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Artificial Neural Networks (ANNs) offer a highly adaptive and precise approach to tracking the 

Maximum Power Point (MPPT) of wind turbines. Despite their advantages, achieving effective 

generalization with ANNs often requires significant computational resources—especially when 

dealing with large datasets—and depends critically on the careful selection of input and output 

variables to ensure optimal performance. 

In this study, we developed an ANN-based MPPT controller for wind energy conversion systems. 

The proposed network uses wind speed, mechanical power, and turbine rotational speed as input 

variables, while the output is the rotational speed expressed in Per Unit (PU). This PU-based 

representation not only simplifies the training process but also enhances the learning efficiency 

and generalization capability of the network across different wind turbine configurations. 

Simulation results demonstrate that the proposed ANN controller provides accurate and robust 

performance in tracking the maximum power point, highlighting its potential as an effective 

solution for intelligent wind energy management. 

Keywords: ANN, MPPT, wind turbine, Per Unit, Big Data. 

 

1. INTRODUCTION 

Given the increasingly alarming environmental consequences associated with the continued reliance on fossil fuels—

such as greenhouse gas emissions, global warming, and air pollution—the transition toward renewable energy 

sources has emerged not only as a strategic choice but also as an unavoidable necessity. Renewable energy systems 

offer a sustainable alternative by producing electricity without emitting carbon dioxide or other harmful atmospheric 

pollutants. Their utilization significantly contributes to reducing the ecological footprint of energy production and 

supports the global effort to combat climate change. Furthermore, the ongoing development and integration of 

renewable energy technologies into national and international energy portfolios play a pivotal role in facilitating the 

ecological transition, ensuring energy security, and preserving the environment for future generations [1–3]. 

Among the wide array of renewable energy sources, wind energy has gained considerable attention due to its 

abundance, renewability, and inherently eco-friendly characteristics. It presents a clean, efficient, and economically 

viable solution for electricity generation. The harnessing of wind energy involves a conversion chain that transforms 

the kinetic energy of the wind into mechanical energy through the rotation of turbine blades, which is subsequently 

converted into electrical energy by an electric generator. This process, while conceptually straightforward, is subject 

to several technical challenges that must be addressed to optimize energy extraction. 

One of the critical challenges in wind energy systems lies in the inherently nonlinear nature of the mechanical power 

output of wind turbines, which varies with wind speed and turbine characteristics [4]. This nonlinearity necessitates 

the implementation of maximum power point tracking (MPPT) techniques to ensure that the turbine operates at its 

optimal power point under varying wind conditions. Several MPPT algorithms have been developed and applied in 

this context, among which the Perturb and Observe (P&O) [5–13] and Incremental Conductance (INC) [14–21] 
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methods are widely used due to their conceptual simplicity and ease of implementation. However, these traditional 

methods are often accompanied by drawbacks such as oscillations around the maximum power point during steady-

state operation, which can lead to efficiency losses and mechanical stress on system components. 

In light of these limitations, this study explores a more advanced and adaptive solution based on artificial 

intelligence. Specifically, we propose the implementation of an MPPT system that leverages the capabilities of 

artificial neural networks (ANNs) to enhance the efficiency and responsiveness of wind energy conversion systems. 

The ANN-based MPPT controller is designed to process multiple input parameters—including wind speed, 

mechanical power, and turbine rotational speed—and output the optimal rotational speed in per unit (PU) to achieve 

maximum power extraction. 

Through detailed simulations, we demonstrate that the developed neural controller exhibits superior performance 

in terms of robustness, accuracy, and responsiveness compared to conventional MPPT methods. The results confirm 

that the proposed ANN-based MPPT approach is highly effective in maximizing wind energy extraction while 

minimizing steady-state oscillations, thereby contributing to the advancement of intelligent and sustainable wind 

energy systems. 

2. TURBINE MODEL 

The mechanical power extracted by the wind turbine is expressed as follows [22-24]: 

3νρAC
2

1
P pt =             (1) 

Where: 

:  Air density (Kg/m3). 

A: Area swept by the rotor blades (m2). 

ν: Wind speed (m/s). 

Cp: Power coefficient. 

 

The following relation expresses the differential equation of the rotational speed of the turbine [25-26]: 

fΩTT
dt

dΩ
J emm −−=                    (2) 

Where: 

J : Inertia of turbine and generator (Kg.m2). 

f : friction coefficient (N.m.s.rad-1). 

Tm: Electromagnetic torque (N.m).  

Tem: mechanical torque (N.m). 

In this work, we use a three-blade horizontal wind turbine. The curve representing the mechanical power recovered 

from the turbine as a function of the rotational speed, for different wind speeds, is shown in Figure 1. The values of 

the corresponding simulation parameters are presented in Table 1. 
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Figure 1.  Mechanical power/speed characteristic. 

 

 Table 1: Wind turbine parameters 
Parameters Value 

  

Rated power  

Rated wind speed                         

Number of  blades 

Area swept by the rotor blades 

 750 W 

  9.5 m/s   

  3 

  4.5 m2 

   

     

 

 

  

3. ARTIFICIAL NEURON MODEL 

Artificial neural networks (ANNs) are computational models inspired by the functioning of biological neurons 

[127-28]. They are widely used in artificial intelligence and machine learning to solve complex problems such as 

image recognition, trend prediction, and natural language processing.  

An artificial neural network consists of a set of neurons, where each neuron (see Figure 2) receives a variable number 

of inputs from neurons located upstream. Each of these inputs is associated with a weight W, which represents the 

strength of the synaptic connection between the neurons [29-39]. 
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 Figure 2. Artificial Neuron model. 

The activation function determines whether a neuron should be activated. Without it, the network would behave like 

a simple linear model. 

The connections between neurons, characterized by their respective weights, play a crucial role in the learning 

process and the overall performance of the network. By adjusting these weights using learning algorithms such as 

backpropagation [40-42], the neural network can optimize its ability to solve complex problems like image 

recognition, machine translation, or data prediction.   

In summary, artificial neural networks mimic the functioning of the human brain, enabling the processing and 

analysis of large amounts of data with remarkable efficiency. 

4. PROPOSED ARTIFICIAL NEURAL NETWORK   

The choice of inputs and outputs in an artificial neural network (ANN) plays a crucial role in its efficiency [43-46], 

performance, and generalization capability. Poor selection can lead to slow convergence and insufficient accuracy.   

In this work, to optimize the learning of the ANN, we developed a neural network (see Fig. 3) using wind speed, 

mechanical power P, and rotational speed Ω of the turbine as input variables. The output variable of the model is 

the rotational speed in per unit (PU), defined as the ratio of the measured rotational speed to the maximum 

rotational speed, as given by the following equation: 

Max

mes
PU

Ω

Ω
Ω =                       (3) 

This ratio is between 0 and 1, thus facilitating analysis and use in control models or machine learning [47-52]. 
 

 

 

 

 

 

 

 

Figure 3. Developed neural network model. 
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From the rotational speed expressed in per unit, the optimal rotational speed can be calculated using the following 

equation [40-42]: 

max
0.6

op


= 3                               (4) 

Figure 4 below illustrates the neural network used: 

 

Figure 4. The architecture of the proposed neural network. 

 

Figure 5 illustrates the mean squared error between the outputs of the artificial neural network (ANN) and their 

target values as a function of the number of iterations (epochs). The final error obtained is 6.6403*10-7. 

 

Figure 5. Evolution of the mean squared error during training. 

For a scenario involving rapid variations in wind speed (as illustrated in Figure 6), Figure 7 presents the rotational 

speed response of the wind turbine optimized by the proposed neural network-based MPPT controller. This response 

is compared against the optimal rotational speed curve derived from the turbine’s power characteristic as a function 
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of its rotational speed. Furthermore, Figure 8 depicts the corresponding variation in the turbine’s mechanical power 

when regulated by the MPPT controller, highlighting its capability to ensure efficient energy extraction under 

dynamic wind conditions. 

 

Figure 6. Wind speed 

 

Figure 7. Rotor speed  
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Figure 8.  The mechanical power of the wind turbine 

The analysis of the simulation results, as illustrated in the preceding figures, clearly highlights the robustness and 

effectiveness of the proposed neural network-based MPPT controller under dynamic wind conditions. One of the 

key aspects contributing to this performance is the strategic use of Per Unit (PU) normalization in the preparation 

of input and output data for the neural network. This normalization technique plays a crucial role in improving the 

learning efficiency of the ANN by scaling input variables to a consistent range, typically between 0 and 1. As a result, 

it eliminates disparities in magnitude between variables, which often hinder the training process in conventional 

neural networks. This uniform scaling facilitates faster convergence during training, reduces the likelihood of local 

minima entrapment, and leads to more stable and accurate model optimization. 

In addition to accelerating the training process, PU normalization significantly enhances the generalization 

capability of the neural model. By removing the dimensional dependencies tied to specific turbine parameters and 

absolute values, the trained ANN becomes more adaptable across various wind turbine designs and system 

configurations. This allows the developed controller to maintain optimal performance even when deployed on 

turbines with different ratings or characteristics, without requiring retraining or extensive model adjustments. Such 

adaptability is particularly advantageous in real-world applications, where turbine models and operating conditions 

vary widely. 

Furthermore, the use of PU-based data mitigates the risk of the ANN overfitting to the specificities of raw input data. 

Raw data often contain system-specific characteristics or anomalies that do not generalize well. PU normalization 

abstracts these specifics, allowing the ANN to learn the underlying physical relationships rather than memorizing 

details irrelevant to broader application contexts. Consequently, the dependency on massive datasets—commonly 

referred to as Big Data—is significantly reduced. Unlike traditional approaches that may require vast quantities of 

diverse training data to ensure reliable generalization, the proposed method achieves high accuracy and robustness 

using a relatively smaller and more compact dataset. This reduction in data requirements translates to lower 

computational load and reduced storage demands, which is particularly important for embedded systems and real-

time applications where resources are limited. 

Overall, the integration of PU-based data in ANN training presents a multifaceted advantage. It not only improves 

model training dynamics and performance but also ensures scalability, transferability, and computational efficiency. 

These benefits collectively position the proposed ANN-based MPPT controller as a viable and intelligent solution for 

modern wind energy systems, supporting the advancement of clean and efficient renewable energy technologies. 



Journal of Information Systems Engineering and Management 

2025, 10(4) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1329 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

5. CONCLUSION 

In this study, we have developed and implemented a maximum power point tracking (MPPT) controller based on 

artificial neural network (ANN) techniques, specifically designed to predict the rotational speed in per unit (PU) of 

a wind turbine. This predicted speed is then used to determine the optimal operating point, thereby maximizing the 

extraction of available wind energy under varying wind conditions. 

The simulation results confirm the effectiveness and robustness of the proposed ANN-based controller. Compared 

to conventional MPPT methods, the neural controller significantly enhances tracking performance, particularly by 

reducing oscillations around the maximum power point and ensuring faster dynamic response. Moreover, the use 

of per unit (PU) normalization improves the learning efficiency of the neural network, making it more suitable for 

generalization across various wind turbine models and system configurations. 

Overall, the proposed approach offers a promising solution for intelligent control in wind energy systems. Its 

adaptability, predictive capability, and improved performance make it a valuable contribution to the ongoing 

development of more efficient and resilient renewable energy technologies. Future work may involve experimental 

validation and real-time implementation of the proposed controller on physical wind energy systems. 
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