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In the realm of contemporary network security, the ongoing advancement of cyber threats 

necessitates creative methods for identifying anomalies in real-time network traffic. This study 

explores the application of machine learning models within network security, with a specific 

emphasis on comparing three models: Decision Trees, KNN, and logistic regression. The analysis, 

referred to as ADTreal, focuses on the binary classification of normal versus anomalous network 

traffic utilizing a Kaggle dataset, investigating the intricacies of model training, real-time testing, 

and cloud environment deployment. The most suitable Decision Tree model undergoes careful 

training and hyperparameter optimization, demonstrating superior performance during 

comparative evaluations. Real-time testing involves the live capture of network packets, feature 

extraction, and the seamless integration of the model for swift anomaly detection. A crucial 

element is the deployment of the Decision Tree model within the Amazon Web Services (AWS) 

Elastic Compute Cloud (EC2) framework.  The serialized model, transferred to an EC2 instance, 

runs for real-time predictions, highlighting the practicality and benefits of cloud-based solutions 

for enhancing network security. Evaluation metrics such as accuracy, precision, recall, and F1 

score provide insights into the effectiveness of the Decision Tree model. The accompanying 

confusion matrix analysis further clarifies its capability to distinguish between normal and 

anomalous traffic in real time. The culmination of this research underscores the importance of 

real-time anomaly detection and the viability of implementing machine learning models in cloud 

settings, thereby strengthening the foundations of secure network infrastructures in the face of 

evolving cyber threats. 

Keywords— Anomaly detection, Cloud Deployment, Decision tree, Machine learning, Real time 

detection. 

 

I.INTRODUCTION 

In an era dominated by digital connectivity, defending network infrastructures against cyber threats and attacks 

stands as a paramount concern and priority. The escalating intricacy of attacks demands innovative approaches to 

abnormality detection in network traffic. This paper delves into the realm of  real-time  anomaly detection, 

employing a Decision Tree-based approach, and explores its integration into cloud environments for heightened 

security and scalability. As noted by Razaaq A.et al.[2], cyber threats are evolving rapidly, demanding adaptive and 

effective solutions to ensure the integrity and confidentiality of network communications [1]. Traditional methods 

of network security often fall short in addressing the dynamic nature of contemporary cyber threats. According to 

Ali Bou Nassif et.al [3] models using machine learning approaches have emerged as persuasive tools for anomaly 

detection, capable of discerning patterns indicative of malicious activities within vast datasets [3]. The study 

specifically compares the effectiveness of three prominent machine learning models: Decision Trees, K-Nearest 

Neighbors (KNN), and Logistic Regression   in   the   context   of   real-time   network   traffic anomaly detection[4]. 

This comparative analysis, inspired by the works of Ashwini Pathak et al.[4] forms the basis for selecting the most 

suitable model for our real-time intrusion detection use case. The dataset used in this research was obtained from 
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Kaggle[5] and simulates a network in a military environment, providing a diverse range of infringements. The 

objective is to train machine learning models on a set of data that closely mimics real- world network traffic 

scenarios, designed for binary classification, distinguishing between normal and anomalous network traffic. This 

binary nature aligns seamlessly with the practical scenario of network security, where the primary objective is to 

discern between benign and potentially malicious activities. Real- time intrusion detection holds exceptional 

significance in today's dynamic cyber landscape [6]. By focusing on real-time detection, the proposed study 

addresses the critical gap in timely identification and mitigation  of potential network intrusions. Ensuring the 

integrity and security of network communications is paramount, predominantly in the context of cloud-based 

infrastructures [7], where sensitive data and critical services are hosted. The promises made in this paper extend 

beyond model comparison and dataset utilization. It delves into the realm of anomaly detection of network traffic in 

real time, leveraging a Decision Tree-based model, and explores its deployment in cloud environments, specifically 

on AWS EC2.  This ensures not only enhanced security through quick anomaly detection but also scalability and 

accessibility, addressing the evolving needs of network infrastructures. 

Contributions 

The contributions in this work are summarized as given below. 

1. It is crucial to protect network infrastructures from cyber threats and attacks, hence finding novel ways to 

identify abnormalities in network data is indispensable. 

2. To guarantee the integrity and secrecy of network communications, adaptive and effective solutions are 

needed, as traditional techniques of network security frequently fail to meet the dynamic nature of modern cyber 

threats. 

3. Machine learning based approaches have emerged as influential tools for anomaly detection. 

4. Based on an accuracy comparison of the three well-known ML models, it is imperative that the Decision Tree 

Model is the most appropriate and accurate one for anomaly detection. 

5. Real-time analysis by our research model not only confirms the genuineness and accuracy of earlier studies 

but also improves the accuracy of the binary classification of potentially harmful and benign actions. 

6. Deployment in Cloud guarantees enhanced security, scalability and availability. 

Roadmap 

The following depicts how this work is organized: We begin with a review of the literature, looking at earlier 

research and theories that are pertinent to our findings. The development of the proposed methodology, which 

describes the evolution and complexities of our detection model, comes after this section. A section introducing the 

tools and techniques used is also appended. The Results of our Analysis are then presented, illustrated with 

comprehensive Tables and Figures that both graphically and statistically support our conclusions. A final section 

summarizing our key findings and conclusions ends the study, and is followed by an extensive list of references that 

further our research. This research, grounded in the contemporary challenges of network security, contributes 

valuable insights into the interplay between Decision Tree  models, real-time anomaly detection, and cloud 

integration, aiming to fortify the foundations of secure network infrastructures. 

II. BACKGROUND AND RELATED WORKS 

Traditional methods of network security, often rely on rule-based systems and signature-based detection methods, 

proved inadequacy in addressing the evolving nature of cyber threats. Signature based Intrusion Detection Systems 

(SIDS) are a type of security mechanisms that identifies malicious  activities  by  comparing observed events with 

predefined signatures or patterns of known malicious behavior (Khraisat et al.[33]. According to Kreibich & 

Crowcroft,[34] the SIDS gave the highest detection rate for known  intrusions. Some of the advantages of SIDS are 

high accuracy, low false positive rates, efficiency, familiarity and it is well suited for networks with stable 

environments. Some tools like, Roesch et.al [35] discuss the use of tools like Snort and Suricata in which SIDS 

implemented. But SIDS has some limitations. It can only  detect the formerly recognized assaults. If there will be 
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any new attacks or zero-day attack it could not identify it. As a response to this challenge, the integration of 

machine learning techniques and methods for detection of anomalies in network traffic has gained prominence. 

Machine learning models, capable of discerning complex patterns and deviations within large datasets, present a 

promising avenue for enhancing the efficiency and effectiveness of network security measures. 

As per the previous studies different machine learning algorithms are used for detecting anomalies and intricacies 

in networks. Md Azam Hossain et.al [37] conducted a performance study in which Support Vector Machine; 

Logistic Regression, Random Forest, and Artificial Neural Network models are  compared. Qian  Ma et.al proposes 

an approach with Support Vector Machine and Clustering (SVM-C) to detect anomalies [39]. Ziadoon K. Maseer 

et.al[38] did a systematic and meta-analysis study of AI (Artificial Intelligence) for network intrusion detection 

systems (NIDS) focusing on Deep Learning and Machine Learning approaches for security of networks[38]. Tushar 

Rakshe et.al developed a classifier model based on Random forest classifier and Support Vector Machine (SVM) 

and the study concluded that Random Forest classifier is more effective than SVM [40]. Ahmed Tamer Assy et.al 

[41] proposed an anomaly detection system using one dimensional convolutional neural network (CNN ID) which 

gave an accuracy of 93% for detecting anomalies. The specific focus of this research lies in the demesne of real-time 

anomaly detection. The ability to identify and respond to real time network intrusions is crucial for mitigating 

potential damages and fortifying network defenses [1][5]. Real-time intrusion detection not only minimizes 

response times but also ensures proactive security measures, aligning with the dynamic nature of contemporary 

cyber threats. A significant collection of literature explores the application of machine learning models for network 

security. Researchers have investigated the effectiveness of various algorithms, including Decision Trees, K-Nearest 

Neighbors (KNN), and logistic regression, in distinguishing between normal and anomalous network behavior (V. 

Kathiresan et.al)[8]. These studies lay the foundation for our comparative analysis of these models within the 

perspective of real-time anomaly detection. 

The significance of real-time anomaly detection is underscored in works such as that of Shuai Zhao et.al 

[10] where the authors discuss the criticality of timely identification and mitigation of network intrusions. The 

promises of our research align with the urgent need for real-time detection mechanisms that can adapt  to the ever-

changing threat landscape. Table 1 depicts the details of different methods used for anomaly  based Intrusion 

Detection Systems and a comparison based on the accuracy metric. 

Table1.Comparitive study of Anomaly based IDS in Related works 

Ref. Yea Dataset Methodology Accuracy 

[42] 2017 NSL-KDD K Means Clustering 80% 

[40] 2017 NSLKDD Cup99 SVM 

Random forest 

95% 

99% 
[33] 2018 NSL KDD C5 Decision tree classifier 96% 

27] 2020 NSLKDD IDS CNN 90% 

[39] 2021 Data from various sources SVM 93% 

[28] 2021 CICIDS2017 Autoencoder with L1 norm 91% 

41] 2023 NSL KDD 1DCNN 93% 

[1] 2023 NSL KDD DNN 81% 

 

[20] 

 

2023 

4998 IDS records with 34 

attributes 

Decision Tree with Anomaly 

Detection 

 

99% 

 

While existing literature provides valuable insights into machine learning models, real-time anomaly detection, and 

cloud integration for network security, a comprehensive study that combines these elements is relatively scarce. 
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This research aims to bridge this gap by presenting a holistic examination of Decision Trees, KNN[15], and logistic 

regression models[18] within the context of real-time network anomaly detection, with a focus on practical 

deployment in the AWS EC2 cloud environment. 

The integration of machine learning models into cloud environments for enhanced scalability and accessibility has 

been explored by researchers like Suman Lata et.al [11]. Our research builds upon this foundation by detailing the 

deployment of our Decision Tree model on AWS EC2, showcasing the practicality and advantages of cloud-based 

solutions in the realm of network security. 

III. ADTreal METHODOLOGY 

The Proposed Methodology, which is illustrated in Fig. 1, is a sophisticated and multifaceted approach that  we have 

used in our research for detection and analysis. By leveraging a combination of data pre- processing, feature 

engineering, model training and cloud deployment and real time prediction, our method aims to significantly 

improve the accuracy and reliability of the system. Basically the sniffed packets are sent through the system 

pipeline and the system predicted whether the packets are anomalous or not. The approach consists of three main 

stages: model training, model evaluation and cloud deployment & real-time testing. The method employs importing 

the intrusion detection dataset to the system and after pre- processing and feature engineering the dataset is split 

into testing and training set. The model is then trained using the training dataset and after performance evaluation 

the selected model is hoarded for deployment. The  detailed workflow of the proposed system is given in Fig.2. 

 

 

Fig 1. Proposed System Architecture 

 

Fig 2. Workflow of the proposed system 

A. Model Training Phase i.Dataset Assortment 



Journal of Information Systems Engineering and Management 
2025, 10(49s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1372 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

The "Dataset Assortment" stage of this work is carefully designed to make sure the dataset is prepared for 

sophisticated machine learning analysis. In this research, we employed the Kaggle[4] standard dataset a vast and 

painstakingly selected collection of harmful and benign network data intended to mimic actual cyber security 

situations. It simulates a network in military environment, providing a diverse range of intrusions. The entire 

features set are presented in Table 2. The objective was to train machine learning models on a given dataset that 

closely mimics real-world network traffic scenarios in a military context. 

By exposing the network to multiple simulated attacks for each TCP/IP connection, 41 features are extracted, 

comprising 3 qualitative and 38 quantitative features. These features provide a comprehensive demonstration of 

the connections. The dataset includes a binary class variable, labeling each connection as either "Normal" or 

"Anomalous," with the latter indicating a specific attack type. The training dataset comprises of 25192 entries, 42 

columns and out of which 15 are float64 datatypes , 23 int64 datatypes and 4 objects. 

Table 2: Features set in standard Dataset 

Col.no: Feature Col.no: Feature Col.no: Feature 

1 duration 15 su attempted 29 same srv rate 

2 protocoltype 16 num root 30 diff srv rate 

3 service 17 num file_creations 31 srv diff host rste 

4 flag 18 num shells 32 dst hostcount 

5 src_bytes 19 num access files 33 Dst host srv count 

6 dst_bytes 20 num outbound_cmds 34 dst host same srv rate 
7 land 21 is host login 35 dst host diff srv rate 

8 wrong_fragment 22 is guest login 36 dst host same src port rate 

9 urgent 23 Count 37 dst host srv diff host rate 

10 hot 24 srv_count 38 dst host serror rate 

11 num failed_logins 25 serror rate 39 dst host srv serror rate 

12 logged_in 26 srv serror rate 40 dst host rerror rate 

13 num_compromised 27 rerror rate 41 dst host srv rerror rate 

14 root shell 28 srv rerror rate 42 Class 

 

Figure 3 shows the graphical representation of a Class distribution training set of normal 13449 values and anomaly   

11743 values obtained from the name: class, dtype: int64 

 

Fig 3 Class Distribution 

ii. Data Preprocessing 

In the data preprocessing phase, the simulated network dataset obtained from Kaggle[4] is prepared for machine 

learning model training. This involves encoding categorical variables using label encoding, dropping irrelevant 

features such as 'num_outbound_cmds,' and scaling numerical features. The entire process is summarized as 
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a) Handling missing data values 

To ensure data integrity, the dataset is first cleansed of missing values. If there were any missing values  found in 

the dataset, the common cleansing techniques include imputation (replacing missing values with a statistical 

measure like mean or median) or removal of instances with missing values. 

If X is the feature matrix, and Xi,j is an element of X at row i and column j, the missing value imputation be 

represented as: 

X_{i,j} & \text{if } X_{i,j} \text{ is not missing} \\ \text{impute\_value} & \text{if } X_{i,j} \text{ is missing} 

\end{cases}\] 

The method also involves assessing each column of the dataset and the total count and percentage values for 

columns that contain null values or NaN values are calculated. 

 

This is mathematically epitomized as 

tal=tra∈.shape[0] (1) 

 

mcolumns=[colforcol∈tra∈.columnsiftra∈[col].isνll().∑()>0] (2) 

 

νllcount=tra∈[col].isνll().∑() (3) 

 

per=(νllcount→tal)⋅100 (4) 

 

where tal denotes the total number of rows in the dataset, mcoloumns the missing coloumns, vllcount the null 

count and it lists coloumns where the sum of null values is greater than zero. per denotes percentage values. 

b) Encoding Categorical Variables: The 'LabelEncoder' function encodes categorical variables. This will converts 

categorical data into numerical format. 

If X is the feature matrix, and Xi,j is a categorical feature at row i and column j, encoding can be  represented as: 

X′i,j = LabelEncoder (Xi,j) (5) 

c) Scaling Numerical Features: Standard scaling is applied to numerical features using 'StandardScaler' function. 

This will ensures that numerical features are on a similar scale, preventing some features from leading others. 

If X is the feature matrix, and Xi,j is a numerical feature at row i and column j, scaling can be represented as 

 
  
        

(6) 

 ̇   

where μj and σj represents the mean and the standard deviation of feature j respectively. 

These preprocessing steps[13] collectively enhance the dataset's suitability for training logistic regression, K- 

nearest neighbors (KNN), and decision tree models, contributing to a more effective and accurate real- time 

anomaly detection system for network traffic. 

iii. Feature Extraction 

The feature extraction and selection process employs Recursive Feature Elimination (RFE) with 
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RandomForestClassifier and the process is illuminated as follows: 

a)Data Splitting: 

Let X represent the feature matrix and Y the target variable. In this case, Xtrain is the training feature matrix, and 

Ytrain is the corresponding target variable. 

Xtrain ={x1,x2,...,xn}, where xi is a feature vector. 

Ytrain ={y1,y2,...,yn}, where yi is the target variable associated with xi. RFC Initialization: Initialize a 

RandomForestClassifier (rfc). 

rfc = RandomForestClassifier() 

RFE Initialization: Initialize RFE with the RandomForestClassifier and the number of features to select. a= 

(nfeatures_to_select=10) where a is the number of features to select. 

 

RFE(Xtrain,Ytrain,RFC,k), k=10  (7) rfe = RFE(rfc, a)

 (8) 

RFE Fit: 

Fit the RFE model to the training data. The RFE algorithm iteratively fits the model and eliminates the least 

important features until the desired number of features is reached. 

RFE.fit(Xtrain,Ytrain) 

rfe = rfe.fit(X_train, Y_train) (9) 

Feature Map: Create a feature map to associate each feature with a boolean value indicating whether it is selected 

True or not False). 

featuremap=[(i,v)fori,v∈iter→ols.ziplon≥st(RFE.≥t⊃port(),Xtra∈.columns) (10) 

Select Features: Extract the features that were selected by the RFE algorithm. 

The result of the RFE process is a set of selected features, denoted as Selected_Features, where: 

Selected_Features=[Xsel1,Xsel2,...,Xselk] 

The final selection of features, selected_features, is determined based on the support obtained from the RFE 

process. The mathematical representation is: 

Selected_features= [v for i,v ∈ featuremap if i==True] (11) 

The RFE algorithm utilizes the RandomForestClassifier to iteratively evaluate the importance of each feature in the 

dataset. It eliminates the least important features in each iteration until the desired number of features is reached 

(nfeatures_to_select). The resulting selected_features list contains the features deemed most important for 

predictive accuracy. This process aids in reducing dimensionality and focusing on the most informative features for 

model training. 

Here the selected_features are ['protocol_type', 'service', 'flag','src_bytes', 'dst_bytes', 'count', 'same_srv_rate', 

'dst_host_srv_count','dst_host_same_srv_rate', 'dst_host_diff_srv_rate'][4]. The Table 3 represents the selected 

features and their potential importance in the context of intrusion detection. These features are crucial in 

characterizing network traffic and identifying potential anomalies or security threats based on deviations from 

expected patterns. The dataset which consist of selected features set is named as cek_dst. 
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Table 3 : Details of Selected Feature Set for identifying threats(cek_dst) 

Feature Characteristics Relevance 
 

protocol_type 

Represents the protocol type used in the 

network packet (e.g., TCP, UDP, ICMP). 

Different protocols may have distinct patterns 

in normal and anomalous network traffic. 

 

flag 

Indicates the status or control information 

about the packet (e.g., SYN, ACK, FIN). 

Flags provide insights into the nature of 

network communication and potential threats. 

 

src_bytes 

Specifies the number of data bytes transferred 

from the source to the destination. 

Unusually high or low byte counts may indicate 

abnormal data transfer patterns. 

 

dst_bytes 

Represents the number of data bytes 

transferred from the destination to the 

source. 

Similar to src_bytes, dst_bytes helps analyze 

data transfer behavior in network traffic. 

 

count 

Denotes the number of contacts to the same 

host as the current link in the past two 

seconds. 

Unusual connection frequency may signal 

potential threats, such as a scan or attack. 

 

same_srv_rate 

Indicates the percentage of connections to the 

same service among the current connections 

to the same host. 

Deviations in same_srv_rate may highlight 

anomalies in the usage of specific services. 

 

diff_srv_rate 

Represents the percentage of connections to 

different services among the current 

connections to the same host. 

Anomalies in diff_srv_rate may suggest 

variations in service usage patterns. 

dst_host_srv_c o 

unt 

Specifies the number of connections to the 

same service as the current connection to the 

destination host. 

Deviations in this count may signal abnormal 

service usage on the destination host. 

dst_host_same_ 

srv_rate 

Indicates the percentage of connections to the 

same service among the current connections 

to the destination host. 

Changes in this rate may highlight anomalies in 

service usage on the destination host. 

dst_host_diff_s r 

v_rate 

Represents the percentage of connections to 

different services among the current 

connections to the destination host. 

Variations in this rate may indicate changes in 

the diversity of services in use. 

 

iv .Model Training 

In this phase, the pre-processed dataset is employed to train three distinct models namely Logistic Regression, K-

Nearest Neighbors (KNN), and Decision Tree. Logistic Regression provides a linear model, 

KNN leverages proximity-based classification, and Decision Tree offers a hierarchical decision structure 

a) Logistic Regression: 

Logistic Regression is a linear model used for binary classification. Given a dataset with features X and  binary 

labels Y (0 for normal and 1 for anomaly in this context), the logistic regression model predicts the probability of an 

instance belonging to class 1. The logistic function, or sigmoid, is applied to the linear combination of features to 

produce these probabilities. 

Mathematically, the logistic regression model is represented as: 

              
 

 

                        

(12) 
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Where β0, β1,...,βn are the coefficients learned during training. P(Y=1|X) is the probability of the positive class 

given the features X. e is the base of the natural logarithm. 

β0, β1,...,βn are the coefficients (parameters) that the model learns during training. 

 

b) K-Nearest Neighbors 

It is a non-parametric approach that uses the majority class of a data point's k-nearest neighbors to classify  it. The 

choice of k determines how many neighbors influence the classification. 

Mathematically, the KNN classification for a data point Xi is represented as 

Yi = majority class (neighbors(Xi)) where neighbors (Xi) returns the k-nearest neighbors of  Xi. 

KNN is a straightforward but efficient classification method that relies on data point similarity to function. The 

basic concept is that in the feature space, comparable instances are near to one another. Given a new, unseen data 

point, KNN classifies it based on the majority class of its k-nearest neighbors in the training dataset.Distance 

Metric: A distance metric, commonly Euclidean distance is used to measure the similarity or dissimilarity between 

data points. 

For two data points A(x1,y1) and B(x2,y2) in a 2D space, the Euclidean distance is calculated as: 

Distance (A, B) = √ (13) 

KNN does not explicitly learn a decision boundary. The decision boundary is formed naturally based on the 

distribution of Choosing ‘k'. 

c) Decision Tree 

The Decision Tree algorithm is a popular machine learning technique for both classification and regression 

tasks[6]. It operates by dividing the dataset into subgroups recursively according to the supplied feature values[6], 

ultimately creating a tree-like structure of decision nodes. Each node signifies a decision based on  a specific 

feature, and each branch corresponds to a possible outcome of that decision[30]. The leaves of the tree hold the 

final predictions. The Decision Tree[19] consists of nodes, branches, and leaves. The nodes represent decisions 

based on feature values, branches denote the outcomes of these decisions, and leaves  hold the final predictions. 

Algorithm 1 depicts the algorithm for Model Training using Decision tree 

Algorithm1: Model Training using Decision Trees 

Input: 

- Training dataset (train) 

- Test dataset (test) 

(1) Load the training dataset and test dataset from the specified file paths. 

(2) Preprocess the training dataset: 

(a) Handle missing values, if any. 

(b) Encode categorical variables using LabelEncoder. 

(c) Drop irrelevant columns such as 'num_outbound_cmds'. (3)Perform exploratory data analysis (EDA) on the 

training dataset: (a)Display summary statistics of the dataset. 

(b)Visualize class distribution using a countplot. 

(4) Split the preprocessed training dataset into features (X_train) and target variable (Y_train). 
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(5) Use Recursive Feature Elimination (RFE) with a RandomForestClassifier to select important features. 

(6) Scale the selected features using StandardScaler. 

(7) Split the preprocessed data into training and testing sets using train_test_split function. 

(8) Train a decision tree classifier (clfd) on the training data: 

(a) Set parameters such as criterion='entropy' and max_depth=4. (b)Measure the training time using the 

start_time and end_time variables. (9)Use Optuna to optimize hyperparameters for the decision tree classifier: 

(a)Define an objective function to maximize accuracy. 

(b) Perform a study to find the best set of hyperparameters. 

(10) Initialize a new decision tree classifier (dt) with the optimal hyperparameters. 

(11) Train the optimized decision tree classifier (dt) on the training data. 

(12) Evaluate the performance of the trained model: (a)Calculate the training and testing scores. (b)Display the 

results. 

(13) Optionally, perform cross-validation to assess model performance. 

(14) Save the trained decision tree classifier (dtc) using joblib.dump. Output: Trained decision tree model (dtc) 

 

i) Decision Tree Splitting and Evaluation 

The Decision Tree algorithm is a popular machine learning technique for both classification and regression tasks 

[6]. It operates by dividing the dataset into subgroups recursively according to the supplied feature values [6], 

ultimately creating a tree-like structure of decision nodes. Each node signifies a decision based on a specific feature, 

and each branch corresponds to a possible outcome of that decision [30]. The leaves of the tree hold the final 

predictions. The Decision Tree[19] consists of nodes, branches, and leaves. The nodes represent decisions based on 

feature values, branches denote the outcomes of these decisions, and leaves  hold the final predictions. 

Entropy (Information Gain): The algorithm aims to maximize information gain, which measures the decrease in 

uncertainty or entropy after a dataset is split. Entropy is calculated using the formula in Eq.(14) 

Entropy(S) =    ∑  (14) 

Where S is the dataset, ‗c‘ is the number of classes ‗Pi’ is the proportion of instances in class ‗ i‘ in S. 

Gini Impurity: Another criterion is Gini impurity, a measure of how often a randomly chosen element would be 

incorrectly classified. Gini impurity is calculated as in Eq.(15) 

Gini(S) =        ∑  (15) 

Where S is the dataset, c‘ is the number of classes ‗Pi’ is the proportion of instances in class ‗i‘ in S. 

 

ii) Decision Tree Learning Process 

Root Node: To divide the dataset into two or more subsets, the algorithm first chooses the feature that maximizes 

information gain or reduces Gini impurity. 

Child Nodes: Every subset undergoes a recursive application of the procedure, which produces child nodes and 

divides the data even more according to the chosen features. 

Stopping Criteria: Recursive splitting keeps on until certain conditions are satisfied, including a maximum depth 

limit, a minimum amount of samples in a leaf, or an information gain threshold. 
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Leaf Nodes: The final nodes, or leaves, contain the predicted output for the corresponding subset. 

The Decision Tree model developed for network intrusion detection operates by recursively partitioning the dataset 

into subsets based on specific features, aiming to classify network traffic as normal or anomalous. In the training 

phase, the algorithm selects features such as 'protocol_type,' 'service,' and 'flag' to split the dataset at each node, 

maximizing information gain and creating homogeneous subsets. This process continues until predefined stopping 

criteria, such as a maximum depth or minimum samples per leaf, are met. During training, the model fine-tunes 

hyperparameters, such as maximum depth and maximum features, through Optuna. Once trained, the Decision 

Tree utilizes these learned patterns to make predictions on live network traffic. In real-time testing, captured 

packets undergo feature extraction, considering protocol type, service, flags, source bytes, destination bytes, and 

other relevant features. These features are then fed into the trained Decision Tree model, which provides on-the-fly 

predictions for anomaly detection. This model, chosen for its superior performance among Logistic Regression and 

K- Nearest Neighbors, demonstrates its effectiveness in classifying network traffic with high accuracy and reliability. 

B. Model Evaluation Phase 

In the model evaluation phase, the trained Logistic Regression, K-Nearest Neighbors (KNN), and Decision Tree 

models undergo rigorous assessment on both training and testing sets. The evaluation metrics include accuracy 

scores, providing a comprehensive view of overall model performance. Precision, recall, and F1- score metrics are 

calculated to offer insights into the models' capabilities in correctly identifying and classifying instances of normal 

and anomalous network traffic. To ensure robustness and reliability, cross- validation is applied, validating model 

performance through the precision and recall metrics. This multifaceted evaluation process contributes to a 

nuanced understanding of the models' effectiveness in real- time anomaly detection within network traffic 

scenarios. 

i. Hyperparameter Tuning 

The Decision Tree model experienced a comprehensive training process, utilizing the Decision Tree  algorithm to 

discern patterns within the pre-processed dataset. Recognizing the pivotal role of parameter configuration in model 

performance, Optuna, a hyperparameter optimization framework, was employed for fine-tuning. 

It uses a Bayesian optimization algorithm that models the objective function (classification accuracy in this case) 

and suggests hyperparameter values that are likely to improve the objective. It maintains a probability distribution 

over the hyperparameter space and updates it based on the observed performance of different hyperparameter 

configurations. 

Finding the ideal set of hyperparameters (H) to maximize the objective function is its goal. 

f(H) Hoptimal=argmaxH f(H). 

The suggested int function samples values from a given range in a principled way, considering both exploration and 

exploitation. The Bayesian optimization process involves updating the probability distribution over 

hyperparameters based on the observed performance, iteratively narrowing down  the search space to find the 

optimal configuration. 

Through iterative adjustments facilitated by the framework, the model's parameters were systematically optimized 

to achieve the highest predictive accuracy and enhance its generalization capabilities. This  strategic use of the 

framework ensures that the Decision Tree model is finely tuned, demonstrating robust performance and suitability 

for real-time anomaly detection applications. 

ii. Prediction 

In  the  prediction  and  model  deployment  phase,  the  trained  models—Logistic  Regression,       K-Nearest 
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Neighbors (KNN)[16], and Decision Tree—are put to the test on the designated testing set. Following meticulous 

evaluation, the Decision Tree model emerges as the standout performer, showcasing superior and better 

performance metrics compared to the other two. Given its noteworthy accuracy, precision, recall, and F1-score, the 

Decision Tree model is deemed the optimal choice for real-time anomaly detection in network traffic. 

Consequently, the Decision Tree model is selected for deployment in both real-time and cloud environments. This 

strategic decision is grounded in the model's demonstrated competency to effectively discern between normal and 

anomalous network patterns, making it well-suited for practical deployment scenarios. 

 

Fig 4. Real time prediction 

C. Real Time Testing and Cloud Deployment of ADTreal 

i. Real Time Testing 

In the context of testing in real time for anomaly detection in network traffic, the operational workflow is 

meticulously orchestrated leveraging PyShark for live packet capture and feature extraction. Within the dynamic 

operating environment of Kali Linux, a renowned platform for penetration testing and network analysis, the 

process unfolds seamlessly. The initial step involves the deployment of PyShark to conduct live packet capture on a 

designated network interface, such as 'eth0,' ensuring the acquisition of real-time network traffic data. 

Subsequently, relevant features are extracted from each captured packet, encompassing critical attributes like 

protocol type, service, flags, source bytes, destination bytes, and additional features tailored to the model's 

prerequisites. The extracted features serve as the input for the pre-trained Decision Tree model, which is 

strategically chosen for its superior performance in anomaly detection, as substantiated during the model 

comparison phase. The loaded model is then applied to make real-time predictions based on the live packet 

features. The presented Python code encapsulates this entire process, offering a clear and concise implementation 

for real-time testing in the Kali Linux environment. Adjustments to features and model parameters can be  

seamlessly  made  to  cater  to  specific  analysis  requirements  and  further enhance the model's adaptability to 

evolving network scenarios. The detailed method is given as algorithm 2. 

Algorithm 2: Real-time Packet Classification using Decision Tree Model ADTreal 

1. Load Decision Tree Model: 

- loaded_model = load('decision_tree_model') 

2. Specify Network Interface: 

- interface = 'eth0' 

3. Capture Packets in Real-time: 

- capture = LiveCapture(interface=interface) 

4. Initialize Features List: 

- packet_features = [] 

5. Extract Features from Each Live Packet: 

- For each packet in capture: 

- packet_info = { 

- 'protocol_type': packet.transport_layer if 'transport_layer' in packet else 'NA', 
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-'service':packet[packet.transport_layer].dstportif packet.transport_layer else 'NA', 

-'flag': getattr(packet[packet.transport_layer], 'flags', 'NA') if packet.transport_layer else 'NA', 

- 'src_bytes': int(packet.tcp.len) if 'tcp' in packet else int(packet.length), 

- 'dst_bytes': int(packet.length) if 'length' in packet else 'NA', 

- 'count': 1, # Modify this according to analysis requirements 

- 'same_srv_rate': 1.0, # Modify this according to analysis requirements 

- 'diff_srv_rate': 0.0, # Modify this according to analysis requirements 

- 'dst_host_srv_count': 1, # Modify this according to analysis requirements 

- 'dst_host_same_srv_rate': 1.0 # Modify this according to analysis requirements 

- # Add more features as needed based on the model's requirements 

- } 

- packet_features.append(packet_info) 

6. Close Live Packet Capture: 

- capture.close() 

7. Predict Using Loaded Model for Each Live Packet: 

- For each packet_info in packet_features: 

- # Convert packet_info into a format suitable for model prediction 

- features = [ 

- float(packet_info['protocol_type']) if packet_info['protocol_type'] != 'NA' else np.nan, 

- float(packet_info['service']) if packet_info['service'] != 'NA' else np.nan, 

- packet_info['flag'], 

- packet_info['src_bytes'], 

- packet_info['dst_bytes'], 

- packet_info['count'], 

- packet_info['same_srv_rate'], 

- packet_info['diff_srv_rate'], 

- packet_info['dst_host_srv_count'], 

- packet_info['dst_host_same_srv_rate'] 

- # Include other features...- ] 

- # Make predictions using the loaded model 

- prediction = loaded_model.predict([features]) 

- # Print or use the prediction as needed 

- print(f"Packet prediction: {prediction}") 

8. End      prediction = loaded_model.predict([features]) 

predicted_class = class_mapping.get(prediction[0], 'unknown') # Map numerical prediction to class labels 
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print(f"Packet prediction: {predicted_class}") 

ii. Deployment of ADTreal in AWS EC2 cloud 

In the deployment phase on AWS EC2, the first pivotal step involved serializing the trained Decision Tree model 

using joblib, facilitating its seamless deployment. Following this, the AWS EC2 instance was set up, entailing the 

launch of an EC2 instance, meticulous configuration of security groups, and the establishment  of key pairs for 

secure access. The decision tree model was then transferred to the EC2 instance, and essential dependencies were 

installed to ensure the correct execution of the model in the cloud environment. This deployment setup lays the 

foundation for real-time anomaly detection on live network traffic, as the model can be executed on the EC2 

instance, leveraging the scalability and computational resources offered by AWS. The orchestrated process 

underscores the adaptability of the model, transitioning it from local training and testing environments to a cloud-

based infrastructure for real-time applications. The method for real time packet classification and deployment on 

AWS EC2 cloud is given in algorithm 3. 

Algorithm 3: Real-time Packet Classification and deployment on AWS EC2 using Pre-trained 

Decision Tree Model 

1. Serialize and Save the Model on Local Machine: 

- from joblib import dump 

- dump(trained_model,     'decision_tree_model.joblib') 

2. AWS EC2 Instance Setup (using AWS CLI): 

- aws   ec2   run-instances   --image-id   <AMI_ID>  --instance-type   <INSTANCE_TYPE> --key-name 

<KEY_PAIR_NAME> --security-group-ids <SECURITY_GROUP_ID> --subnet-id <SUBNET_ID> 

3. ransfer the Serialized Model to EC2 Instance using SCP: 

-scp -i <PATH_TO_KEY_PAIR_FILE> decision_tree_model.joblib ec2 

user@<EC2_PUBLIC_IP>:~/path/to/destination/ 

4. Connect to the EC2 Instance using SSH: 

- ssh -i <PATH_TO_KEY_PAIR_FILE> ec2-user@<EC2_PUBLIC_IP> 

5. Install Necessary Dependencies and Packages (on EC2 Instance): 

- sudo yum install python3-pip 

- pip3 install scikit-learn joblib 

6. Run the Real-time Prediction Script on EC2 Instance (real_time_prediction.py): 

6.1. Import Libraries on EC2 Instance: 

- from model serialization framework joblib import load 

- import tool 

- import numerical operation entity 

6.2. Load the Pre-trained Model: 

- loaded_model = load('decision_tree_model.joblib') 

6.3. Define the File to Save Captured Packets (in std format): 

- file_path = 'captured_packets.pcap' 
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6.4. Capture Packets on a Specific Interface and Save to the File: 

- capture = LiveCapture(interface='eth0', output_file=file_path) 

- try: 

- capture.sniff(timeout=20) # Capture packets for 20 seconds (adjust timeout) 

- except KeyboardInterrupt: 

- print('Capture stopped by user') 

- capture.close() 

6.5. Open the Captured Pcap File for Reading: 

- cap = FileCapture(file_path) 

6.6. List to Store Extracted Features: 

- packet_features = [] 

6.7. Extract Features from Each Packet in the File: 

- for packet in cap: 

- packet_info = { 

- # Extract features similar to the training phase 

- } 

- packet_features.append(packet_info) 

6.8. Close the Capture File: 

- cap.close() 

6.9. Predict Using the Loaded Model: 

- for packet_info in packet_features: 

- # Convert the packet_info into a format suitable for model prediction 

- # Assuming 'packet_info' contains the extracted features 

- # Format the data into the same format as used during model training 

- features = [ 

- # Format the features similar to the training phase 

- ] 

- # Make predictions using the loaded model 

- prediction = loaded_model.predict([features]) 

- predicted_class = 'anomaly' if prediction[0] == 1 else 'normal' 

- # Print the prediction result 

- print(f"Packet prediction: {predicted_class}") 
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IV. EXPERIMENTAL SETUP 

This research work ADTreal involves the utilization of specific hardware and software components for the 

development, training, testing, and deployment phases. Here's an overview of the hardware and software used: 

Hardware: Local Machine: PC with Windows 11 with good capacity RAM,CPU to handle the 

computational demands of machine learning tasks 

AWS EC2 Instance: to leverage scalable computing resources. S3: for storing datasets or serialized models. 

Hyperparameter Tuning (Optuna): for hyperparameter optimization of the Decision Tree model. 

Model Serialization: Joblib: for serializing the trained Decision Tree model, facilitating its transfer and deployment. 

Software: Programming Languages: 

Python: for machine learning model development, data processing, and scripting. 

Bash Scripting: for automation and orchestration of tasks, particularly during cloud deployment. 

Machine Learning Libraries: 

Scikit-learn: for implementing machine learning models, as well as for model evaluation. Pandas for Data 

Processing and Analysis 

NumPy: for numerical operations on arrays and matrices. Seaborn and Matplotlib: for data visualization and result 

analysis. 

Packet Capture and Feature Extraction: 

PyShark: for live packet capture and feature extraction from network traffic data. 

V. ADTreal PERFORMANCE EVALUATION CRITERIA AND TERMINOLOGY 

For evaluating the performance of the classification model, several metrics are commonly used such as F1 score, 

accuracy, precision, and confusion matrix: 

Confusion Matrix: 

A table that details a classification model's performance is called a confusion matrix. It includes four important 

metrics: 

True Positive (TP): The quantity of positive cases that were accurately forecasted. True Negative (TN): The quantity 

of negative cases that were accurately predicted. 

False Positive (FP): The quantity of cases that are expected to be positive but turn out to be negative (Type I error). 

False Negative (FN): The quantity of cases that are expected to be negative but turn out to be positive (Type II 

error). 

Table 4: Confusion Matrix 

 Predicted Positive Predicted Negative 

Actual Positive True Positive(TP) False Negative(FN) 

Actual Negative False Positive(FP) True Negative(TN) 

 

Accuracy: 

Accuracy measures the overall correctness of the model and is the proportion of cases that were accurately 

predicted to all instances as in Eq.(16) 

Precision: 

(16) 
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Precision measures the accuracy of positive predictions. It is the ratio of correctly predicted positive  instances to 

the total predicted positive instances as in Eq.(17) 

 

17) 

Recall:(Sensitivity or True Positive Rate):         
  
    

18) 

Recall measures the ability of the model to capture all positive instances. It is the ratio of correctly predicted 

positive instances to the total actual positive instances. 

 

F1 Score: 

The F1 score is the harmonic mean of precision and recall. It provides a balance between precision and recall 

           
                      

                 The F1 score is particularly useful when the class distribution is imbalanced. 

(19) 

These metrics help in assessing the performance of a classification model comprehensively. While accuracy gives an 

overall view, precision and recall are especially important in situations where false positives and false negatives 

have different consequences. The F1 score combines precision and recall into a single metric, offering a balanced 

view of a model's performance. 

VI. RESULTS AND DISCUSSIONS 

 

The ―ADTreal:  Decision  Tree-based  real-time network  traffic  anomaly detection with cloud  deployment  for 

enhanced cyber security‖ research work presents a comprehensive study on deploying a decision tree model for 

real-time anomaly detection in network traffic. The results and discussions section provides insights into the 

performance of the proposed model, the significance of real-time intrusion detection, and the promises made 

during the research. 

Performance Comparison of Models: 

The work initially compares three machine learning models namely Logistic Regression, K-Nearest  Neighbors 

(KNN), and Decision Tree for their effectiveness in network traffic anomaly detection. Through rigorous 

experimentation and evaluation on the Kaggle dataset for intrusion detection it is demonstrated  that the Decision 

Tree model consistently outperforms the other models, offering superior accuracy and reliability. This further 

confirms that real time analysis of network traffic using decision tree approach resulted in more accuracy than it 

offered by using non real time decision tree based traffic analysis. 

 

Table 5. Model Validation. 

Model Mean Precision Mean Recall 

KNN 98.65 98.13 

Logistic Regression 91.74 98.87 

Decision Tree-ADTReal 99.51 99.51 

 

As illustrated in Table 5, which outlines the results of model validation, our analysis using Decision Tree approach 

outshines its counterparts with a remarkable Mean Precision and Mean Recall of 99.51%,  indicating its ability to 
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precisely identify anomalies while capturing a high percentage of true positive instances. These validation metrics 

further emphasize the model's robust performance and effectiveness in distinguishing between normal and 

anomalous network traffic. 

Table 6. Model Testing 

Model Precision Recall F1 score Accuracy 

KNN 98% 98% 98% 98% 

Logistic Regression 93% 92% 92% 92% 

Decision Tree 99% 99% 99% 98.95% 

 

Table 6 delves into the specifics of model testing, reaffirming the Decision Tree model's dominance. With 

precision, recall, and F1 score all reaching an impressive 99%, the model exhibits unparalleled accuracy in 

classifying instances. The high accuracy level, coupled with superior precision and recall rates, solidify the Decision 

Tree model's position as the optimal choice for network traffic anomaly detection. 

 

Fig 5. F1 score comparison. Fig 6. ROC Curve. 

Given these substantial advantages and superior performance metrics, the Decision Tree model emerges as the 

preferred candidate for real-time deployment. Its heightened accuracy and reliability, as demonstrated through 

rigorous testing and validation, make it an ideal choice for promptly and accurately identifying anomalies in live 

network traffic. 

In the real-time anomaly detection process using Kali Linux and the trained Decision Tree model, live network 

traffic is captured on a specified network interface, such as 'eth0'. The captured packets are then processed to 

extract relevant features, including protocol type, service, flags, source bytes, destination bytes, and additional 

features. These extracted features are organized into a format suitable for model prediction, considering the same 

format used during the model training phase. 

The Decision Tree model, previously saved using joblib, is loaded for real-time predictions. For each live packet, the 

model predicts whether it belongs to the 'normal' or 'anomaly' class. The prediction is then mapped to class labels, 

and the result is printed, providing immediate insights into the nature of the network traffic. This real-time process 

allows for prompt identification of anomalies in the live network stream, showcasing the model's effectiveness in 

detecting potential security threats as they occur. Figure 7,8,9 represents screenshots of ADTreal Decision tree 

model testing, Packet sniffing and real time packet prediction. 
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Fig 7. ADTreal Decision tree model Testing Fig 8. ADTreal Packet sniffing. 

 

Fig 9. ADTreal Real Time Packet Prediction 

Finally, we successfully deployed the Decision Tree model on AWS EC2 to demonstrate its adaptability and 

scalability in a cloud environment. By serializing the trained model using joblib, launching an EC2 instance, and 

configuring security groups and key pairs, the model is seamlessly transferred to the cloud. Upon deployment, the 

model showcases its real-time anomaly detection capabilities, efficiently analyzing live network traffic. This 

successful cloud deployment underscores the practicality and effectiveness of the proposed solution, making it a 

valuable tool for augmenting the security posture of cloud-based systems. 

VII. CONCLUSION AND FUTURE SCOPE 

The ADTreal method presents an exhaustive exploration of machine learning models for real-time anomaly 

detection in network traffic. Through a comparative analysis three models, the research establishes the superior 

performance of the Decision Tree model in terms of accuracy and reliability for detecting anomalies in network 

traffic. The real time analysis using decision tree approach further confirms the models effectiveness. This approach 

utilizes PyShark for live packet capture, feature extraction, and the execution of the trained Decision Tree model, 

demonstrating its robustness in real-time testing. The successful deployment on AWS EC2 further underscores the 

model's adaptability to cloud-based scenarios, addressing the significance of real-time intrusion detection in 

enhancing network security. 

Future avenues for exploration include enhancing model performance through ensemble methods or deep learning 

architectures, incorporating more diverse datasets, and considering various network scenarios for a more 

generalized model. Further research could explore the integration of anomaly detection models with automated 

response mechanisms and delve into multi-cloud deployments. Adaptive learning techniques to dynamically adjust 

to evolving network patterns present an exciting direction for future investigation. This research sets the stage for 
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continued exploration and advancements in real-time network anomaly detection. 
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