight, and 𝜃𝑣 as voxel's intended or prescribed dose. 

Let 𝑉 and 𝐵 as the voxels and beamlets set are being considered, 𝑇 and 𝑁 be the voxels set in the tumor and non-

tumor cells. The primary problem is defined as shown in Equation (4). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑤

 ∑ ∑ 𝐷𝑣,𝑏𝑤𝑏𝑏∈𝐵𝑣∈𝑉           (4) 

                                                              subject to, 

∑ 𝐷𝑣,𝑏𝑤𝑏𝑏∈𝐵 ≥ 𝜃𝑣,    ∀ 𝑣 ∈ 𝑇             (5) 

𝑤𝑏 ≥ 0, ∀ 𝑏 ∈ 𝐵         (6) 

The objective is to reduce the total radiation supplied to the phantom while ensuring that all tumor voxels receive the 

same dose. In most circumstances, a uniform dose must be administered to the tumour; thus, 𝜃𝑣 = 𝜃 for all  𝑣 ∈  𝑇 . 

Each voxel's nominal position is first fixed to account for motion using a PMF. Then, voxel displacement concerning 

this nominal reference frame is considered to create a matrix ∆, where ∆𝑣,𝑥,𝑏 represent the dose to a voxel 𝑣 by unit 

intensity of the beamlet 𝑏 (∆𝑣,𝑥,𝑏= 𝐷𝑣,𝑏 𝑖𝑓 𝑥 = 0). A PMF 𝑝(𝑥)with domain 𝑋 is defined, characterizing the fraction of 

time a voxel is displaced by 𝑥 relative to its nominal position, to compute the motion-averaged dosage to a voxel 𝑣 

from beamlet 𝑏. 

∑ ∆𝑣,𝑥,𝑏 𝑝𝑥∈𝑋 (𝑥)             (7) 

The problem can be rephrased to include motion as given in Equations (8,9,10): 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑤 ∑ ∑ ∑ ∆𝑣,𝑥,𝑏𝑥∈𝑋 𝑝(𝑥)𝑤𝑏𝑏∈𝐵𝑣∈𝑉   (8) 

                                                         subject to 

∑ ∑ ∆𝑣,𝑥,𝑏𝑥∈𝑋 𝑝(𝑥)𝑤𝑏𝑏∈𝐵 ≥ 𝜃𝑣   ∀𝑣 ∈ 𝑇  (9) 

 𝑤𝑏 ≥ 0        ∀ 𝑏 ∈ 𝐵                         (10) 
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The preceding approach considers rigid-body motion; therefore, the problem can be extended to non-rigid motion 

by assigning a potentially unique PMF, 𝑝𝑣(𝑥), to each voxel 𝑣. The model of uncertainty is now provided, leading to 

the following significant concern as given in Equations (11,12,13). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑤 ∑ ∑ ∑ ∆𝑣,𝑥,𝑏𝑥∈𝑋 𝑝(𝑥)𝑤𝑏𝑏∈𝐵𝑣∈𝑉          (11)  

                                                           subject to 

∑ ∑ ∆𝑣,𝑥,𝑏𝑥∈𝑋 𝑝(𝑥)𝑤𝑏𝑏∈𝐵 ≥ 𝜃𝑣 ∀𝑣 ∈ 𝑇                (12) 

 𝑤𝑏 ≥ 0        ∀ 𝑏 ∈ 𝐵                 (13) 

According to the OF, if the patient breathes by 𝑝, the integral dosage to the phantom is minimized. The ambiguity in 

the restrictions is the main focus here. In other words, resilience is necessary against any uncertainty that may 

prevent the tumor's voxels from receiving at least the recommended dosage. Equation (14) can be stated equivalently; 

however, it contains an unbounded number of restrictions because the set 𝑃𝑈  includes an unbounded number of 

entries. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑤 ∑ ∑ ∑ ∆𝑣,𝑥,𝑏𝑥∈𝑋 𝑝(𝑥)𝑤𝑏𝑏∈𝐵𝑣∈𝑉          (14) 

                                                         subject to 

∑ ∑ ∆𝑣,𝑥,𝑏𝑥∈𝑋 𝑝(𝑥)𝑤𝑏 + 𝛽𝑣(𝑤)𝑏∈𝐵 ≥ 𝜃𝑣   ∀𝑣 ∈ 𝑇 (15) 

 𝑤𝑏 ≥ 0     ∀ 𝑏 ∈ 𝐵     (16) 

                                                        where, 

𝛽𝑣(𝑤) = 𝑚𝑖𝑛𝑝 ∑ ∑ ∆𝑣,𝑥,𝑏𝑝̂(𝑥)𝑥∈𝑈𝑏∈𝐵 𝑤𝑏   (17) 

subject to 

∑ 𝑝̂(𝑥) =𝑥∈𝑈 0     (18) 

−𝑒(𝑥) ≤ 𝑝̂(𝑥) ≤ 𝑒̅(𝑥)        ∀ 𝑥 ∈ 𝑈   (19) 

Metaheuristic Algorithm for Optimization 

The three optimization techniques inspired by biological processes are applied to optimize IMRT. The optimization 

techniques used in this research are SMO, GBC, and WaoA. The working principles of these three algorithms are 

discussed in this section. 

A. Starling Murmuration  

Starling murmuration is an impressive display of group behavior, where large flocks of starlings fly together in 

smooth, coordinated patterns, creating shifting shapes in the sky that look like moving clouds [15]. The reasoning 

behind adopting this behavior in optimization is that none of the several birds flying in tandem ever collide with one 

another. It is no surprise that one of the earliest real-world uses of the SMO algorithm was to manage the coordinated 

flight of large groups of drones. The SMO introduces three novel search techniques: separating, diving, and whirling 

[16]. The working of SMO is shown in Figure 1. 
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Fig. 1. Workflow of Starling Murmuration 

Individual starlings are distributed randomly in the method's initial stages. The earlier position of the 𝑖-th starling in 

the group is given as in Equation (20): 

𝑥𝑖𝑑 = 𝑥𝑑
𝐿 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑑

𝑈 − 𝑥𝑑
𝐿)         (20) 

where, 𝑁 represents the total starlings, 𝐷 represents the total dimensions in the search area, and 𝑥𝑖𝑑  represents the 

𝑑-th dimension of the starling. 𝑥𝑑
𝑈 and 𝑥𝑑 

𝐿 represents the search area’s upper and lower bounds. 𝑟𝑎𝑛𝑑(0,1) represents 

the random function. 

 

Following initialization, some of the starlings depart the flock to establish a new flock, 𝑃𝑠𝑒𝑝, which will investigate the 

search area as shown in Equation (21): 

𝑃𝑠𝑒𝑝 =
𝑙𝑜𝑔(𝑡+𝐷)

2 log(𝑡𝑚𝑎𝑥)
             (21) 

Where, 𝑡 represents the current iteration number and 𝑡𝑚𝑎𝑥 represents the maximum iterations. The searching is given 

in Equation (22): 

𝑋𝑖(𝑡 + 1) = 𝑋𝐺(𝑡) + [≍]1(𝑦)[𝑋𝑟′(𝑢) − 𝑋𝑟(𝑡)]    (22) 

where 𝑋𝐺(𝑡) denotes the global location acquired during the iterative step 𝑡, and 𝑋𝑟′(𝑡) denotes the position obtained 

from a portion of the split flock and the fittest starlings. A new operator based on the classical quantum harmonic 

oscillator is the separation operator [≍]1(𝑦), where 𝑦 represents the random number. 

 

The multi-flock, which consists of members 𝑓1, 𝑓2, . . . , 𝑓𝑘, is dynamically formed by the starlings that survived after the 

split. To decide whether to employ the exploration (diving) or exploitation (whirling) search methods, the quality 

𝑄𝑞(𝑡) of the 𝑞-th flock is calculated using Equation (23): 

𝑄𝑞(𝑡) =
∑ ∑ 𝑠𝑓𝑖,𝑗(𝑡)𝑛

𝑗=1
𝑘
𝑖=1
1

𝑛
∑ 𝑠𝑓𝑞𝑖(𝑡)𝑛

𝑖=1

         (23) 

While the whirling technique utilizes a new force operator to exploit the proximity of favorable areas, the diving 

approach uses a novel quantum random dive operator to search the search area. 𝑠𝑓𝑖𝑗(𝑡) represents the fitness value 

of the 𝑖-th starling from the 𝑗-th flock 𝑓𝑗, and 𝑘 represents the total flocks in a murmuration 𝑀. 𝜇𝑞 represents the 

measure of the average flock's quality [17]. 
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B. Genetic bee colony (GBC) algorithm 

The intelligent swarm method for food detection and collection in genetic bee colonies [18]. Communication links, 

mating, task allocation, dance, reproduction, and mobility are employed to identify the best bee for the task at hand. 

GBC is designed to solve problems iteratively to maximize efficiency in any critical situation. Bee swarms are 

classified into three categories: employed, onlooker, and scout bees [19]. The employed bee searches for fresh food 

sources. The scout bee's job is to use a fitness quotient to randomly look for employed bees in specific areas. The 

assignment is random. If the newly discovered food outperforms previous results, bees will gather in the new area. 

Bees that are continuously employed search for the ideal places to gather food. Based on the quantitative aspect of 

food availability, the onlooker bee is responsible for selecting the optimal food source. Initialization, Employed Bee 

Phase (EBP), Onlooker Bee Phase (OBP), and Scout Bee Phase (SBP) are the four main steps in the technique [20]. 

The three key steps of the method are repeated in a loop after the initialization step, until the termination condition 

is met. The flowchart of GBC algorithm is given in Figure 2. 

 

Fig. 2. Workflow of Genetic Bee Colony 

During the initialization phase, the GBC produces a randomly distributed SN solutions, where SN represents the 

number of employed or onlooker bees. Let 𝜑 denote the i-th food source, with 𝜑 being the issue size. Food sources 

are created within the ith index's limited range 𝑖 = 1,2, … 𝑆𝑁, 𝑗 = 1,2, … 𝐷, 𝜑𝑖,𝑗 is a uniformly distributed random real 

number, with 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  indicating the dimension's lower and upper boundaries. A trial counter for each food 

source is also installed, as seen in Equation (24). 

𝑥𝑖,𝑗 = 𝑥𝑗
𝑚𝑖𝑛 + 𝜑𝑖,𝑗(𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛)          (24) 

Each bee visits a food source during the EBP, and a nearby food supply is established. Where 𝑟1 represents the 

randomly chosen index, 𝑥𝑟1,𝑗 represents the randomly chosen food source that differs from 𝑥𝑖,𝑗, and 𝑟 represents the 

random number from the range generated for each 𝑖 and 𝑗 combination, employed bees explore a new solution by 

conducting a local search around each food source in the manner described below. As stated in Equation (25), greedy 

selection occurs between 𝑥𝑖,𝑗 and 𝑣𝑖,𝑗, with the best option chosen. 
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𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝜑(𝑥𝑖,𝑗 − 𝑥𝑟1,𝑗)           (25) 

The onlooker bees choose a food source based on its probability value, which is decided by the amount of nectar 

available. Equations (24 and 25) are used to estimate the value of the food supply. The fitness value of the solution is 

calculated for minimization. For maximization, alternative fitness functions are employed, as defined in Equation 

(27). This roulette wheel-based probabilistic selection, described in Equation (26), increases the likelihood of 

onlooker bees visiting more promising food sites. As a result, when viable options are available, onlooker bees work 

hard to discover new potential food sources. When the onlooker bee selects a food source, it creates a new solution. 

Similar to the EBP, a greedy decision is made between existing and innovative options. 

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑆𝑁
𝑗=1

            (26) 

𝑓𝑖𝑡𝑖 = {

𝑖

1+𝑓𝑖𝑡𝑖
 𝑓𝑖 ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑖) 𝑓𝑖 < 0
          (27) 

Each food source includes a trial counter that shows how many times it can't be improved. If a food resource cannot 

be improved after a certain number of trials during the onlooker and EBPs, the employed bee assigned to that food 

source becomes a scout. The scout bee employs Equation (24) to find a new food source. By incorporating the SBP, 

the GBC strategy can quickly escape local minima and boost diversification results. It is worth noting that during the 

EBP, each food source is thoroughly investigated locally; however, during the OBP, superior food sources are more 

likely to be discovered. Thus, in the GBC algorithm, the EBP is responsible for diversity, while the OBP is in charge 

of intensification. 

C. Walrus Optimization Algorithm 

Walruses eat a variety of aquatic invertebrates. However, the walrus prefers benthic bivalve mollusks, which it 

acquires via foraging on the sea floor [21]. It searches for and identifies food using its delicate vibrissae and vigorous 

flipper motions. The walruses search for food, led by the strongest walrus with the largest tusks. The length of the 

walrus tusks represents the quality of the OF values for potential solutions. As a result, the strongest walrus in the 

team is the optimal candidate solution with the required OF value. The walruses' search activity leads to the 

investigation of various sections of the search area, which improves the WaOA's exploration capability in global 

searches [22]. Using Equations (28) and (29), the process of adjusting walrus positions is mathematically described 

through the feeding mechanism and guided by the group's most prominent member. This process begins by 

generating a new position for the walrus using Equation (28). This new position replaces the previous one if it 

increases the value of the OF. 

𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝑟𝑎𝑛𝑑𝑖,𝑗  . (𝑆𝑊𝑗 − 𝐼𝑖,𝑗  . 𝑥𝑖,𝑗)          (28) 

𝑋𝑖 = {
𝑋𝑖

𝑃1 , 𝐹𝑖
𝑃1 < 𝐹𝑖  

𝑋𝑖 ,     𝑒𝑙𝑠𝑒
            (29) 

In this equation, 𝑥𝑖
𝑃1  represents the ith walrus's new position based on the first phase, 𝑥𝑖,𝑗

𝑃1 
 represents its jth 

dimension, 𝐹𝑖
𝑃1  represents its OF value, 𝑟𝑎𝑛𝑑𝑖,𝑗 represents random numbers, 𝑆𝑊 denotes the best solution by 

considering the strongest walrus, and 𝐼𝑖,𝑗 represents integers randomly selected between 1 and 2. The term 𝐼𝑖,𝑗is used 

to improve the algorithm's exploration capacity; a value of 2 causes broader and more significant shifts in the walrus 

position compared to a value of 1, which is typical for this displacement. These changes facilitate global search by 

allowing escape from local optima. 

A natural behavior of walruses is to move to outcrops or rocky beaches during late summer. This migratory behavior 

is modeled in WaOA to assist in navigating the search area and identifying favorable positions. Equations (30) and 

(31) define this mechanism quantitatively. According to the model, each walrus moves to a randomly chosen position 

in the search region. The new position is computed using Equation (30). If this position improves the OF value, it 

replaces the original one, as described in Equation (31). 
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𝑥𝑖,𝑗
𝑃2 = {

𝑥𝑖,𝑗 + 𝑟𝑎𝑛𝑑𝑖,𝑗 . (𝑥𝑘,𝑗 − 𝐼𝑖,𝑗  . 𝑥𝑖,𝑗), 𝐹𝑘 < 𝐹𝑖  

𝑥𝑖,𝑗 + 𝑟𝑎𝑛𝑑𝑖,𝑗  . (𝑥𝑖,𝑗 − 𝑥𝑖,𝑗), 𝑒𝑙𝑠𝑒 
(30) 

𝑋𝑖 = {
𝑋𝑖

𝑃2 , 𝐹𝑖
𝑃2 < 𝐹𝑖  

𝑋𝑖 ,     𝑒𝑙𝑠𝑒
                (31) 

In this context, 𝑥𝑖
𝑃2  represents the 𝑖-th walrus's new position from the second phase, 𝑥𝑖,𝑗

𝑃2  is its jth dimension, 𝐹𝑖
𝑃2  is its 

OF value, 𝑋𝑘 , 𝑘 ∈ {1, 2, . . . , 𝑁} and 𝑘 ≠ 𝑖  is the location of the selected walrus towards which the ith walrus migrates, 

𝑥𝑘,𝑗 is its 𝑗-th dimension, and 𝐹𝑘 is its OF value. 

 

Walruses are frequently targeted by predators such as polar bears and killer whales. The evasion and defensive 

mechanisms they employ cause shifts in their positions near their current locations. Simulating this behavior 

enhances WaOA's exploitation capability during local searches for candidate solutions. Because this behavior 

involves local movement, the WaOA defines a walrus-centered neighborhood with a specific radius. As global 

exploration is emphasized during early iterations to locate the optimal region in the search area, the neighborhood 

radius starts at a maximum value and gradually decreases with each iteration. Thus, local lower and upper bounds 

are used to define the radius during successive iterations dynamically. In WaOA, this behavior is replicated by 

forming a neighborhood around each walrus and using equations (31) and (32) to select a new position within this 

region randomly. As stated in equation (33), the new position replaces the old one if it yields a higher OF value. 

𝑥𝑖,𝑗
𝑃3 = 𝑥𝑖,𝑗 + (𝑙𝑏𝑙𝑜𝑐𝑎𝑙,𝑗

𝑡 + (𝑢𝑏𝑙𝑜𝑐𝑎𝑙,𝑗
𝑡 − 𝑟𝑎𝑛𝑑 . 𝑙𝑏𝑙𝑜𝑐𝑎𝑙,𝑗

𝑡  )) (31) 

𝐿𝑜𝑐𝑎𝑙 𝑏𝑜𝑢𝑛𝑑𝑠 ∶  {
𝑙𝑏𝑙𝑜𝑐𝑎𝑙,𝑗

𝑡 =
𝑙𝑏𝑗

𝑡

𝑢𝑏𝑙𝑜𝑐𝑎𝑙,𝑗
𝑡 =

𝑢𝑏𝑗

𝑡

         (32) 

𝑋𝑖 = {
𝑋𝑖

𝑃3 , 𝐹𝑖
𝑃3 < 𝐹𝑖  

𝑋𝑖 ,     𝑒𝑙𝑠𝑒
          (33) 

Here, 𝑋𝑖
𝑃3  denotes the newly created position for the 𝑖-th walrus, 𝑥𝑖,𝑗

𝑃3  is its 𝑗-th dimension, 𝐹𝑖
𝑃3  is its OF value, 𝑡 

represents the iteration count,𝑢𝑏𝑗 and 𝑙𝑏𝑗  represents the upper and lower bounds for the 𝑗-th variable, 𝑢𝑏𝑙𝑜𝑐𝑎𝑙,𝑗
𝑡  and 

𝑙𝑏𝑙𝑜𝑐𝑎𝑙,𝑗
𝑡 represents the local upper and lower bounds at iteration 𝑡, respectively. The workflow of the WaOA is 

illustrated in Figure 3. 
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Fig. 3. Workflow of Walrus Optimization Algorithm 

4. RESULTS 

The research aims to optimize IMRT using metaheuristic algorithms for delivering the required dose to the tumor 

and a minimal dose to the OARs under motion uncertainty. The optimization techniques, such as GBC, SMO, and 

WaoA, are used to optimize IMRT for lung cancer. For treating the tumor present in the lung, the OARs are the left 

lung, heart, and spinal cord. 

The experiment was carried out in MATLAB software. The motion uncertainty model derived in Section II is used to 

evaluate the optimization-based IMRT. The conventional IMRT without optimization and the three metaheuristic 

optimization techniques, like GBC, SMO, and WaoA are compared in terms of the dose (Gy) delivered to the tumor 

and OARs. First, the dose applied to the tumor is evaluated under breathing motion uncertainty. Figure 4 shows the 

Tumor DVH under motion uncertainty. The minimum dose required for the tumor is set to 72 Gy, which is 

represented as a black dotted line. The maximum allowable dose is 80 Gy, and the gray curve shows the IMRT without 

optimization. The GBC, SMO, and WaoA are represented as blue, green, and red colors. The IMRT without 

optimization will send a dose of more than 80 Gy to the tumor, while the metaheuristic techniques maintain the dose 

within 80 Gy. 
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Fig. 4. Evaluating Tumor DVH under motion uncertainty 

Next, the evaluation was done on the OARs to determine how much dose is delivered to them. It is also important 

because radiation delivered to other organs can lead to additional problems. The first OAR is the lung, where the 

tumor is present. The DVH of the lung under motion uncertainty is evaluated and given in Figure 5. The DVH analysis 

of other OARs, like the heart and spinal cord, is provided in Figures 6 and 7. Similar to the previous task, the same 

colors are used to differentiate each technique. By analyzing the figures, it is observed that the IMRT without 

optimization delivers more dose to the lung and other organs when compared to the other three techniques. 

Comparing the optimization techniques, the SMO delivers the minimum dosage to the OARs. 

 

Fig. 5. Evaluating Lung DVH under motion uncertainty 

 

Fig. 6. Evaluating Heart DVH under motion uncertainty 

 

Fig. 7. Evaluating Spinal Cord DVH under motion uncertainty 
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All algorithms are mathematically validated using Table I, which shows the mean dose delivered to the tumor by IMRT 

with and without optimization. The minimum dose prescribed is 72 Gy. The IMRT without optimization gives 73.4 Gy, 

while the other two optimizations, SMO and WaoA, give doses of 72.3 Gy and 72.7 Gy, respectively. However, the GBC 

gives a dose slightly lower than 72 Gy. Based on the prescribed dose, the percentage is calculated using the Equation 

(34) and is given in Table I. Next, the mean dose delivered to the OARs (lung, heart, spinal cord) is calculated and 

given in Tables II, III, and IV. The percentage is calculated by taking the maximum dose as the prescribed dose and 

applying it to Equation (34). 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝐷𝑜𝑠𝑒

𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝐷𝑜𝑠𝑒
∗ 100  (34) 

TABLE I.  MEAN DOSE DELIVERED ON TUMOR TISSUE UNDER MOTION UNCERTAINTY 

IMRT 

Techniques 

Dose (Gy) Percentage 

No optimization 73.4 101.94 

GBC 71.6 99.44 

SMO 72.3 100.42 

WaOA 72.7 100.97 

 

TABLE II.  MEAN DOSE DELIVERED ON LUNG TISSUE UNDER MOTION UNCERTAINTY 

IMRT 

Techniques 

Dose (Gy) Percentage 

No optimization 46 100 

GBC 38 82.61 

SMO 31 67.39 

WaOA 34 73.91 

 

TABLE III.  MEAN DOSE DELIVERED ON HEART TISSUE UNDER MOTION UNCERTAINTY 

IMRT 

Techniques 

Dose (Gy) Percentage 

No optimization 36 100 

GBC 29 80.56 

SMO 22 61.11 

WaOA 25 69.44 

 

TABLE IV.  MEAN DOSE DELIVERED ON SPINAL CORD TISSUE UNDER MOTION UNCERTAINTY 

 

IMRT 

Techniques 

Dose (Gy) Percentage 

No optimization 29 100 
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GBC 24 82.76 

SMO 19 65.52 

WaOA 21 72.41 

 

By analyzing all the tables, it is observed that the dose delivered without optimization is maximum compared to the 

other three techniques. Among the three optimization techniques, the SMO delivers the minimum dose to the OAR 

regions. The experiment results help to conclude that SMO is the most suitable technique to optimize IMRT for lung 

tumors under motion uncertainty, as it delivers the prescribed dose of 72 Gy to the tumor while also reducing the 

radiation to the OAR regions. This helps to eradicate the tumor with minimal effect on other organs. 

5. DISCUSSION 

The research aims to develop an effective IMRT technique for lung cancer treatment, even under motion uncertainty 

caused by respiration. The mathematical function for IMRT is carefully designed by considering respiratory motion. 

This motion can reduce the dose delivered to the tumor and may sometimes lead to increased radiation exposure to 

healthy organs. To ensure effective dose delivery, IMRT is optimized using metaheuristic algorithms such as Starling 

Murmuration Optimization (SMO), Genetic Bee Colony (GBC), and Walrus Optimization Algorithm (WaOA). To 

identify the best among these, the experiment is conducted in MATLAB, assuming the prescribed tumor dose is 72 Gy. 

The DVH is utilized to evaluate the performance of IMRT with all three optimization algorithms as well as without 

optimization. The results show that optimization significantly reduces the dose delivered to OAR while delivering the 

required dose to the tumor, compared to conventional IMRT. Among the methods tested, SMO is identified as the 

most effective for lung cancer treatment. 

This research considers only motion uncertainty; however, in practical scenarios, other challenges such as anatomical 

changes and imaging uncertainty due to low-resolution scans can also affect treatment accuracy. These factors may 

reduce the effectiveness of the proposed SMO-based IMRT. Future research will aim to address anatomical and 

imaging uncertainties. The current study is evaluated in the MATLAB environment, and the dataset is obtained from 

public online sources. Future work will focus on validating the model using real-time clinical datasets. 
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