
Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1368 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ADTreal: Decision Tree-Based Real-Time Network Traffic

Anomaly Detection with Cloud Deployment for Enhanced

Cyber Security

Raj Kumar T1*, Aswathy M C2, and Sobhana N V3
1,2Department of Computer Science & Engineering, College of Engineering Kallooppara, Thiruvalla, Kerala, India 689583,

rajkumar@cek.ac.in, aswathymc@cek.ac.in

3Department of Computer Science & Engineering, Rajiv Gandhi Institute of Technology Kottayam, Kerala, India. sobhana@rit.ac.in

ARTICLE INFO ABSTRACT

Received: 31 Dec 2024

Revised: 20 Feb 2025

Accepted: 28 Feb 2025

In the realm of contemporary network security, the ongoing advancement of cyber threats

necessitates creative methods for identifying anomalies in real-time network traffic. This study

explores the application of machine learning models within network security, with a specific

emphasis on comparing three models: Decision Trees, KNN, and logistic regression. The analysis,

referred to as ADTreal, focuses on the binary classification of normal versus anomalous network

traffic utilizing a Kaggle dataset, investigating the intricacies of model training, real-time testing,

and cloud environment deployment. The most suitable Decision Tree model undergoes careful

training and hyperparameter optimization, demonstrating superior performance during

comparative evaluations. Real-time testing involves the live capture of network packets, feature

extraction, and the seamless integration of the model for swift anomaly detection. A crucial

element is the deployment of the Decision Tree model within the Amazon Web Services (AWS)

Elastic Compute Cloud (EC2) framework. The serialized model, transferred to an EC2 instance,

runs for real-time predictions, highlighting the practicality and benefits of cloud-based solutions

for enhancing network security. Evaluation metrics such as accuracy, precision, recall, and F1

score provide insights into the effectiveness of the Decision Tree model. The accompanying

confusion matrix analysis further clarifies its capability to distinguish between normal and

anomalous traffic in real time. The culmination of this research underscores the importance of

real-time anomaly detection and the viability of implementing machine learning models in cloud

settings, thereby strengthening the foundations of secure network infrastructures in the face of

evolving cyber threats.

Keywords— Anomaly detection, Cloud Deployment, Decision tree, Machine learning, Real time

detection.

I.INTRODUCTION

In an era dominated by digital connectivity, defending network infrastructures against cyber threats and attacks

stands as a paramount concern and priority. The escalating intricacy of attacks demands innovative approaches to

abnormality detection in network traffic. This paper delves into the realm of real-time anomaly detection,

employing a Decision Tree-based approach, and explores its integration into cloud environments for heightened

security and scalability. As noted by Razaaq A.et al.[2], cyber threats are evolving rapidly, demanding adaptive and

effective solutions to ensure the integrity and confidentiality of network communications [1]. Traditional methods

of network security often fall short in addressing the dynamic nature of contemporary cyber threats. According to

Ali Bou Nassif et.al [3] models using machine learning approaches have emerged as persuasive tools for anomaly

detection, capable of discerning patterns indicative of malicious activities within vast datasets [3]. The study

specifically compares the effectiveness of three prominent machine learning models: Decision Trees, K-Nearest

Neighbors (KNN), and Logistic Regression in the context of real-time network traffic anomaly detection[4].

This comparative analysis, inspired by the works of Ashwini Pathak et al.[4] forms the basis for selecting the most

suitable model for our real-time intrusion detection use case. The dataset used in this research was obtained from

mailto:rajkumar@cek.ac.in
mailto:aswathymc@cek.ac.in
mailto:t.m.chen@swansea.ac.uk

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1369 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Kaggle[5] and simulates a network in a military environment, providing a diverse range of infringements. The

objective is to train machine learning models on a set of data that closely mimics real- world network traffic

scenarios, designed for binary classification, distinguishing between normal and anomalous network traffic. This

binary nature aligns seamlessly with the practical scenario of network security, where the primary objective is to

discern between benign and potentially malicious activities. Real- time intrusion detection holds exceptional

significance in today's dynamic cyber landscape [6]. By focusing on real-time detection, the proposed study

addresses the critical gap in timely identification and mitigation of potential network intrusions. Ensuring the

integrity and security of network communications is paramount, predominantly in the context of cloud-based

infrastructures [7], where sensitive data and critical services are hosted. The promises made in this paper extend

beyond model comparison and dataset utilization. It delves into the realm of anomaly detection of network traffic in

real time, leveraging a Decision Tree-based model, and explores its deployment in cloud environments, specifically

on AWS EC2. This ensures not only enhanced security through quick anomaly detection but also scalability and

accessibility, addressing the evolving needs of network infrastructures.

Contributions

The contributions in this work are summarized as given below.

1. It is crucial to protect network infrastructures from cyber threats and attacks, hence finding novel ways to

identify abnormalities in network data is indispensable.

2. To guarantee the integrity and secrecy of network communications, adaptive and effective solutions are

needed, as traditional techniques of network security frequently fail to meet the dynamic nature of modern cyber

threats.

3. Machine learning based approaches have emerged as influential tools for anomaly detection.

4. Based on an accuracy comparison of the three well-known ML models, it is imperative that the Decision Tree

Model is the most appropriate and accurate one for anomaly detection.

5. Real-time analysis by our research model not only confirms the genuineness and accuracy of earlier studies

but also improves the accuracy of the binary classification of potentially harmful and benign actions.

6. Deployment in Cloud guarantees enhanced security, scalability and availability.

Roadmap

The following depicts how this work is organized: We begin with a review of the literature, looking at earlier

research and theories that are pertinent to our findings. The development of the proposed methodology, which

describes the evolution and complexities of our detection model, comes after this section. A section introducing the

tools and techniques used is also appended. The Results of our Analysis are then presented, illustrated with

comprehensive Tables and Figures that both graphically and statistically support our conclusions. A final section

summarizing our key findings and conclusions ends the study, and is followed by an extensive list of references that

further our research. This research, grounded in the contemporary challenges of network security, contributes

valuable insights into the interplay between Decision Tree models, real-time anomaly detection, and cloud

integration, aiming to fortify the foundations of secure network infrastructures.

II. BACKGROUND AND RELATED WORKS

Traditional methods of network security, often rely on rule-based systems and signature-based detection methods,

proved inadequacy in addressing the evolving nature of cyber threats. Signature based Intrusion Detection Systems

(SIDS) are a type of security mechanisms that identifies malicious activities by comparing observed events with

predefined signatures or patterns of known malicious behavior (Khraisat et al.[33]. According to Kreibich &

Crowcroft,[34] the SIDS gave the highest detection rate for known intrusions. Some of the advantages of SIDS are

high accuracy, low false positive rates, efficiency, familiarity and it is well suited for networks with stable

environments. Some tools like, Roesch et.al [35] discuss the use of tools like Snort and Suricata in which SIDS

implemented. But SIDS has some limitations. It can only detect the formerly recognized assaults. If there will be

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1370 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

any new attacks or zero-day attack it could not identify it. As a response to this challenge, the integration of

machine learning techniques and methods for detection of anomalies in network traffic has gained prominence.

Machine learning models, capable of discerning complex patterns and deviations within large datasets, present a

promising avenue for enhancing the efficiency and effectiveness of network security measures.

As per the previous studies different machine learning algorithms are used for detecting anomalies and intricacies

in networks. Md Azam Hossain et.al [37] conducted a performance study in which Support Vector Machine;

Logistic Regression, Random Forest, and Artificial Neural Network models are compared. Qian Ma et.al proposes

an approach with Support Vector Machine and Clustering (SVM-C) to detect anomalies [39]. Ziadoon K. Maseer

et.al[38] did a systematic and meta-analysis study of AI (Artificial Intelligence) for network intrusion detection

systems (NIDS) focusing on Deep Learning and Machine Learning approaches for security of networks[38]. Tushar

Rakshe et.al developed a classifier model based on Random forest classifier and Support Vector Machine (SVM)

and the study concluded that Random Forest classifier is more effective than SVM [40]. Ahmed Tamer Assy et.al

[41] proposed an anomaly detection system using one dimensional convolutional neural network (CNN ID) which

gave an accuracy of 93% for detecting anomalies. The specific focus of this research lies in the demesne of real-time

anomaly detection. The ability to identify and respond to real time network intrusions is crucial for mitigating

potential damages and fortifying network defenses [1][5]. Real-time intrusion detection not only minimizes

response times but also ensures proactive security measures, aligning with the dynamic nature of contemporary

cyber threats. A significant collection of literature explores the application of machine learning models for network

security. Researchers have investigated the effectiveness of various algorithms, including Decision Trees, K-Nearest

Neighbors (KNN), and logistic regression, in distinguishing between normal and anomalous network behavior (V.

Kathiresan et.al)[8]. These studies lay the foundation for our comparative analysis of these models within the

perspective of real-time anomaly detection.

The significance of real-time anomaly detection is underscored in works such as that of Shuai Zhao et.al

[10] where the authors discuss the criticality of timely identification and mitigation of network intrusions. The

promises of our research align with the urgent need for real-time detection mechanisms that can adapt to the ever-

changing threat landscape. Table 1 depicts the details of different methods used for anomaly based Intrusion

Detection Systems and a comparison based on the accuracy metric.

Table1.Comparitive study of Anomaly based IDS in Related works

Ref. Yea Dataset Methodology Accuracy

[42] 2017 NSL-KDD K Means Clustering 80%

[40] 2017 NSLKDD Cup99 SVM

Random forest

95%

99%
[33] 2018 NSL KDD C5 Decision tree classifier 96%

27] 2020 NSLKDD IDS CNN 90%

[39] 2021 Data from various sources SVM 93%

[28] 2021 CICIDS2017 Autoencoder with L1 norm 91%

41] 2023 NSL KDD 1DCNN 93%

[1] 2023 NSL KDD DNN 81%

[20]

2023

4998 IDS records with 34

attributes

Decision Tree with Anomaly

Detection

99%

While existing literature provides valuable insights into machine learning models, real-time anomaly detection, and

cloud integration for network security, a comprehensive study that combines these elements is relatively scarce.

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1371 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This research aims to bridge this gap by presenting a holistic examination of Decision Trees, KNN[15], and logistic

regression models[18] within the context of real-time network anomaly detection, with a focus on practical

deployment in the AWS EC2 cloud environment.

The integration of machine learning models into cloud environments for enhanced scalability and accessibility has

been explored by researchers like Suman Lata et.al [11]. Our research builds upon this foundation by detailing the

deployment of our Decision Tree model on AWS EC2, showcasing the practicality and advantages of cloud-based

solutions in the realm of network security.

III. ADTreal METHODOLOGY

The Proposed Methodology, which is illustrated in Fig. 1, is a sophisticated and multifaceted approach that we have

used in our research for detection and analysis. By leveraging a combination of data pre- processing, feature

engineering, model training and cloud deployment and real time prediction, our method aims to significantly

improve the accuracy and reliability of the system. Basically the sniffed packets are sent through the system

pipeline and the system predicted whether the packets are anomalous or not. The approach consists of three main

stages: model training, model evaluation and cloud deployment & real-time testing. The method employs importing

the intrusion detection dataset to the system and after pre- processing and feature engineering the dataset is split

into testing and training set. The model is then trained using the training dataset and after performance evaluation

the selected model is hoarded for deployment. The detailed workflow of the proposed system is given in Fig.2.

Fig 1. Proposed System Architecture

Fig 2. Workflow of the proposed system

A. Model Training Phase i.Dataset Assortment

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1372 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The "Dataset Assortment" stage of this work is carefully designed to make sure the dataset is prepared for

sophisticated machine learning analysis. In this research, we employed the Kaggle[4] standard dataset a vast and

painstakingly selected collection of harmful and benign network data intended to mimic actual cyber security

situations. It simulates a network in military environment, providing a diverse range of intrusions. The entire

features set are presented in Table 2. The objective was to train machine learning models on a given dataset that

closely mimics real-world network traffic scenarios in a military context.

By exposing the network to multiple simulated attacks for each TCP/IP connection, 41 features are extracted,

comprising 3 qualitative and 38 quantitative features. These features provide a comprehensive demonstration of

the connections. The dataset includes a binary class variable, labeling each connection as either "Normal" or

"Anomalous," with the latter indicating a specific attack type. The training dataset comprises of 25192 entries, 42

columns and out of which 15 are float64 datatypes , 23 int64 datatypes and 4 objects.

Table 2: Features set in standard Dataset

Col.no: Feature Col.no: Feature Col.no: Feature

1 duration 15 su attempted 29 same srv rate

2 protocoltype 16 num root 30 diff srv rate

3 service 17 num file_creations 31 srv diff host rste

4 flag 18 num shells 32 dst hostcount

5 src_bytes 19 num access files 33 Dst host srv count

6 dst_bytes 20 num outbound_cmds 34 dst host same srv rate
7 land 21 is host login 35 dst host diff srv rate

8 wrong_fragment 22 is guest login 36 dst host same src port rate

9 urgent 23 Count 37 dst host srv diff host rate

10 hot 24 srv_count 38 dst host serror rate

11 num failed_logins 25 serror rate 39 dst host srv serror rate

12 logged_in 26 srv serror rate 40 dst host rerror rate

13 num_compromised 27 rerror rate 41 dst host srv rerror rate

14 root shell 28 srv rerror rate 42 Class

Figure 3 shows the graphical representation of a Class distribution training set of normal 13449 values and anomaly

11743 values obtained from the name: class, dtype: int64

Fig 3 Class Distribution

ii. Data Preprocessing

In the data preprocessing phase, the simulated network dataset obtained from Kaggle[4] is prepared for machine

learning model training. This involves encoding categorical variables using label encoding, dropping irrelevant

features such as 'num_outbound_cmds,' and scaling numerical features. The entire process is summarized as

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1373 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

a) Handling missing data values

To ensure data integrity, the dataset is first cleansed of missing values. If there were any missing values found in

the dataset, the common cleansing techniques include imputation (replacing missing values with a statistical

measure like mean or median) or removal of instances with missing values.

If X is the feature matrix, and Xi,j is an element of X at row i and column j, the missing value imputation be

represented as:

X_{i,j} & \text{if } X_{i,j} \text{ is not missing} \\ \text{impute_value} & \text{if } X_{i,j} \text{ is missing}

\end{cases}\]

The method also involves assessing each column of the dataset and the total count and percentage values for

columns that contain null values or NaN values are calculated.

This is mathematically epitomized as

tal=tra∈.shape[0] (1)

mcolumns=[colforcol∈tra∈.columnsiftra∈[col].isνll().∑()>0] (2)

νllcount=tra∈[col].isνll().∑() (3)

per=(νllcount→tal)⋅100 (4)

where tal denotes the total number of rows in the dataset, mcoloumns the missing coloumns, vllcount the null

count and it lists coloumns where the sum of null values is greater than zero. per denotes percentage values.

b) Encoding Categorical Variables: The 'LabelEncoder' function encodes categorical variables. This will converts

categorical data into numerical format.

If X is the feature matrix, and Xi,j is a categorical feature at row i and column j, encoding can be represented as:

X′i,j = LabelEncoder (Xi,j) (5)

c) Scaling Numerical Features: Standard scaling is applied to numerical features using 'StandardScaler' function.

This will ensures that numerical features are on a similar scale, preventing some features from leading others.

If X is the feature matrix, and Xi,j is a numerical feature at row i and column j, scaling can be represented as

(6)

 ̇

where μj and σj represents the mean and the standard deviation of feature j respectively.

These preprocessing steps[13] collectively enhance the dataset's suitability for training logistic regression, K-

nearest neighbors (KNN), and decision tree models, contributing to a more effective and accurate real- time

anomaly detection system for network traffic.

iii. Feature Extraction

The feature extraction and selection process employs Recursive Feature Elimination (RFE) with

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1374 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

RandomForestClassifier and the process is illuminated as follows:

a)Data Splitting:

Let X represent the feature matrix and Y the target variable. In this case, Xtrain is the training feature matrix, and

Ytrain is the corresponding target variable.

Xtrain ={x1,x2,...,xn}, where xi is a feature vector.

Ytrain ={y1,y2,...,yn}, where yi is the target variable associated with xi. RFC Initialization: Initialize a

RandomForestClassifier (rfc).

rfc = RandomForestClassifier()

RFE Initialization: Initialize RFE with the RandomForestClassifier and the number of features to select. a=

(nfeatures_to_select=10) where a is the number of features to select.

RFE(Xtrain,Ytrain,RFC,k), k=10 (7) rfe = RFE(rfc, a)

 (8)

RFE Fit:

Fit the RFE model to the training data. The RFE algorithm iteratively fits the model and eliminates the least

important features until the desired number of features is reached.

RFE.fit(Xtrain,Ytrain)

rfe = rfe.fit(X_train, Y_train) (9)

Feature Map: Create a feature map to associate each feature with a boolean value indicating whether it is selected

True or not False).

featuremap=[(i,v)fori,v∈iter→ols.ziplon≥st(RFE.≥t⊃port(),Xtra∈.columns) (10)

Select Features: Extract the features that were selected by the RFE algorithm.

The result of the RFE process is a set of selected features, denoted as Selected_Features, where:

Selected_Features=[Xsel1,Xsel2,...,Xselk]

The final selection of features, selected_features, is determined based on the support obtained from the RFE

process. The mathematical representation is:

Selected_features= [v for i,v ∈ featuremap if i==True] (11)

The RFE algorithm utilizes the RandomForestClassifier to iteratively evaluate the importance of each feature in the

dataset. It eliminates the least important features in each iteration until the desired number of features is reached

(nfeatures_to_select). The resulting selected_features list contains the features deemed most important for

predictive accuracy. This process aids in reducing dimensionality and focusing on the most informative features for

model training.

Here the selected_features are ['protocol_type', 'service', 'flag','src_bytes', 'dst_bytes', 'count', 'same_srv_rate',

'dst_host_srv_count','dst_host_same_srv_rate', 'dst_host_diff_srv_rate'][4]. The Table 3 represents the selected

features and their potential importance in the context of intrusion detection. These features are crucial in

characterizing network traffic and identifying potential anomalies or security threats based on deviations from

expected patterns. The dataset which consist of selected features set is named as cek_dst.

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1375 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 3 : Details of Selected Feature Set for identifying threats(cek_dst)

Feature Characteristics Relevance

protocol_type

Represents the protocol type used in the

network packet (e.g., TCP, UDP, ICMP).

Different protocols may have distinct patterns

in normal and anomalous network traffic.

flag

Indicates the status or control information

about the packet (e.g., SYN, ACK, FIN).

Flags provide insights into the nature of

network communication and potential threats.

src_bytes

Specifies the number of data bytes transferred

from the source to the destination.

Unusually high or low byte counts may indicate

abnormal data transfer patterns.

dst_bytes

Represents the number of data bytes

transferred from the destination to the

source.

Similar to src_bytes, dst_bytes helps analyze

data transfer behavior in network traffic.

count

Denotes the number of contacts to the same

host as the current link in the past two

seconds.

Unusual connection frequency may signal

potential threats, such as a scan or attack.

same_srv_rate

Indicates the percentage of connections to the

same service among the current connections

to the same host.

Deviations in same_srv_rate may highlight

anomalies in the usage of specific services.

diff_srv_rate

Represents the percentage of connections to

different services among the current

connections to the same host.

Anomalies in diff_srv_rate may suggest

variations in service usage patterns.

dst_host_srv_c o

unt

Specifies the number of connections to the

same service as the current connection to the

destination host.

Deviations in this count may signal abnormal

service usage on the destination host.

dst_host_same_

srv_rate

Indicates the percentage of connections to the

same service among the current connections

to the destination host.

Changes in this rate may highlight anomalies in

service usage on the destination host.

dst_host_diff_s r

v_rate

Represents the percentage of connections to

different services among the current

connections to the destination host.

Variations in this rate may indicate changes in

the diversity of services in use.

iv .Model Training

In this phase, the pre-processed dataset is employed to train three distinct models namely Logistic Regression, K-

Nearest Neighbors (KNN), and Decision Tree. Logistic Regression provides a linear model,

KNN leverages proximity-based classification, and Decision Tree offers a hierarchical decision structure

a) Logistic Regression:

Logistic Regression is a linear model used for binary classification. Given a dataset with features X and binary

labels Y (0 for normal and 1 for anomaly in this context), the logistic regression model predicts the probability of an

instance belonging to class 1. The logistic function, or sigmoid, is applied to the linear combination of features to

produce these probabilities.

Mathematically, the logistic regression model is represented as:

(12)

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1376 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Where β0, β1,...,βn are the coefficients learned during training. P(Y=1|X) is the probability of the positive class

given the features X. e is the base of the natural logarithm.

β0, β1,...,βn are the coefficients (parameters) that the model learns during training.

b) K-Nearest Neighbors

It is a non-parametric approach that uses the majority class of a data point's k-nearest neighbors to classify it. The

choice of k determines how many neighbors influence the classification.

Mathematically, the KNN classification for a data point Xi is represented as

Yi = majority class (neighbors(Xi)) where neighbors (Xi) returns the k-nearest neighbors of Xi.

KNN is a straightforward but efficient classification method that relies on data point similarity to function. The

basic concept is that in the feature space, comparable instances are near to one another. Given a new, unseen data

point, KNN classifies it based on the majority class of its k-nearest neighbors in the training dataset.Distance

Metric: A distance metric, commonly Euclidean distance is used to measure the similarity or dissimilarity between

data points.

For two data points A(x1,y1) and B(x2,y2) in a 2D space, the Euclidean distance is calculated as:

Distance (A, B) = √ (13)

KNN does not explicitly learn a decision boundary. The decision boundary is formed naturally based on the

distribution of Choosing ‘k'.

c) Decision Tree

The Decision Tree algorithm is a popular machine learning technique for both classification and regression

tasks[6]. It operates by dividing the dataset into subgroups recursively according to the supplied feature values[6],

ultimately creating a tree-like structure of decision nodes. Each node signifies a decision based on a specific

feature, and each branch corresponds to a possible outcome of that decision[30]. The leaves of the tree hold the

final predictions. The Decision Tree[19] consists of nodes, branches, and leaves. The nodes represent decisions

based on feature values, branches denote the outcomes of these decisions, and leaves hold the final predictions.

Algorithm 1 depicts the algorithm for Model Training using Decision tree

Algorithm1: Model Training using Decision Trees

Input:

- Training dataset (train)

- Test dataset (test)

(1) Load the training dataset and test dataset from the specified file paths.

(2) Preprocess the training dataset:

(a) Handle missing values, if any.

(b) Encode categorical variables using LabelEncoder.

(c) Drop irrelevant columns such as 'num_outbound_cmds'. (3)Perform exploratory data analysis (EDA) on the

training dataset: (a)Display summary statistics of the dataset.

(b)Visualize class distribution using a countplot.

(4) Split the preprocessed training dataset into features (X_train) and target variable (Y_train).

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1377 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(5) Use Recursive Feature Elimination (RFE) with a RandomForestClassifier to select important features.

(6) Scale the selected features using StandardScaler.

(7) Split the preprocessed data into training and testing sets using train_test_split function.

(8) Train a decision tree classifier (clfd) on the training data:

(a) Set parameters such as criterion='entropy' and max_depth=4. (b)Measure the training time using the

start_time and end_time variables. (9)Use Optuna to optimize hyperparameters for the decision tree classifier:

(a)Define an objective function to maximize accuracy.

(b) Perform a study to find the best set of hyperparameters.

(10) Initialize a new decision tree classifier (dt) with the optimal hyperparameters.

(11) Train the optimized decision tree classifier (dt) on the training data.

(12) Evaluate the performance of the trained model: (a)Calculate the training and testing scores. (b)Display the

results.

(13) Optionally, perform cross-validation to assess model performance.

(14) Save the trained decision tree classifier (dtc) using joblib.dump. Output: Trained decision tree model (dtc)

i) Decision Tree Splitting and Evaluation

The Decision Tree algorithm is a popular machine learning technique for both classification and regression tasks

[6]. It operates by dividing the dataset into subgroups recursively according to the supplied feature values [6],

ultimately creating a tree-like structure of decision nodes. Each node signifies a decision based on a specific feature,

and each branch corresponds to a possible outcome of that decision [30]. The leaves of the tree hold the final

predictions. The Decision Tree[19] consists of nodes, branches, and leaves. The nodes represent decisions based on

feature values, branches denote the outcomes of these decisions, and leaves hold the final predictions.

Entropy (Information Gain): The algorithm aims to maximize information gain, which measures the decrease in

uncertainty or entropy after a dataset is split. Entropy is calculated using the formula in Eq.(14)

Entropy(S) = ∑ (14)

Where S is the dataset, ‗c‘ is the number of classes ‗Pi’ is the proportion of instances in class ‗ i‘ in S.

Gini Impurity: Another criterion is Gini impurity, a measure of how often a randomly chosen element would be

incorrectly classified. Gini impurity is calculated as in Eq.(15)

Gini(S) = ∑ (15)

Where S is the dataset, c‘ is the number of classes ‗Pi’ is the proportion of instances in class ‗i‘ in S.

ii) Decision Tree Learning Process

Root Node: To divide the dataset into two or more subsets, the algorithm first chooses the feature that maximizes

information gain or reduces Gini impurity.

Child Nodes: Every subset undergoes a recursive application of the procedure, which produces child nodes and

divides the data even more according to the chosen features.

Stopping Criteria: Recursive splitting keeps on until certain conditions are satisfied, including a maximum depth

limit, a minimum amount of samples in a leaf, or an information gain threshold.

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1378 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Leaf Nodes: The final nodes, or leaves, contain the predicted output for the corresponding subset.

The Decision Tree model developed for network intrusion detection operates by recursively partitioning the dataset

into subsets based on specific features, aiming to classify network traffic as normal or anomalous. In the training

phase, the algorithm selects features such as 'protocol_type,' 'service,' and 'flag' to split the dataset at each node,

maximizing information gain and creating homogeneous subsets. This process continues until predefined stopping

criteria, such as a maximum depth or minimum samples per leaf, are met. During training, the model fine-tunes

hyperparameters, such as maximum depth and maximum features, through Optuna. Once trained, the Decision

Tree utilizes these learned patterns to make predictions on live network traffic. In real-time testing, captured

packets undergo feature extraction, considering protocol type, service, flags, source bytes, destination bytes, and

other relevant features. These features are then fed into the trained Decision Tree model, which provides on-the-fly

predictions for anomaly detection. This model, chosen for its superior performance among Logistic Regression and

K- Nearest Neighbors, demonstrates its effectiveness in classifying network traffic with high accuracy and reliability.

B. Model Evaluation Phase

In the model evaluation phase, the trained Logistic Regression, K-Nearest Neighbors (KNN), and Decision Tree

models undergo rigorous assessment on both training and testing sets. The evaluation metrics include accuracy

scores, providing a comprehensive view of overall model performance. Precision, recall, and F1- score metrics are

calculated to offer insights into the models' capabilities in correctly identifying and classifying instances of normal

and anomalous network traffic. To ensure robustness and reliability, cross- validation is applied, validating model

performance through the precision and recall metrics. This multifaceted evaluation process contributes to a

nuanced understanding of the models' effectiveness in real- time anomaly detection within network traffic

scenarios.

i. Hyperparameter Tuning

The Decision Tree model experienced a comprehensive training process, utilizing the Decision Tree algorithm to

discern patterns within the pre-processed dataset. Recognizing the pivotal role of parameter configuration in model

performance, Optuna, a hyperparameter optimization framework, was employed for fine-tuning.

It uses a Bayesian optimization algorithm that models the objective function (classification accuracy in this case)

and suggests hyperparameter values that are likely to improve the objective. It maintains a probability distribution

over the hyperparameter space and updates it based on the observed performance of different hyperparameter

configurations.

Finding the ideal set of hyperparameters (H) to maximize the objective function is its goal.

f(H) Hoptimal=argmaxH f(H).

The suggested int function samples values from a given range in a principled way, considering both exploration and

exploitation. The Bayesian optimization process involves updating the probability distribution over

hyperparameters based on the observed performance, iteratively narrowing down the search space to find the

optimal configuration.

Through iterative adjustments facilitated by the framework, the model's parameters were systematically optimized

to achieve the highest predictive accuracy and enhance its generalization capabilities. This strategic use of the

framework ensures that the Decision Tree model is finely tuned, demonstrating robust performance and suitability

for real-time anomaly detection applications.

ii. Prediction

In the prediction and model deployment phase, the trained models—Logistic Regression, K-Nearest

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1379 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Neighbors (KNN)[16], and Decision Tree—are put to the test on the designated testing set. Following meticulous

evaluation, the Decision Tree model emerges as the standout performer, showcasing superior and better

performance metrics compared to the other two. Given its noteworthy accuracy, precision, recall, and F1-score, the

Decision Tree model is deemed the optimal choice for real-time anomaly detection in network traffic.

Consequently, the Decision Tree model is selected for deployment in both real-time and cloud environments. This

strategic decision is grounded in the model's demonstrated competency to effectively discern between normal and

anomalous network patterns, making it well-suited for practical deployment scenarios.

Fig 4. Real time prediction

C. Real Time Testing and Cloud Deployment of ADTreal

i. Real Time Testing

In the context of testing in real time for anomaly detection in network traffic, the operational workflow is

meticulously orchestrated leveraging PyShark for live packet capture and feature extraction. Within the dynamic

operating environment of Kali Linux, a renowned platform for penetration testing and network analysis, the

process unfolds seamlessly. The initial step involves the deployment of PyShark to conduct live packet capture on a

designated network interface, such as 'eth0,' ensuring the acquisition of real-time network traffic data.

Subsequently, relevant features are extracted from each captured packet, encompassing critical attributes like

protocol type, service, flags, source bytes, destination bytes, and additional features tailored to the model's

prerequisites. The extracted features serve as the input for the pre-trained Decision Tree model, which is

strategically chosen for its superior performance in anomaly detection, as substantiated during the model

comparison phase. The loaded model is then applied to make real-time predictions based on the live packet

features. The presented Python code encapsulates this entire process, offering a clear and concise implementation

for real-time testing in the Kali Linux environment. Adjustments to features and model parameters can be

seamlessly made to cater to specific analysis requirements and further enhance the model's adaptability to

evolving network scenarios. The detailed method is given as algorithm 2.

Algorithm 2: Real-time Packet Classification using Decision Tree Model ADTreal

1. Load Decision Tree Model:

- loaded_model = load('decision_tree_model')

2. Specify Network Interface:

- interface = 'eth0'

3. Capture Packets in Real-time:

- capture = LiveCapture(interface=interface)

4. Initialize Features List:

- packet_features = []

5. Extract Features from Each Live Packet:

- For each packet in capture:

- packet_info = {

- 'protocol_type': packet.transport_layer if 'transport_layer' in packet else 'NA',

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1380 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

-'service':packet[packet.transport_layer].dstportif packet.transport_layer else 'NA',

-'flag': getattr(packet[packet.transport_layer], 'flags', 'NA') if packet.transport_layer else 'NA',

- 'src_bytes': int(packet.tcp.len) if 'tcp' in packet else int(packet.length),

- 'dst_bytes': int(packet.length) if 'length' in packet else 'NA',

- 'count': 1, # Modify this according to analysis requirements

- 'same_srv_rate': 1.0, # Modify this according to analysis requirements

- 'diff_srv_rate': 0.0, # Modify this according to analysis requirements

- 'dst_host_srv_count': 1, # Modify this according to analysis requirements

- 'dst_host_same_srv_rate': 1.0 # Modify this according to analysis requirements

- # Add more features as needed based on the model's requirements

- }

- packet_features.append(packet_info)

6. Close Live Packet Capture:

- capture.close()

7. Predict Using Loaded Model for Each Live Packet:

- For each packet_info in packet_features:

- # Convert packet_info into a format suitable for model prediction

- features = [

- float(packet_info['protocol_type']) if packet_info['protocol_type'] != 'NA' else np.nan,

- float(packet_info['service']) if packet_info['service'] != 'NA' else np.nan,

- packet_info['flag'],

- packet_info['src_bytes'],

- packet_info['dst_bytes'],

- packet_info['count'],

- packet_info['same_srv_rate'],

- packet_info['diff_srv_rate'],

- packet_info['dst_host_srv_count'],

- packet_info['dst_host_same_srv_rate']

- # Include other features...-]

- # Make predictions using the loaded model

- prediction = loaded_model.predict([features])

- # Print or use the prediction as needed

- print(f"Packet prediction: {prediction}")

8. End prediction = loaded_model.predict([features])

predicted_class = class_mapping.get(prediction[0], 'unknown') # Map numerical prediction to class labels

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1381 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

print(f"Packet prediction: {predicted_class}")

ii. Deployment of ADTreal in AWS EC2 cloud

In the deployment phase on AWS EC2, the first pivotal step involved serializing the trained Decision Tree model

using joblib, facilitating its seamless deployment. Following this, the AWS EC2 instance was set up, entailing the

launch of an EC2 instance, meticulous configuration of security groups, and the establishment of key pairs for

secure access. The decision tree model was then transferred to the EC2 instance, and essential dependencies were

installed to ensure the correct execution of the model in the cloud environment. This deployment setup lays the

foundation for real-time anomaly detection on live network traffic, as the model can be executed on the EC2

instance, leveraging the scalability and computational resources offered by AWS. The orchestrated process

underscores the adaptability of the model, transitioning it from local training and testing environments to a cloud-

based infrastructure for real-time applications. The method for real time packet classification and deployment on

AWS EC2 cloud is given in algorithm 3.

Algorithm 3: Real-time Packet Classification and deployment on AWS EC2 using Pre-trained

Decision Tree Model

1. Serialize and Save the Model on Local Machine:

- from joblib import dump

- dump(trained_model, 'decision_tree_model.joblib')

2. AWS EC2 Instance Setup (using AWS CLI):

- aws ec2 run-instances --image-id <AMI_ID> --instance-type <INSTANCE_TYPE> --key-name

<KEY_PAIR_NAME> --security-group-ids <SECURITY_GROUP_ID> --subnet-id <SUBNET_ID>

3. ransfer the Serialized Model to EC2 Instance using SCP:

-scp -i <PATH_TO_KEY_PAIR_FILE> decision_tree_model.joblib ec2

user@<EC2_PUBLIC_IP>:~/path/to/destination/

4. Connect to the EC2 Instance using SSH:

- ssh -i <PATH_TO_KEY_PAIR_FILE> ec2-user@<EC2_PUBLIC_IP>

5. Install Necessary Dependencies and Packages (on EC2 Instance):

- sudo yum install python3-pip

- pip3 install scikit-learn joblib

6. Run the Real-time Prediction Script on EC2 Instance (real_time_prediction.py):

6.1. Import Libraries on EC2 Instance:

- from model serialization framework joblib import load

- import tool

- import numerical operation entity

6.2. Load the Pre-trained Model:

- loaded_model = load('decision_tree_model.joblib')

6.3. Define the File to Save Captured Packets (in std format):

- file_path = 'captured_packets.pcap'

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1382 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

6.4. Capture Packets on a Specific Interface and Save to the File:

- capture = LiveCapture(interface='eth0', output_file=file_path)

- try:

- capture.sniff(timeout=20) # Capture packets for 20 seconds (adjust timeout)

- except KeyboardInterrupt:

- print('Capture stopped by user')

- capture.close()

6.5. Open the Captured Pcap File for Reading:

- cap = FileCapture(file_path)

6.6. List to Store Extracted Features:

- packet_features = []

6.7. Extract Features from Each Packet in the File:

- for packet in cap:

- packet_info = {

- # Extract features similar to the training phase

- }

- packet_features.append(packet_info)

6.8. Close the Capture File:

- cap.close()

6.9. Predict Using the Loaded Model:

- for packet_info in packet_features:

- # Convert the packet_info into a format suitable for model prediction

- # Assuming 'packet_info' contains the extracted features

- # Format the data into the same format as used during model training

- features = [

- # Format the features similar to the training phase

-]

- # Make predictions using the loaded model

- prediction = loaded_model.predict([features])

- predicted_class = 'anomaly' if prediction[0] == 1 else 'normal'

- # Print the prediction result

- print(f"Packet prediction: {predicted_class}")

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1383 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

IV. EXPERIMENTAL SETUP

This research work ADTreal involves the utilization of specific hardware and software components for the

development, training, testing, and deployment phases. Here's an overview of the hardware and software used:

Hardware: Local Machine: PC with Windows 11 with good capacity RAM,CPU to handle the

computational demands of machine learning tasks

AWS EC2 Instance: to leverage scalable computing resources. S3: for storing datasets or serialized models.

Hyperparameter Tuning (Optuna): for hyperparameter optimization of the Decision Tree model.

Model Serialization: Joblib: for serializing the trained Decision Tree model, facilitating its transfer and deployment.

Software: Programming Languages:

Python: for machine learning model development, data processing, and scripting.

Bash Scripting: for automation and orchestration of tasks, particularly during cloud deployment.

Machine Learning Libraries:

Scikit-learn: for implementing machine learning models, as well as for model evaluation. Pandas for Data

Processing and Analysis

NumPy: for numerical operations on arrays and matrices. Seaborn and Matplotlib: for data visualization and result

analysis.

Packet Capture and Feature Extraction:

PyShark: for live packet capture and feature extraction from network traffic data.

V. ADTreal PERFORMANCE EVALUATION CRITERIA AND TERMINOLOGY

For evaluating the performance of the classification model, several metrics are commonly used such as F1 score,

accuracy, precision, and confusion matrix:

Confusion Matrix:

A table that details a classification model's performance is called a confusion matrix. It includes four important

metrics:

True Positive (TP): The quantity of positive cases that were accurately forecasted. True Negative (TN): The quantity

of negative cases that were accurately predicted.

False Positive (FP): The quantity of cases that are expected to be positive but turn out to be negative (Type I error).

False Negative (FN): The quantity of cases that are expected to be negative but turn out to be positive (Type II

error).

Table 4: Confusion Matrix

 Predicted Positive Predicted Negative

Actual Positive True Positive(TP) False Negative(FN)

Actual Negative False Positive(FP) True Negative(TN)

Accuracy:

Accuracy measures the overall correctness of the model and is the proportion of cases that were accurately

predicted to all instances as in Eq.(16)

Precision:

(16)

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1384 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Precision measures the accuracy of positive predictions. It is the ratio of correctly predicted positive instances to

the total predicted positive instances as in Eq.(17)

17)

Recall:(Sensitivity or True Positive Rate):

18)

Recall measures the ability of the model to capture all positive instances. It is the ratio of correctly predicted

positive instances to the total actual positive instances.

F1 Score:

The F1 score is the harmonic mean of precision and recall. It provides a balance between precision and recall

 The F1 score is particularly useful when the class distribution is imbalanced.

(19)

These metrics help in assessing the performance of a classification model comprehensively. While accuracy gives an

overall view, precision and recall are especially important in situations where false positives and false negatives

have different consequences. The F1 score combines precision and recall into a single metric, offering a balanced

view of a model's performance.

VI. RESULTS AND DISCUSSIONS

The ―ADTreal: Decision Tree-based real-time network traffic anomaly detection with cloud deployment for

enhanced cyber security‖ research work presents a comprehensive study on deploying a decision tree model for

real-time anomaly detection in network traffic. The results and discussions section provides insights into the

performance of the proposed model, the significance of real-time intrusion detection, and the promises made

during the research.

Performance Comparison of Models:

The work initially compares three machine learning models namely Logistic Regression, K-Nearest Neighbors

(KNN), and Decision Tree for their effectiveness in network traffic anomaly detection. Through rigorous

experimentation and evaluation on the Kaggle dataset for intrusion detection it is demonstrated that the Decision

Tree model consistently outperforms the other models, offering superior accuracy and reliability. This further

confirms that real time analysis of network traffic using decision tree approach resulted in more accuracy than it

offered by using non real time decision tree based traffic analysis.

Table 5. Model Validation.

Model Mean Precision Mean Recall

KNN 98.65 98.13

Logistic Regression 91.74 98.87

Decision Tree-ADTReal 99.51 99.51

As illustrated in Table 5, which outlines the results of model validation, our analysis using Decision Tree approach

outshines its counterparts with a remarkable Mean Precision and Mean Recall of 99.51%, indicating its ability to

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1385 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

precisely identify anomalies while capturing a high percentage of true positive instances. These validation metrics

further emphasize the model's robust performance and effectiveness in distinguishing between normal and

anomalous network traffic.

Table 6. Model Testing

Model Precision Recall F1 score Accuracy

KNN 98% 98% 98% 98%

Logistic Regression 93% 92% 92% 92%

Decision Tree 99% 99% 99% 98.95%

Table 6 delves into the specifics of model testing, reaffirming the Decision Tree model's dominance. With

precision, recall, and F1 score all reaching an impressive 99%, the model exhibits unparalleled accuracy in

classifying instances. The high accuracy level, coupled with superior precision and recall rates, solidify the Decision

Tree model's position as the optimal choice for network traffic anomaly detection.

Fig 5. F1 score comparison. Fig 6. ROC Curve.

Given these substantial advantages and superior performance metrics, the Decision Tree model emerges as the

preferred candidate for real-time deployment. Its heightened accuracy and reliability, as demonstrated through

rigorous testing and validation, make it an ideal choice for promptly and accurately identifying anomalies in live

network traffic.

In the real-time anomaly detection process using Kali Linux and the trained Decision Tree model, live network

traffic is captured on a specified network interface, such as 'eth0'. The captured packets are then processed to

extract relevant features, including protocol type, service, flags, source bytes, destination bytes, and additional

features. These extracted features are organized into a format suitable for model prediction, considering the same

format used during the model training phase.

The Decision Tree model, previously saved using joblib, is loaded for real-time predictions. For each live packet, the

model predicts whether it belongs to the 'normal' or 'anomaly' class. The prediction is then mapped to class labels,

and the result is printed, providing immediate insights into the nature of the network traffic. This real-time process

allows for prompt identification of anomalies in the live network stream, showcasing the model's effectiveness in

detecting potential security threats as they occur. Figure 7,8,9 represents screenshots of ADTreal Decision tree

model testing, Packet sniffing and real time packet prediction.

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1386 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig 7. ADTreal Decision tree model Testing Fig 8. ADTreal Packet sniffing.

Fig 9. ADTreal Real Time Packet Prediction

Finally, we successfully deployed the Decision Tree model on AWS EC2 to demonstrate its adaptability and

scalability in a cloud environment. By serializing the trained model using joblib, launching an EC2 instance, and

configuring security groups and key pairs, the model is seamlessly transferred to the cloud. Upon deployment, the

model showcases its real-time anomaly detection capabilities, efficiently analyzing live network traffic. This

successful cloud deployment underscores the practicality and effectiveness of the proposed solution, making it a

valuable tool for augmenting the security posture of cloud-based systems.

VII. CONCLUSION AND FUTURE SCOPE

The ADTreal method presents an exhaustive exploration of machine learning models for real-time anomaly

detection in network traffic. Through a comparative analysis three models, the research establishes the superior

performance of the Decision Tree model in terms of accuracy and reliability for detecting anomalies in network

traffic. The real time analysis using decision tree approach further confirms the models effectiveness. This approach

utilizes PyShark for live packet capture, feature extraction, and the execution of the trained Decision Tree model,

demonstrating its robustness in real-time testing. The successful deployment on AWS EC2 further underscores the

model's adaptability to cloud-based scenarios, addressing the significance of real-time intrusion detection in

enhancing network security.

Future avenues for exploration include enhancing model performance through ensemble methods or deep learning

architectures, incorporating more diverse datasets, and considering various network scenarios for a more

generalized model. Further research could explore the integration of anomaly detection models with automated

response mechanisms and delve into multi-cloud deployments. Adaptive learning techniques to dynamically adjust

to evolving network patterns present an exciting direction for future investigation. This research sets the stage for

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1387 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

continued exploration and advancements in real-time network anomaly detection.

REFERENCES

[1] Sharuka Promodya Thirimanne, Lasitha Jayawardana et.al, ―Deep neural Network Based Real Time Intrusion

Detection System‖ Springer, Open Access, 2022, Volume 3, Article 145.

[2] Razzaq A.; et al.: Cyber security: threats, reasons, challenges, methodologies and state of the art solutions for

industrial applications. In: 2013 IEEE Eleventh International Symposium on Autonomous

Decentralized Systems (ISADS). IEEE (2013)

[3] Ali Bou Nassif; et.al.:‖ Machine Learning Models For Anomaly Detection: A Systematic Review.‖ IEEE access

(Vol:9) IEEE 2021, DOI: 10.1109/ACCESS.2021.3083060

[4] Ashwini Pathak, Sakshi Pathak; ―Study on Decision Tree and KNN algorithm for Intrusion Detection System‖,

May 2020 International Journal of Engineering research and V9(05),

DOI:10.17577/IJERTV9IS050303

[5] Dataset Kaggle: https://www.kaggle.com/datasets/sampadab17/network-intrusion-detection

[6] Georges Chaaya, Hoda Maalouf, ―Anomaly detection on a Real time server using Decision Trees‖, 8th

International Conference on Information Technology (ICIT)

[7] Lie Chen et.al, ―Intrusion Detection System in Cloud Computing Environment‖ ,International Conference on

Computer Communication and Network Security(CCNS)IEEE,2020, DOI: 10.1109/CCNS50731.2020.00037

[8] V. Kathiresan et.al, ―A Comparative Study of Diverse Intrusion Detection Methods using Machine Learning

Techniques‖, 2022 International Conference on Computer Communication and Informatics IEEE DOI:

10.1109/ICCCI54379.2022.9740744

[9] Deshpande PS, Sharma SC, Peddoju SK (2019) ―A network-based intrusion detection system”. In:

Proceedings of security and data storage aspect in cloud computing. Springer, Singapore, pp 35-48

[10] Shuai Zhao et. al, ―Real-time Network Anomaly detection System Using Machine learning‖, 2015,11th

International Conference on the Design of Reliable Communication Networks (DRCN), IEEE, DOI:

10.1109/DRCN.2015.7149025

[11] Yansen Shou et.al, ―Research of Network Traffic Anomaly Detection Model Based on Multilevel

Autoregression‖ , 2019 IEEE 7th International Conference on Computer Science and Network Technology

(ICCSNT) , DOI: 10.1109/ICCSNT47585.2019.8962517

[12] Suman Lata, Dheerendra Singh, ―Intrusion Detection System in Cloud Enviornment, Literature Survey and

future research directions‖ , International Journal of Information Management data Insights, Vol2, Issue

2, November 2022, 100134, Springer

[13] Faisal Shahzad, Abdul Mannan et al, ―Cloud based Multiclass anomaly detection and Categorization using

ensemble learning‖, Springer, Journal of Cloud Computing volume 11, Article number: 74 (2022)

[14] Jonathan J. Davis et. al, Computers & Security , ―Data Preprocessing for Anomaly based Network Intrusion

Detection‖, Elsevier , Volume 30, Issues 6– 7, September–October 2011, Pages 353-375

[15] Aditya Vikram, Mohana et.al, ―Anomaly Detection in Network Traffic Using Unsupervised Machine Learning

Approach― ,IEEE,2020

[16] Brao, Bobba et al., ―Fast KNN Classifiers for Network Intrusion Detection System‖, Indian Journal of

Science and Technology. 2017.

[17] Azwar, Hassan et all., ―Intrusion Detection in secure network for Cybersecurity systems using Machine

Learning and Data Mining‖, 2018.

[18] Y. Chang et al., ―Network Intrusion Detection Based on Random Forest and Support Vector Machine,‖ IEEE

International Conference on Computational Science and Engineering , 2017.

[19] Francesco Palmieri, ―Network Anomaly detection Using Logistic Regression of Nonlinear chaotic invariants‖,

Elsevier , Journal of Network and Computer Applications ,Volume 148, 15 Dec 2019.

[20] Alifiannisa Alyahasna Wighneswara et.al, ―Network Behavior Anomaly Detection Using Decision Tree”, IEEE

12th International Conference on Communication Systems and Network Technologies (CSNT), 2023,DOI:

10.1109/CSNT57126.2023.10134589

[21] K. Samunnisa et.al , ― Intrusion Detection system in Distributed cloud Computing: Hybrid clustering and

https://link.springer.com/article/10.1007/s42979-022-01031-1#auth-Sharuka_Promodya-Thirimanne-Aff1
https://link.springer.com/article/10.1007/s42979-022-01031-1#auth-Lasitha-Jayawardana-Aff1
https://doi.org/10.1109/ACCESS.2021.3083060
http://dx.doi.org/10.17577/IJERTV9IS050303
http://www.kaggle.com/datasets/sampadab17/network-intrusion-detection
http://www.kaggle.com/datasets/sampadab17/network-intrusion-detection
https://ieeexplore.ieee.org/xpl/conhome/9240716/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9240716/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9240716/proceeding
https://doi.org/10.1109/CCNS50731.2020.00037
https://ieeexplore.ieee.org/xpl/conhome/9740652/proceeding
https://doi.org/10.1109/ICCCI54379.2022.9740744
https://ieeexplore.ieee.org/xpl/conhome/7132053/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7132053/proceeding
https://doi.org/10.1109/DRCN.2015.7149025
https://ieeexplore.ieee.org/xpl/conhome/8950250/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8950250/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8950250/proceeding
https://doi.org/10.1109/ICCSNT47585.2019.8962517
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-022-00329-y#auth-Faisal-Shahzad-Aff1
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-022-00329-y#auth-Abdul-Mannan-Aff2
https://journalofcloudcomputing.springeropen.com/
https://www.sciencedirect.com/journal/computers-and-security
https://www.sciencedirect.com/journal/computers-and-security/vol/30/issue/6
https://www.sciencedirect.com/journal/journal-of-network-and-computer-applications
https://www.sciencedirect.com/journal/journal-of-network-and-computer-applications
https://ieeexplore.ieee.org/author/37089858969
https://ieeexplore.ieee.org/xpl/conhome/10134573/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10134573/proceeding
https://ieeexplore.ieee.org/xpl/conhome/10134573/proceeding
https://doi.org/10.1109/CSNT57126.2023.10134589

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1388 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Classification methods‖, Elsevier, Measurement Sensors: Volume 25, February 2023, 100612

[22] Sandip Sonawane et.al, ―Rule based learning intrusion detection system using KDD and NSL KDD dataset ―,

Prestige International Journal of Management & IT - Sanchayan (2015), pp. 135-145,

10.37922/PIJMIT.2015.V04i02.009

[23] Rajesh T, Deepa P. ―A survey of intrusion detection models based on NSL-KDD data set‖. In: Proceedings of

the 5th HCT information technology trends (ITT), Dubai, United Arab Emirates, November 2018

https://doi.org/10.1109/CTIT.2018.8649498.

[24] Hayoung O, Kijoon C.‖ Real-time intrusion detection system based self-organized maps and feature

correlations‖, In: Proceedings of the 3rd international conference on convergence and hybrid

information technology ,Korea(South), November,2008. https://doi.org/10.1109/ICCIT.2008.32.

[25] Komviriyavut T, Sangkatsanee P, Wattanapongsa-korn N, Charnsripinyo C. ―Network intrusion detection and

classification with Decision Tree and rule based approaches”. In: Proceedings of the 9th international

symposium on communication and information technology, Korea, September 2009.

https://doi.org/10.1109/ISCIT.2009.5341005.

[26] Sangkatsanee P, Wattanapongsakorn N, Charnsripinyo C. ―Practical real- time intrusion detection using

machine learning approaches‖. Comput Commun.2011; 34(18):222735.

https://doi.org/10.1016/j.comcom.2011.07.001

[27] Hui W, Zijian C, Bo H. ―A network intrusion detection system based on convolutional neural Network‖. J Intell

Fuzzy Syst. 2020;38:7623– 37. https://doi.org/10.3233/JIFS-179833

[28] Zhang C, Chen Y, Meng Y, Ruan F, Chen R, Li Y, Yang Y. ―A novel framework design of network intrusion

detection based on machine learning techniques‖. Secur Commun Netw. 2021 .

https://doi.org/10.1155/2021/6610675.

[29] Nour M, Jill S. UNSW-NB15: ―A comprehensive data set for network intrusion detection systems (UNSW-

NB15 network data set)”. In: Proceedings of the military communications and information

Systems conference, Australia, November 2015 https://doi.org/10.1109/MilCIS.2015.7348942.

[30] Abbes, T., Bouhoula, A., Rusinowitch, M.:‖ Efficient decision tree for protocol analysis in intrusion detection‖.

Int. J. Secur. Netw. 5(4), 220- 235,(2010)

[31] Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: ―An effective unsupervised network anomaly detection

method‖. In: Proceedings of the International Conference on Advances in Computing,

Communications and Informatics, pp. 533–539. ACM, New York (2012)

[32] Denning, D.E., Neumann, P.G.: ―Requirements and Model for IDES – A Real-time Intrusion Detection

System‖. Tech. Rep. 83F83-01-00, Computer Science Laboratory, SRI Inc. (1985)

[33] Khraisat A, Gondal I, Vamplew P (2018) ―An anomaly intrusion detection system using C5 decision tree

classifier‖. In: Trends and applications in knowledge discovery and data mining. Springer

International Publishing,Cham, pp 149–155

[34] Kreibich C, Crowcroft J (2004) ―Honeycomb: creating intrusion detection signatures using Honeypots”.

SIGCOMM Comput Commun Rev 34(1):51–56

[35] Roesch M (1999) ―Snort-lightweight intrusion detection for networks‖. In:Proceedings of the 13th

USENIX conference on system administration. Seattle,Washington, pp 229–238

[36] Adeeb M. Alhomoud et. al(2011), ―Performance evaluation study of Intrusion Detection Systems‖, December

2011, Procedia Computer Science 5:173-180, DOI:10.1016/j.procs.2011.07.024

[37] Md Azam Hossain et.al(2022) ,‖ Network Traffic anomalies Detection using Machine Learning Algorithm: A

Performance Study‖, In Proceedings of 2nd International Conference on Smart Computing and Cyber

Security pp 274–282

[38] Ziadoon K. Maseer, Robiah Yusof,et.al, ―Systematic Review for Anomaly Network Intrusion Detection Systems:

Detection Methods, Dataset,Validation Methodology, and Challenges‖ ,

https://Doi.Org/10.48550/Arxiv.2308.02805

[39] Qian Ma et.al, ―A Novel Model for Anomaly Detection in Network Traffic based on Support Vector Machine

and Clustering‖(2021), Research Article | Open Access Volume 2021 | Article ID 2170788 |

https://doi.org/10.1155/2021/2170788

[40] Tushar Rakshe, Vishal Gonjari, ―Anomaly based Network Intrusion Detection using Machine Learning

https://www.sciencedirect.com/journal/measurement-sensors/vol/25/suppl/C
https://doi.org/10.37922/PIJMIT.2015.V04i02.009
https://doi.org/10.37922/PIJMIT.2015.V04i02.009
https://doi.org/10.1109/CTIT.2018.8649498
https://doi.org/10.1109/ICCIT.2008.32
https://doi.org/10.1109/ISCIT.2009.5341005
https://doi.org/10.1016/j.comcom.2011.07.001
https://doi.org/10.3233/JIFS-179833
https://doi.org/10.1155/2021/6610675
https://doi.org/10.1109/MilCIS.2015.7348942
https://www.researchgate.net/journal/Procedia-Computer-Science-1877-0509
http://dx.doi.org/10.1016/j.procs.2011.07.024
https://link.springer.com/book/10.1007/978-981-16-9480-6
https://link.springer.com/book/10.1007/978-981-16-9480-6
https://link.springer.com/book/10.1007/978-981-16-9480-6
https://doi.org/10.48550/Arxiv.2308.02805
https://doi.org/10.1155/2021/2170788

Journal of Information Systems Engineering and Management
2025, 10(49s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1389 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Techniques‖, International Journal of Engineering Research & Technology (IJERT) Published

by : http://www.ijert.org ISSN: 2278-0181 Vol. 6 Issue 05, May – 2017

[41] Ahmed Tamer Assy et.al, ―Anomaly-based Intrusion detection system using One Dimensional Convolutional

Neural Network‖, Elsevier: The 14th International Conference on Ambien t Systems, Networks

and Technologies(ANT) March15-17, 2023, Leuven, Belgium, Procedia Computer Science 220 (2023)

78–85 Procedia ,ComputerScience 00(2019)000–00

[42] M. Elif KarsligЕl et.al , ―Network Intrusion Detection using Machine learning Anomaly Detection Algorithms”,

In Preceedings of 2017,25th Signal Processing and Communications Applications Conference(SIU)

IEEE,2017, DOI:10.1109/SIU.2017.7960616

http://www.ijert.org/
https://ieeexplore.ieee.org/author/37589712300
https://ieeexplore.ieee.org/xpl/conhome/7951214/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7951214/proceeding
https://doi.org/10.1109/SIU.2017.7960616

