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Introduction: The emotion-based facial expression analysis combines both rule-based and 

data-driven approaches to detect and interpret human emotions from facial features. This 

method enhances emotion recognition in real-time applications like human-computer 

interaction and surveillance. Traditional facial expression systems rely heavily on handcrafted 

features, which limits flexibility. They are often sensitive to environmental noise and fail in 

dynamic or spontaneous expressions. 

Objectives: The proposed system presents a hybrid approach for emotion-based facial 

expression recognition, integrating advanced techniques at multiple stages of the processing 

pipeline. 

Methods: Initially, Discrete Wavelet Transform (DWT) is employed for pre-processing, 

enhancing feature extraction by decomposing facial images into multiple frequency components. 

This is followed by Facial Landmarks-Based Segmentation, which isolates critical facial regions 

that are most indicative of emotional expression. For feature selection, the Whale Optimization 

Algorithm (WOA) is utilized to identify the most relevant features, thereby reducing 

dimensionality and enhancing the model’s efficiency. Classification is performed using a novel 

Hyper Capsule Generative Adversarial Network (HCGAN-G), which combines the 

representational strength of capsule networks with the generative capabilities of GANS to 

improve recognition performance, especially in complex and subtle emotional states.  

Results: The effectiveness of the system is rigorously evaluated using a comprehensive set of 

performance metrics, including accuracy 95.4%, sensitivity 94.2%, specificity 96.3%, precision 

93.5%, root mean square error 0.25, area under the curve 0.97, and F1-score 0.89, demonstrating 

its robustness and reliability in emotion recognition tasks.  

Conclusions: The proposed hybrid emotion-based facial expression recognition system 

significantly improves on traditional methods by combining rule-based and data-driven 

approaches. This architecture integrates the hierarchical spatial feature learning capabilities of 

capsule networks with the generative abilities of GANs. As a result, the system can accurately 

classify even subtle and complex emotional expressions. 

Keywords: Discrete Wavelet Transform, Hyper Capsule Generative Adversarial Network 

(HCGAN-G), Facial Landmarks-Based Segmentation, Whale Optimization Algorithm. 

 

INTRODUCTION 

Recent advancements in deep learning have fostered the development of various innovative models for emotion-based 

facial expression recognition, particularly in medical and affective computing domains. For instance, novel [1] While the 
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model demonstrated potential for clinical application, its effectiveness was constrained by the limited volume and quality 

of existing emotional expression datasets. To address challenges in facial recognition, [2] introduced the Frequency 

Neural Network, which utilized frequency-based rather than spatial analysis. This method improved accuracy in diverse 

facial conditions but suffered from high sensitivity to image disturbances and required intensive image preprocessing. 

In an effort to enhance recognition accuracy in non-frontal views, [3] developed a Pose-Guided Face Alignment model 

with Discriminative Features. Although this approach improved pose-invariant expression recognition, its performance 

was hindered by reliance on precise pose estimation, which remains difficult in dynamic environments. To overcome the 

limitations of handcrafted features, [4] Despite its success in feature learning, the model’s performance diminished in 

low-light settings and with occluded faces due to inadequate data augmentation strategies. Lastly, [5] employed Deep 

Metric Learning with Synthetic Images (DML-SI) to reduce identity bias in facial emotion recognition. However, the 

synthetic data introduced a disconnect from real-world domain characteristics, limiting its practical effectiveness in 

reducing misclassification rates. 

 OBJECTIVES 

To develop a robust and accurate hybrid system for emotion-based facial expression recognition by integrating both rule-

based and data-driven techniques. 

To enhance feature extraction and classification accuracy through advanced preprocessing, segmentation, feature 

selection, and deep learning methods. 

To evaluate the proposed system using comprehensive performance metrics to ensure its effectiveness in real-world 

applications such as human-computer interaction and surveillance. 

CONTRIBUTION OF WORK  

Hybrid Approach Design Introduced a novel hybrid architecture that combines Discrete Wavelet Transform (DWT), 

Facial Landmarks-Based Segmentation, Whale Optimization Algorithm (WOA), and a custom deep learning model for 

effective emotion recognition. 

Efficient Preprocessing and Segmentation Employed DWT to improve feature extraction by capturing key frequency 

components, and utilized facial landmark detection to isolate regions most relevant to emotional expression. 

 Optimized Feature Selection Implemented WOA to select the most significant features, thereby minimizing redundancy, 

reducing dimensionality, and enhancing model efficiency. 

 Advanced Classification Model Developed the Hyper Capsule Generative Adversarial Network (HCGAN-G), integrating 

the spatial awareness of capsule networks and the generative strength of GANs, enabling superior recognition of subtle 

and complex emotions. 

The remaining portion of the document is divided into significant sections, which are described as follows: Section II 

examines the current research efforts in Hybrid Emotion Based Facial Expression used by different authors. The 

workflow of the suggested approach is explained in Section III and consists of feature selection, Segmentation, pre-

processing, and classification models. Section IV presents the findings analysis and performance data. Section V presents 

the conclusion. 

LITERATURE SURVEY 

The authors in [6] developed Identity-Aware Contrastive Knowledge Distillation (IA-CKD) for training systems to excel 

at attribute recognition while enhancing generalization capabilities. The deployment of these models became 

complicated because their heightened complexity and computational requirements made them challenging to 

implement.  
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The authors in [7] demonstrated Joint DL for Facial Expression Synthesis and Recognition (JDL-FESR) to achieve 

combined expression recognition and synthesis through a unified network. The added dual functionality reduced 

learning time, but the process demanded performance compromises between generation and recognition abilities. The 

authors of [8] implemented Zoning-based DL (ZDL) for localized feature extraction through facial region division. The 

method showed better local pattern detection, but it failed to integrate global features, which made holistic expression 

recognition inefficient.  

The author in [9] presented Subtle Facial Action Recognition (SFAR) for detecting driver yawning through the analysis 

of minor facial movements to maintain driver alertness. The research's specific detection capabilities were accurate for 

yawning, but they rendered the system inadequate for extensive face recognition work. In [10], an Equilibrium Optimizer 

and a Hybrid DL Model (EO-HDL) were designed to achieve superior emotion recognition in challenging environments. 

The excessive computational requirements of the optimization solution demanded by the system made real-time usage 

impossible. 

Table 1. Survey of various DL methods based on Facial Detection 

Author/Year Used Methodology Dataset Performance 

Metrics 

Drawbacks 

C. Liu et al., 

(2021) 

Spatial Attention 

Convolutional Neural 

Network and Long 

Short-term Memory 

networks with 

Attention mechanism  

FER2013, 

CK+, 

JAFFE 

Accuracy = 

95.2% 

The algorithm achieves 

reduced performance when 

operating in environments not 

managed by humans because 

of both obstruction and 

unforeseen changes in lighting 

conditions. 

N. Yu et al., 

(2020) 

Partial Image and 

Deep Metric Learning 

Method  

CK+, Oulu-

CASIA, 

MMI 

Accuracy = 

94.71% 

Limited generalization due to 

overfitting on partial features. 

U. Nawaz et 

al., (2025) 

Transformer 

approach 

FER2013, 

CK+, 

AffectNet, 

RAF-DB, 

and AFEW 

Accuracy = 

92.83% 

The system operates at high 

processing costs while 

experiencing delays on real-

time equipment. 

S. Hossain et 

al., (2024) 

Deep Quantum CNN 

(DQCNN) 

Karolinska-

directed 

emotional 

faces, FER-

2013 

Accuracy = 

91.2% 

Notable hardware limitations 

prevent quantum models from 

scaling up, as they require 

advanced simulations. 

B. Fang et al., 

(2023) 

Silhouette 

coefficient-based 

contrast clustering 

algorithm 

RAF-DB, 

FERPlus 

and 

AffectNet 

Accuracy = 

89.65% 

The proposed method 

produces noise that affects 

datasets with high degrees of 

imbalance. 

V. S. Bhati et 

al., (2025) 

Generalized Zero-

Shot CNN  

FER2013, 

AffectNet, 

RAF-DB, 

CK+, 

Accuracy = 

88.34% 

The GZS-ConvNet encounters 

difficulties when processing 

unknown class variations 
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KDEF, and 

JAFEE 

along with unbalanced class 

distribution. 

J. Wang et 

al., (2022) 

Resnet Casia 

Webb-Face 

Accuracy = 

93.56% 

The system specializes for 

genetic syndromes but does 

not perform well for general 

FER applications. 

R. 

Wadhawan et 

al., (2023) 

Part-based ensemble 

transfer learning 

CK+ and 

JAFFE 

Accuracy = 

96.18% 

Scalability remains limited 

because the proposed method 

demands time-consuming 

landmark annotations. 

C. Shi et al., 

(2021) 

Multiple Branch 

Cross-Connected 

CNN (MBCC-CNN) 

Fer2013, 

CK+, FER+ 

and RAF 

Accuracy = 

95.43% 

Advanced design choices make 

the system hard to calibrate 

because adjusting parameters 

becomes challenging. 

H. Zhang et 

al., (2020) 

Deep Neural Network 

(DNN) 

DEAP Accuracy = 

86.42% 

The implementation of EEG 

data needs specialized 

hardware components in 

addition to user compliance 

for integration protocols. 

 

The author [21] introduced a multimodal analysis that fused visible images with Infrared and Multispectral images 

through Early and Late Fusion of DL Models. Expressive data capture was enhanced under diverse situations using this 

technique yet scalability problems arose because it required more powerful computations alongside specialized hardware 

for multispectral information acquisition.  

The authors in [22] developed Learning Transferable Sparse Representations to address domain adaptation problems in 

cross-corpus scenarios by training emotion features that are transferable across multiple datasets. Although it decreased 

dataset bias, the approach failed to be consistent because it reacted to both noise and changing data distributions in real-

world applications. The model Phase Space Reconstruction Driven Spatio-Temporal Feature Learning by [23] derived 

spatial as well as temporal patterns from facial video sequences to achieve improved detection of evolving expressions. 

With its ability to process video sequences, the model relied on large training datasets and underwent extended training 

periods due to its sophisticated feature processing system.  

In [24] established Cross-Dataset Adaptation, which enabled unbiased FER in the wild through improved generalization 

between different datasets. This assessment method enhanced real-world tasks, but it needed substantial pre-training 

quality and large-scale domain matching between source and target datasets, while remaining difficult to deploy. The 

author developed LQGDNet, which integrates features to recognize depression-related facial expressions through a 

combination of local and global features [25]. LQGDNet achieved excellent results in emotion-specific assessments for 

depression recognition. Yet, its performance remained restricted to depression-based tasks since it did not work across 

a broad spectrum of facial emotional displays.   

PROPOSED METHODOLOGY 

In order to efficiently analyze and understand human emotions in real-time applications including surveillance, smart 

environments, and human-computer interaction, the suggested emotion-based facial expression recognition system 
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combines rule-based and data-driven methodologies. The system uses sophisticated signal processing, feature selection, 

and classification algorithms to get beyond the drawbacks of conventional approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Proposed Methodology Diagram 

The diagram in Figure 1 illustrates the proposed methodology for an emotion-based facial expression recognition system, 

which integrates both rule-based and data-driven techniques to enhance recognition performance in real-time 

environments. The process begins with the input facial image, which undergoes preprocessing using the Discrete Wavelet 

Transform. This step improves the quality of the image and enhances feature extraction by decomposing the image into 

various frequency sub bands. The segmented facial regions are then passed to the feature selection module, where the 

Whale Optimization Algorithm identifies and retains the most relevant features. This step effectively reduces 

dimensionality and improves computational efficiency without compromising recognition accuracy. The selected 

features are then fed into the classification module, which uses a Hyper Capsule Generative Adversarial Network.  

  PRE-PROCESSING: DISCRETE WAVELET TRANSFORM  

The DWT is employed as a robust pre-processing technique for hybrid emotion-based facial expression recognition. DWT 

decomposes the input facial image into multiple frequency sub-bands, enabling the separation of fine and coarse features 

such as contours, textures, and subtle muscle movements that are crucial for detecting complex emotions. This method 

effectively captures both spatial and frequency-domain information, enhancing the representation of facial expressions 

while reducing noise and irrelevant details. By analyzing horizontal, vertical, and diagonal components at different 

resolution levels, DWT facilitates the extraction of prominent facial landmarks, such as the eyebrows, eyes, nose, and 

mouth areas, used for emotional feature analysis.  

The equation for the DWT is given by: 

𝐹(𝑥, 𝑦) = ∑ ∑ 𝑔(𝑟, 𝑠) ∗ 𝑒^(−𝑗2𝜋(
𝑥𝑟

𝑀
+

𝑦𝑠

𝑁
)                                                                            (1) 

Here, F(x, y) refers to the wavelet-transformed coefficients that represent localized frequency content at various scales 

and orientations, while g(r, s) denotes the original facial image in the spatial domain. The indices (x, y) correspond to 

spatial positions in the transformed sub-bands, and M and N are the dimensions of the image. Unlike the global nature 
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of the DWT offers spatial and frequency localization, enabling the model to isolate and analyze subtle facial movements 

such as eyebrow twitches or mouth contour changes that signify complex or hybrid emotions. 

This multi-resolution analysis supports effective facial by isolating emotionally relevant details such as furrowed brows, 

eye wrinkles, or lip curvature. Therefore, the application of DWT in this framework serves as a refined cross-domain 

approach, mapping spatial facial patterns into frequency sub-bands for more accurate and robust hybrid emotion 

classification, as outlined in Equation (2) and (3). 

𝑄(𝑒, 𝑓) = ∑ ∑ ℎ(𝑎, 𝑏)𝑁−1
𝑏=0

𝑀−1
𝑎=1 𝑒^(−𝑦2𝜋(

𝑥𝑎

𝑀
+

𝑦𝑏

𝑀
)                                                                    (2) 

In this framework, the spatial-domain image h (a, b) is transformed using wavelet basis functions rather than the global 

exponential terms used in the Fourier domain. While the exponential term in the Fourier Transform serves as a global 

basis for computing each frequency component Q (e, f), the DWT applies localized wavelet filters that capture both spatial 

and frequency information. Two fundamental properties of wavelets scale and shift enable the Discrete Wavelet 

Transform (DWT) to analyze facial features at multiple resolutions and positions. The wavelet coefficients 𝐶𝑗,𝑘and the 

associated scaling function ∅𝑗,𝑘(𝑡) can be computed to represent localized changes in facial structure. These coefficients 

are crucial for identifying emotional features such as furrowing of the brow, eye squinting, or asymmetric lip movements.  

 ∅𝑗,𝑘(𝑡) = 2
𝑗

2∅(2𝑗𝑡 − 𝑘)                                                                                                            (3) 

 In hybrid emotion-based facial expression recognition, the mother scaling function, denoted as ∅𝑗,𝑘, plays a 

foundational role in the Discrete Wavelet Transform (DWT). This function governs the scaling behavior of the wavelet 

and serves as the basis for multi-resolution analysis of facial features. The dilatation parameter j controls the scale of the 

wave, allowing the system to zoom in on fine details or capture broader structural features across the face.   

FACIAL LANDMARKS-BASED SEGMENTATION 

After the pre-processing stage, the filter images segmented using the Facial Landmarks-Based Segmentation  

Although typical pre-smoothing filters are effective in reducing noise and irregular features, they often lead to a loss of 

contour edge information. As a result, the region contour may shift positional in the reconstructed image, altering the 

original structure. This change occurs even though the smoothed image may appear visually appealing. Morphological 

reconstruction is a technique used to restore the shape and connectivity of regions in an image based on a marker and 

mask approach, helping to preserve meaningful structural details. 

 ∅𝑗,𝑘(𝑡) + 1 = (ℎ𝑘 + 𝑠𝑒) ∩ 𝑓                                                                                                          (4) 

 Where: ℎ𝑘
𝑠𝑒𝑒𝑟𝑒 (𝑔, 𝑓) denote the result of the morphological reconstruction process, where g, where f is the 

original image as a mask and se is the structural element that makes the marker image swell; ℎ𝑘 is the final iteration's 

outcome image, while h is the marker image g's first iteration. The final iteration of equation (4) occurs when  ∅𝑗,𝑘(𝑡) +

1 Morphological closed reconstruction, like morphological open reconstruction, restores the target edge completely while 

excluding texture features smaller than structural elements.  

 The process continues until the reconstruction converges, meaning no further changes occur in the image across 

iterations. Additionally, it maintains the reconstructed image's outlines the definition of morphological restoration is: 

𝑀𝑛+1 = (𝑀𝑛 ⊕ 𝑆𝑡𝐸𝑙)⋂𝑥,                                                                                                                 (5) 

 Where is the result of the n-th iteration. 𝑆𝑡𝐸𝑙 Is the strutting element. X is the mask or constraint image. 

Additionally, initial and final restorative actions in morphological reconstruction are defined by Equation (6) 

𝐺𝑆𝑡𝐸𝑙
𝑢𝑣 = 𝐼𝑆𝑡𝐸𝑙

𝑢𝑣 ⌊𝐹𝑆𝑡𝐸𝑙
𝑢𝑣 (𝑥), 𝑥⌋                                                                                                                   (6) 
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 Where 𝐼𝑆𝑡𝐸𝑙
𝑢𝑣 (x) is the initial action restoration and 𝐹𝑆𝑡𝐸𝑙

𝑢𝑣 (𝑥) is the final action restoration. By combining these 

morphological operations with facial landmarks-based segmentation, the method ensures precise localization of facial 

features while minimizing noise and preserving structural boundaries essential for accurate emotion recognition. 

 FEATURE SELECTION: WHALE OPTIMIZATION ALGORITHM (WOA) 

 This method allows for more accurate interpretation by analyzing facial expressions using elements that reflect 

basic and complex emotions.  To recognize complicated emotional states, facial landmarks and emotional signals are 

recorded and processed in certain ways.  After more investigation, researchers have shown that this behavior may be 

modelled to improve recognition systems using multi-modal feature extraction, emotion fusion, and adaptive learning 

across various facial datasets. 

 The currently most accurate or representative emotional expression is considered the reference or target 

expression. Each facial instance adjusts its representation by aligning toward this target expression, while other instances 

in the dataset adapt toward the optimal feature configuration. This alignment and feature enhancement process is 

achieved by updating their feature vectors using Equation (7) and (8) 

𝐺 = |𝐹. 𝑋 ∗ (𝑆) − 𝑋(𝑆)|                                                                                                            (7) 

𝑋(𝑆 + 1) = 𝑋 ∗ (𝑆) − 𝐴. 𝐺                                                                                                       (8) 

Where, S is the current iteration number; X(s) is the current feature vector of the facial expression instance; X* represents 

the feature vector of the target or reference emotional expression. The coefficient vectors A and F are defined as follows: 

𝐴 = 2𝑏. 𝑟1 − 𝑏                                                                                                                            (9) 

𝐶 = 2. 𝑟2                                                                                                                                     (10) 

Where an is the convergence factor, which progressively drops from 2 to 0 as the number 

Of iterations rises; 𝑟1 and 𝑟2   are    random values in the interval [0,1]                                                                                                              

𝑏 = 2 −
2𝑠

𝑆𝑚𝑎𝑥
                                                                                                                           (11) 

Where S is the current iteration number and S is the maximum number of iterations. In the context of hybrid emotion-

based facial expression recognition, two distinct strategies are employed: the Feature Refinement Mechanism and the 

Spiral Expression Alignment method. Its mathematical formulation models this non-linear, spiral-like adjustment 

process as follows: 

𝑌(𝑠 + 1)𝐷. 𝑒𝑏𝑙 . cos(2𝜋𝑙) + 𝑋 ∗ (𝑠)                                                                                    (12) 

Where D = |Y*(t) − X (t)| represents the distance between the current facial expression feature vector and the target 

(reference) hybrid emotion vector. Here, b is a constant used to define the logarithmic spiral shape, and l is a random 

number in the range [−1, 1]. The mathematical model for this random feature exploration can be represented as follows:  

𝐸 = |𝐶. 𝑋𝑟𝑎𝑛𝑑(𝑠) − 𝑋(𝑠)|                                                                                                         (13) 

𝑋(𝑠 + 1) =  𝑋𝑟𝑎𝑛𝑑(𝑠) − 𝐴. 𝐷                                                                                                    (14) 

 Where 𝑋𝑟𝑎𝑛𝑑(𝑠) represents the feature vector of a randomly selected facial expression instance from the dataset. 

This mechanism introduces variability by comparing and adapting features based on randomly chosen expressions, 

thereby enhancing the diversity and generalization capability of the hybrid emotion recognition process. 

CLASSIFICATION: A HYPER CAPSULE GENERATIVE ADVERSARIAL NETWORK GAN (HCGANG) 

 The Hyper Capsule Generative Adversarial Network is a hybrid deep learning framework designed for accurate 

classification of complex and blended facial emotions. These capsules are capable of capturing part-whole relationships, 
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making them ideal for recognizing subtle emotional cues. In parallel, the generative adversarial component introduces a 

discriminative-learning phase where a generator produces emotion-rich facial representations while a discriminator 

refines the classification boundaries through adversarial training. 

In the Hyper Capsule Generative Adversarial Network model for hybrid emotion-based facial expression classification, 

the generator is designed to minimize a combination of data-fidelity and adversarial loss functions. The data-fidelity term 

ensures that the generated facial expression features closely resemble the real emotional data in terms of semantic and 

spatial accuracy. This alignment helps in preserving crucial facial cues necessary for distinguishing between subtle and 

compound emotions. The data-fidelity objective is formally represented by Equation (15) 

𝐿𝑑𝑎𝑡𝑎 = 𝑋(𝑠 + 1) ∑ ||𝐺(𝑥𝑖
𝑁
𝑖=1 ) − 𝑦𝑖||1                                                                               (15) 

Where 𝐿𝑑𝑎𝑡𝑎represents the data-fidelity loss function used in the HCGANG model. The summation symbol ∑ denotes the 

aggregation over all instances from 1 to N, where N is the total number of facial expression samples in the dataset. 

𝐺(𝑥𝑖) Denotes the output of the generative component of the HCGANG, which attempts to reconstruct or generate the 

emotional representation corresponding to the input facial image (𝑥𝑖) the variable 𝑦𝑖  represents the ground truth 

emotional label or the true expression features associated with(𝑥𝑖). The term ||𝐺(𝑥𝑖) − 𝑦𝑖||1is the L1 norm, which 

calculates the absolute difference between the generated and true emotional data.  

It ensures that the reconstructed hybrid emotion representations preserve the subtle characteristics of true facial 

expressions. Meanwhile, the adversarial loss component, which encourages the generator to produce emotionally 

realistic and indistinguishable outputs, is formulated by Equation (16) as: 

𝐿𝑎𝑑𝑣 = − ∑ log(𝐺((𝑥𝑖)))𝑁
𝑖=1                                                                              (16) 

Where 𝐿𝑎𝑑𝑣is the adversarial loss used to train the generator within the HCGANH model. This loss encourages the 

generator to produce hybrid emotion facial expressions that are indistinguishable from real ones. Here, N represents the 

number of facial expression samples in the dataset being summed over. The function G denotes the generator, which 

maps each input facial image 𝑥𝑖to a synthesized hybrid emotion representation. 

RESULT & DISCUSSION 

 The result Hyper Capsule Generative Adversarial Network (HCGANG) classification framework presents a robust 

solution for addressing the complexities involved in hybrid emotion-based facial expression recognition. By leveraging 

Discrete Wavelet Transform (DWT) as a preprocessing step, the system effectively enhances the fine-grained details of 

facial images, allowing for more precise texture and edge preservation. This segmentation ensures that only the most 

relevant parts of the face contribute to the classification process. To further refine the model, the Whale Optimization 

Algorithm (WOA) is utilized for optimal feature selection, reducing dimensionality while retaining the most 

discriminative features. The integration of these components within the HCGANG architecture allows for superior 

learning and generation capabilities, particularly in capturing subtle emotional cues. The system’s efficacy is validated 

through comprehensive performance metrics, including accuracy, sensitivity, and specificity, Precision, Root Mean 

Square (RMSE), Area under the Curve (AUC), and F1-score. 

DATASET DESCRIPTION  

Several emotion-based facial expression datasets are commonly used in research and machine learning. These 

include FER2013, AffectNet, and the Extended Cohn-Kanade Dataset (CK+), among others. These datasets provide a 

range of facial images labeled with specific emotions, enabling the development and evaluation of emotion recognition 

models. Figure 2 Presents of fear expressions for the two settings 
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Fig. 2. Examples of fear expressions for the two settings 

PERFORMANCE METRICS  

Accuracy 

Accuracy is achieved when the computational model correctly identifies the emotional states as intended, based on the 

percentage of true positive outcomes within the selected population. In this study, accuracy was realized when the 

algorithm’s classification of facial expressions matched the emotional labels determined by human experts. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                              (17) 

Sensitivity 

It is particularly important in emotion recognition systems, where failing to detect subtle or complex emotions can 

significantly impact the accuracy and effectiveness of affective computing applications. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                          (18) 

Specificity 

High specificity is crucial in emotion recognition to prevent false positives, such as mistakenly classifying a neutral or 

different emotional expression as a targeted emotion, which could compromise the system’s reliability in real-world 

applications. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                                       (19) 

Root Mean Squared Error 

 In the context of hybrid emotion-based facial expression recognition, RMSE can be employed to evaluate the 

discrepancy between the model’s predicted confidence scores and the actual labeled emotions. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖)2𝑛

𝑖=1                                                                                                      (20) 

F1-score 

 The F1-score is especially valuable when there is an imbalance in the distribution of emotional classes, such as 

underrepresented or subtle emotions. It provides a balanced measure by combining recall the ability to correctly identify 

all instances of a specific emotion and precision the accuracy of those predicted emotional instances. 

𝐹𝐼 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
Precision×Recall

Precision+ Recall
                                                                                          (21) 

Area under the Curve (AUC)  



Journal of Information Systems Engineering and Management 
2025, 10(51s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 934 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

 The capacity of a classification model to differentiate between several classes in this example, emotional states 

is measured by the area under the Receiver Operating Characteristic (ROC) Curve. It shows the likelihood that a 

randomly selected positive instance would be ranked higher by the model than a randomly selected negative case. 

Precision 

 In the context of hybrid emotion-based facial expression recognition, it indicates how accurate the model is when 

it claims that a particular emotion is present. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                         (22) 

COMPARISON RESULTS  

The proposed Hyper Capsule Generative Adversarial Network (HCGAN) model was evaluated. The system’s efficacy is 

validated through comprehensive performance metrics, including accuracy, sensitivity, and specificity, Precision, Root 

Mean Square (RMSE), Area under the Curve (AUC), and F1-score. 

Table 2. Performance Metrics Comparison 

Metrics  CNN KNN Random 

Forest 

SVM HCGANG 

Accuracy  89.2% 88.7% 92.5% 90.1% 95.4% 

Sensitivity 87.6% 85.4% 91.3% 88.7% 94.2% 

Specificity 90.5% 89.9% 93.8% 91.4% 96.3% 

Precision 88.0% 86.8% 91.0% 89.6% 93.5% 

RMSE 0.38 0.40 0.32 0.35 0.25 

AUC 0.89 0.88 0.93 0.91 0.97 

F1-Score 0.85 0.87 0.92 0.87 0.89 

 

Table 2 compares the performance metrics of the HCGANG framework against four traditional methods: CNN, KNN, 

Random Forest, and SVM. HCGANG consistently outperforms the traditional methods in most metrics, achieving the 

highest accuracy (95.4%), sensitivity (94.2%), and specificity (96.3%), demonstrating superior classification of emotional 

expressions. It also leads in precision (93.5%), AUC (0.97), and, highlighting its ability to balance correct positive 

predictions and minimize errors. Furthermore, HCGANG shows the lowest RMSE (0.25), indicating more accurate 

predictions compared to the other models. 
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Fig. 3. Evaluation of accuracy for CNN, KNN, RF, SVM and Proposed HCGANG 

The accuracy evaluation of many machine learning models, including CNN, KNN, RF, SVM, and the suggested Hybrid 

Conditional Generative Adversarial Network, is displayed in Figure 1. The accuracy statistic calculates each model's 

proportion of accurate predictions during testing. With an accuracy of 95.4%, the findings show that the suggested 

HCGANG model performs better than the other models. While Random Forest attains the greatest accuracy among the 

conventional models with 92.5%, KNN performs somewhat worse than CNN at 88.7%. SVM comes in second with a 

90.1% accuracy rate. 

 

Fig. 4. Evaluation of Sensitivity 

Figure 2 illustrates the evaluation of Sensitivity metrics for various machine learning models: CNN, KNN, RF, SVM, and 

the proposed Hybrid Conditional Generative Adversarial Network. Sensitivity, also known as recall or true positive rate, 

measures the model's ability to correctly identify positive instances. From the figure, it is evident that the HCGANH 

model achieves the highest sensitivity score at 94.2%, demonstrating its superior ability to detect true positive cases 

compared to the other models. CNN follows closely with a sensitivity of 87.6%, showing good performance in identifying 

positive instances. KNN performs slightly lower with a sensitivity of 85.4%, while Random Forest achieves 91.3%, 
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highlighting its strong ability to correctly classify positives. SVM has a sensitivity of 88.7%, performing reasonably well 

but still not matching the HCGANG model. 

 

 Fig. 5. Evaluation of Specificity 

Figure 3 shows the evaluation of specificity measures for CNN, KNN, RF, SVM, and the proposed Hybrid 

Conditional Generative Adversarial Network, among other machine learning models. With a specificity of 96.3%, the 

suggested HCGANH model performs exceptionally well in accurately categorizing negative instances, according to the 

data. When false positives need to be reduced, this is very crucial. Additionally, Random Forest has great performance, 

with a specificity of 93.8%, followed by SVM at 91.4%. KNN has a little lower specificity of 89.9% than CNN, which 

reaches 90.5%. 

 

 Fig. 6. Evaluation of Precision 

Figure 4 presents the evaluation of Precision for various machine learning models: CNN, KNN, RF, SVM, and 

the proposed Hybrid Conditional Generative Adversarial Network. As shown in the results, the HCGANG model achieves 

the highest precision at 93.5%, indicating its superior ability to make accurate positive predictions with minimal false 

alarms. This is a significant advantage in applications where the cost of false positives is high. Random Forest also 

performs well, achieving a precision of 91.0%, followed by SVM at 89.6%. CNN records a precision of 88.0%, while KNN 

slightly trails behind with 86.8%. 
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Fig.  7. Evaluation of RMSE 

The assessment of the suggested Hybrid Conditional Generative Adversarial Network is displayed in Figure 5. A 

popular statistic for comparing expected and actual values is root mean square error (RMSE), where lower values suggest 

higher prediction accuracy. Out of all the models that were assessed, the HCGANH model produced the most accurate 

predictions, as seen by its lowest RMSE of 0.25. With an RMSE of 0.32, Random Forest performs well but is still less 

accurate than HCGANH. KNN has the greatest RMSE at 0.40, indicating somewhat less accurate predictions, whereas 

SVM and CNN record RMSE values of 0.35 and 0.38, respectively. 

 

 

 Fig. 8. Evaluation of AUC 

AUC is evaluated for CNN, KNN, RF, SVM, and the proposed Hybrid Conditional Generative Adversarial 

Network, among other machine learning models, as shown in Figure 6. One important metric of overall classification 

performance is AUC, which quantifies the model's capacity to discriminate across classes. Effective discrimination is 

indicated by a higher AUC value. Its exceptional capacity to distinguish between positive and negative classes is 

demonstrated by the findings, which show that the suggested HCGANH model has the greatest AUC score of 0.97. 
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Random Forest performs well, coming in second with an AUC of 0.93. SVM outperforms KNN (0.88) and CNN (0.89) 

by a small margin with an AUC of 0.91. 

 

 

Fig.  9. Evaluation of FI-Score 

The F1-Score metric evaluation for five models CNN, KNN, RF, SVM, and the suggested Hybrid Conditional 

Generative Adversarial Network is shown in Figure 7. The F1-Score, which is the harmonic mean of accuracy and recall 

(sensitivity), offers a fair evaluation of a model's performance, especially when the data is not balanced or when both 

erroneous positives and false negatives are costly. According to the results, Random Forest has the greatest F1-Score of 

0.92, indicating a strong balance between accuracy and recall. The high F1-Score of 0.89 indicates that the proposed 

HCGANH model performs consistently and reliably across both criteria. CNN has the lowest F1-Score (0.85), followed 

by KNN and SVM (0.87). 

CONCLUSION 

In conclusion, the proposed hybrid emotion-based facial expression recognition system demonstrates a significant 

advancement over traditional methods by integrating both rule-based and data-driven approaches. By incorporating 

Discrete Wavelet Transform in the pre-processing phase, the system efficiently captures essential frequency components 

of facial expressions, thereby enhancing the quality of feature extraction. The use of Facial Landmarks-Based 

Segmentation ensures that only the most emotion-relevant facial regions are analyzed, which contributes to more 

accurate and focused recognition. Furthermore, the inclusion of the Whale Optimization Algorithm for feature selection 

effectively reduces computational complexity and improves the model’s performance by prioritizing the most informative 

features. The classification stage, powered by the novel Hyper Capsule Generative Adversarial Network, is a key 

innovation. This architecture merges the hierarchical spatial feature learning capability of capsule networks with the 

generative power of GANs, enabling the system to accurately classify even subtle and complex emotional expressions. 

The proposed method exhibits outstanding performance, achieving high values across all key evaluation metrics such as 

95.4% accuracy, 94.2% sensitivity, and 96.3% specificity, among others. 
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