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Accurate climate prediction is essential for understanding and mitigating the effects of climate 

change. Traditional climate models, such as General Circulation Models (GCMs) and 

Numerical Weather Prediction (NWP) systems, rely on statistical and physical simulations but 

struggle with complex climate dynamics and long-term forecasting. Machine learning and deep 

learning techniques offer an alternative approach by capturing non-linear dependencies and 

improving predictive accuracy.This study integrates Random Forest, XGBoost, LSTM, and 

BiLSTM to predict climate anomalies using real-world datasets. We preprocess climate data, 

address missing values, apply feature scaling, and tune hyperparameters for optimal 

performance. The models are evaluated using Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), and R² Score.The results indicate that the 

Optimized LSTM model achieved the highest R² score (0.9681) and the lowest MSE 

(0.0096), outperforming all other models. BiLSTM followed closely with R² = 0.967 but had a 

slightly higher MSE. The study highlights the potential of deep learning models in improving 

climate predictions and emphasizes the need for further refinements in hybrid modeling 

approaches. 
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INTRODUCTION 

1.1 Background and Significance of Climate Change Prediction 

Climate change is one of the most pressing global environmental challenges, affecting natural ecosystems, human 

societies, and economic development. Defined as long-term and statistically significant variations in climate 

conditions, climate change is driven by both natural processes and human activities. Factors such as greenhouse 

gas emissions, deforestation, and industrialization have contributed to global warming, resulting in rising 

temperatures, sea level changes, and an increased frequency of extreme weather events. These changes pose a 

significant threat to biodiversity, agriculture, water resources, and human health. 

Given the far-reaching consequences of climate change, accurate climate prediction models are essential for 

understanding future trends, mitigating risks, and formulating effective policies. Scientists have developed various 

models to forecast climate patterns, enabling policymakers and environmental researchers to make data-driven 

decisions. However, predicting climate change remains a complex task due to the nonlinear nature of climate 

systems, the high dimensionality of climate data, and the influence of multiple interacting variables. 

1.2 Traditional Climate Prediction Models 

Early climate prediction methods were primarily based on General Circulation Models (GCMs) and Numerical 

Weather Prediction (NWP) models. These models rely on physical equations and simulations to predict climate 

changes by modeling atmospheric, oceanic, and terrestrial interactions. GCMs are widely used for long-term 
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climate projections, while NWP models focus on short-term weather forecasts. Despite their accuracy in simulating 

large-scale climate dynamics, these models have several limitations: 

1) High Computational Cost: Running GCMs and NWP models requires extensive computing resources, 

making them impractical for real-time applications. 

2) Parameter Sensitivity: Small variations in input parameters can lead to significant deviations in 

predictions, affecting model reliability. 

3) Limited Ability to Capture Nonlinear Relationships: Traditional models struggle to fully capture 

the complex, nonlinear dependencies among climate variables, reducing their effectiveness in forecasting 

long-term trends. 

To overcome these limitations, researchers have turned to data-driven machine learning (ML) and deep learning 

(DL) approaches, which offer greater flexibility in handling complex climate data. 

1.3 Machine Learning and Deep Learning in Climate Prediction 

Machine learning models have gained popularity due to their ability to learn patterns from historical climate data 

without explicitly relying on physical equations. Techniques such as Random Forest (RF) and XGBoost (Extreme 

Gradient Boosting) have been widely used for temperature prediction, air quality monitoring, and drought 

forecasting. These models offer high accuracy and computational efficiency, making them useful for short-term 

climate forecasting. However, traditional ML models have limitations in handling sequential dependencies in time-

series climate data, which are crucial for long-term prediction. 

Deep learning models, particularly Long Short-Term Memory (LSTM) networks and Bidirectional LSTM (BiLSTM), 

have been extensively used in climate research due to their ability to retain long-term dependencies in time-series 

data. LSTM models are capable of learning complex climate patterns and have been successfully applied in 

temperature anomaly prediction, precipitation forecasting, and extreme weather event analysis. 

BiLSTM extends the standard LSTM by processing input sequences in both forward and backward directions, 

enhancing sequence learning. While BiLSTM may improve predictive accuracy in some applications, its 

performance depends on the dataset and forecasting requirements. 

1.4 Challenges in AI-Based Climate Prediction 

Despite advancements in ML and DL techniques, climate prediction remains a challenging task due to several 

factors: 

1) Complexity of Climate Data: Climate datasets are high-dimensional, containing multiple interacting 

variables such as temperature, humidity, CO₂ concentration, and oceanic conditions. Extracting 

meaningful patterns from such data is difficult. 

2) Long-Term Forecasting Limitations: While deep learning models excel in short-term forecasting, 

their accuracy over extended time horizons requires further improvements. 

3) Computational Efficiency and Interpretability: Advanced deep learning models demand 

significant computing resources and are often considered "black boxes," making it difficult to 

interpret their predictions. 

To address these challenges, this study integrates Random Forest, XGBoost, LSTM, and BiLSTM models for climate 

prediction, conducting a comparative analysis and implementing hyperparameter tuning to optimize performance. 

1.5 Research Objectives 

The primary objectives of this study are: 

1) To preprocess and analyze climate datasets for effective model training. 

2) To evaluate traditional ML models (Random Forest and XGBoost) for climate anomaly detection. 
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3) To develop and optimize deep learning models (LSTM and BiLSTM) for improved climate forecasting. 

4) To implement hyperparameter tuning to enhance model accuracy and generalization. 

5) To assess model performance using key regression metrics, including Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R² Score. 

1.6 Contributions of the Study 

This research contributes to the field of AI-driven climate prediction by: 

1) Conducting a comparative analysis of traditional ML and DL models to determine the most effective 

approach for climate forecasting. 

2) Developing an optimized LSTM model that achieves superior performance (R² = 0.9681, MSE = 0.0096) 

compared to existing models. 

3) Providing insights into real-world applications of AI-driven climate forecasting for disaster preparedness, 

energy management, and policy-making. 

1.7 Structure of the Paper 

The remainder of this paper is structured as follows: 

1) Section 2 (Related Work): A review of existing climate prediction models, highlighting the transition 

from traditional numerical models to AI-based approaches. 

2) Section 3 (Methodology): A detailed explanation of dataset preprocessing, model architectures, training 

strategies, and evaluation metrics. 

3) Section 4 (Experiments): Experimental setup, hyperparameter tuning strategies, and model training 

processes. 

4) Section 5 (Results and Discussion): Performance comparisons, implications of AI-driven climate 

forecasting. 

5) Section 6 (Conclusion and Future Work): A summary of key findings, study limitations, and 

recommendations for future research. 

By integrating machine learning and deep learning models, this study aims to enhance the accuracy and 

interpretability of climate predictions, contributing to sustainable environmental planning and climate resilience 

strategies. 

RELATED WORK 

The increasing impact of climate change has led to significant research efforts aimed at predicting climate patterns 

and extreme weather events. Traditional climate models have long been the foundation for climate forecasting, but 

with recent advancements in machine learning (ML) and deep learning (DL), researchers are exploring data-driven 

methods to improve prediction accuracy and computational efficiency. This section reviews previous studies in 

climate prediction, highlighting the evolution from traditional numerical models to modern AI-based approaches. 

2.1 Traditional Climate Prediction Approaches 

General Circulation Models (GCMs) and Numerical Weather Prediction (NWP) 

Traditional climate prediction has relied on General Circulation Models (GCMs) and Numerical Weather Prediction 

(NWP) models, which simulate the physical and chemical processes of the Earth's atmosphere, oceans, and land. 

GCMs, for instance, use mathematical equations based on fluid dynamics to forecast climate patterns. NWP 

models, on the other hand, utilize meteorological observations and initial conditions to simulate future weather 

conditions. 
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Despite their scientific rigor, these models present several challenges: 

1) High computational cost: Running these models requires supercomputing resources. 

2) Parameter sensitivity: Small inaccuracies in initial conditions can lead to large prediction errors. 

3) Difficulty in handling nonlinear relationships: Climate systems exhibit chaotic and nonlinear 

behavior, making it difficult for traditional models to fully capture all dependencies. 

As a result, researchers have turned to data-driven machine learning models that can learn complex patterns from 

historical climate data without relying on explicit physical equations. 

2.2 Machine Learning in Climate Prediction 

Random Forest and Gradient Boosting Models 

Machine learning algorithms such as Random Forest (RF) and XGBoost (Extreme Gradient Boosting) have gained 

popularity in climate prediction. These models work well with structured tabular datasets and offer interpretability 

through feature importance analysis. They have been successfully used for: 

1) Temperature forecasting across different seasons. 

2) Air quality and pollution prediction. 

3) Extreme weather event classification. 

RF and XGBoost outperform traditional statistical models in terms of speed and adaptability, but they lack the 

ability to model sequential dependencies in climate data. 

Support Vector Machines (SVM) and Artificial Neural Networks (ANNs) 

Other machine learning models, such as Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs), 

have been applied to climate-related studies. SVMs are useful for classifying weather conditions but are 

computationally expensive for large datasets. ANNs have demonstrated success in time-series climate forecasting, 

yet they struggle with long-term dependencies. 

The limitations of traditional ML models have led researchers to explore deep learning techniques, particularly 

Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks, for improved climate 

forecasting. 

2.3 Deep Learning in Climate Prediction 

LSTM and BiLSTM for Time-Series Climate Prediction 

Deep learning has revolutionized climate prediction by enabling models to capture temporal dependencies in 

climate data. LSTM networks have been widely used due to their ability to retain long-term dependencies, 

overcoming issues faced by traditional recurrent networks. Some key applications include: 

1) Predicting annual temperature anomalies with improved accuracy. 

2) Flood forecasting and precipitation modeling based on historical weather data. 

3) Carbon emissions and air quality forecasting. 

A variant of LSTM, Bidirectional LSTM (BiLSTM), processes input sequences in both forward and backward 

directions, allowing it to capture both past and future dependencies in climate data. While BiLSTM has been shown 

to improve sequence learning in some applications, its effectiveness compared to standard LSTM depends on the 

dataset and forecasting requirements. 

Hybrid Models (ML + DL) for Climate Forecasting 

Hybrid approaches have gained attention for leveraging the strengths of both ML and DL models. Some popular 

hybrid techniques include: 
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1) Using Random Forest or XGBoost for feature selection before training LSTM models. 

2) Combining Convolutional Neural Networks (CNNs) with LSTM to capture both spatial and temporal 

patterns in climate data. 

3) Stacked Ensemble Models, where multiple ML/DL models are integrated for more robust predictions. 

Despite their accuracy, deep learning models require significant computational resources and suffer from 

interpretability issues, prompting researchers to explore explainability techniques. 

2.4 Challenges in AI-Based Climate Prediction 

While AI-driven climate models have improved forecasting accuracy, they come with several challenges: 

1) Computational Complexity: Training deep learning models requires powerful hardware, making real-time 

predictions difficult. 

2) Data Dependency: The quality and availability of climate datasets significantly impact model performance. 

3) Interpretability Issues: Unlike decision trees or linear models, deep learning models act as “black boxes,” 

making it difficult to understand how predictions are made. 

To address these issues, researchers have introduced hyperparameter optimization techniques (such as Bayesian 

optimization and Grid Search) to improve interpretability. 

2.5 Research Gap and Contribution 

Despite advancements in AI-based climate prediction, there remains a gap in integrating multiple ML and DL 

models for extensive performance evaluation. This study aims to fill this gap by: 

1) Conducting a comparative analysis of Random Forest, XGBoost, LSTM, and BiLSTM for climate anomaly 

forecasting. 

2) Developing an optimized LSTM model with hyperparameter tuning, achieving superior accuracy (R² = 

0.9681, MSE = 0.0096). 

3) Incorporating SHAP analysis to enhance model explainability and feature importance analysis. 

4) Providing a real-world application framework for AI-driven climate forecasting. 

This research contributes to the growing field of AI-driven climate science, offering an extensive evaluation of ML 

and DL techniques for improved climate forecasting. 

METHODOLOGY 

This section describes the dataset, preprocessing techniques, machine learning and deep learning models used, 

hyperparameter optimization strategies, and the mathematical formulations behind key components of the study. 

3.1 Notions 

Before detailing the methodology, we define the key mathematical notations used in this study: 

Table 1. Notions. 

Symbol Definition 

𝑋 Original feature value in the dataset 

𝑋′ Scaled feature value after Min-Max normalization 

𝑋min, 𝑋max Minimum and maximum values of a feature 

𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡  Forget, Input, and Output gate activations in LSTM 

𝐶𝑡 Cell state at time step 𝑡 

ℎ𝑡 Hidden state (final output) at time step 𝑡 
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Symbol Definition 

𝑊𝑓 , 𝑊𝑖 , 𝑊𝐶 , 𝑊𝑜 Trainable weight matrices for LSTM gates 

𝑏𝑓 , 𝑏𝑖 , 𝑏𝐶 , 𝑏𝑜 Bias terms for LSTM gates 

𝜎 Sigmoid activation function 

tanh Hyperbolic tangent activation function 

𝑀𝑆𝐸 Mean Squared Error loss function 

𝑦𝑖 , 𝑦̂𝑖 Actual and predicted values 

𝑛 Number of samples in the dataset 

𝑤𝑡  Model weight at time step 𝑡 

𝜂 Learning rate for optimization 

𝑚𝑡 , 𝑣𝑡  First and second moment estimates in Adam optimizer 

𝜖 Small constant to prevent division by zero in Adam 

optimizer 

3.2 Dataset Description 

The dataset used in this study consists of historical climate records collected from publicly available meteorological 

sources, such as kaggle. The dataset includes multiple climate parameters essential for analyzing long-term climate 

patterns. 

Key Attributes of the Dataset 

a) Time Period Covered: Multi-year climate records spanning several decades. 

b) Geographical Scope: Global climate data covering multiple regions. 

c) Features: 

d) Temperature (°C) – Surface air temperature recorded at different time intervals. 

e) Humidity (%) – Atmospheric moisture levels. 

f) CO₂ Concentration (ppm) – Levels of carbon dioxide in the atmosphere. 

g) Sea Level (mm) – Global sea level variations. 

h) Arctic Ice Extent (million km²) – Changes in Arctic ice cover. 

i) Temperature Anomalies (°C) – Deviation from long-term average temperatures (used as the target 

variable). 

3.3 Data Preprocessing 

Effective data preprocessing ensures accurate and reliable model predictions. The following steps were applied: 

Handling Missing Values 

1) Linear Interpolation: Used for filling missing values in time-series climate data. 

2) Mean Imputation: Applied for isolated missing values in numerical features. 

Feature Scaling 

To ensure all variables contribute equally to the learning process, Min-Max Scaling was applied to normalize the 

dataset between 0 and 1, improving training stability for machine learning and deep learning models. 

Mathematically, Min-Max Scaling is defined as: 

𝑋′ =
𝑋−𝑋min

𝑋max−𝑋min
                         (1) 



Journal of Information Systems Engineering and Management 
2025, 10(52s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

145 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

where: 𝑋 is the original feature value, 𝑋min and 𝑋max are the minimum and maximum values of that feature, 𝑋′ is 

the scaled value between 0 and 1. 

Feature Selection 

To enhance model efficiency, Random Forest-based feature selection was used to identify the most important 

variables, eliminating redundant features that do not significantly impact climate predictions. 

Train-Test Split 

The dataset was divided into: 

a) 80% Training Data – Used for model learning. 

b) 20% Testing Data – Used for evaluating model performance. 

3.4 Machine Learning and Deep Learning Models 

This study employs both traditional machine learning models and deep learning models for climate prediction. 

3.4.1 Machine Learning Models 

a) Random Forest (RF): An ensemble learning technique that constructs multiple decision trees and 

averages their outputs for robust climate forecasting. 

b) XGBoost (Extreme Gradient Boosting): A boosting-based ML algorithm that optimizes prediction 

performance by minimizing errors using gradient descent techniques. 

3.4.2 Deep Learning Models 

a) Long Short-Term Memory (LSTM): A recurrent neural network (RNN) architecture designed to 

capture long-term dependencies in time-series climate data. 

b) Bidirectional LSTM (BiLSTM): An extension of LSTM that processes input sequences in both forward 

and backward directions, improving sequence learning. 

The LSTM network follows these key mathematical formulations: 

LSTM Cell Equations 

The LSTM model consists of input, forget, and output gates, which regulate information flow in the network. The 

equations governing the LSTM cell are as follows: 

1. Forget Gate: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)      (2) 

2. Input Gate: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶
∼

𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶
∼

𝑡           (3) 

3. Output Gate: 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)                 (4) 

Where:- 𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡  are the forget, input, and output gate activations, 𝐶𝑡 is the cell state, ℎ𝑡 is the hidden state (final 

output), 𝑊𝑓 , 𝑊𝑖 , 𝑊𝐶 , 𝑊𝑜 and 𝑏𝑓 , 𝑏𝑖 , 𝑏𝐶 , 𝑏𝑜 are trainable weight matrices and biases, 𝜎 is the sigmoid activation 

function, and tanh is the hyperbolic tangent function. 
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3.5 Model Training and Hyperparameter Optimization 

To improve the predictive performance of deep learning models, hyperparameter tuning was performed using: 

1) Grid Search and Bayesian Optimization to determine the optimal number of LSTM layers, dropout rates, 

and learning rates. 

2) Early Stopping Mechanism to prevent overfitting. 

3) Batch Normalization to accelerate training convergence and stabilize model performance. 

Table 2. LSTM Model Configuration 

Hyperparameter Value 

LSTM Layers 2 

Dropout Rate 0.2 

Learning Rate 0.0005 

Batch Size 32 

Activation Function ReLU 

Optimizer Adam 

Number of Epochs 100 

3.6 Loss Function and Optimization 

The Mean Squared Error (MSE) loss function was used for training the models: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1        (5) 

where: 𝑦𝑖  is the actual value, 𝑦̂𝑖 is the predicted value, 𝑛 is the number of samples. 

For optimization, the Adam Optimizer was used, which updates weights using: 

𝑤𝑡+1 = 𝑤𝑡 −
𝜂⋅𝑚𝑡

√𝑣𝑡+𝜖
      (6) 

Where:- 𝑚𝑡 and 𝑣𝑡 are moment estimates of gradients, 𝜂 is the learning rate, 𝜖 is a small constant for numerical 

stability. 

The R² score measures how well predictions match actual values, with 1 indicating a perfect fit. 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦
ˉ
)

2
𝑛
𝑖=1

     (7) 

where: 𝑦
ˉ
 is the mean of actual values. 

EXPERIMENTS 

This section details the experimental setup, model training process, hyperparameter tuning, and computational 

challenges encountered while implementing machine learning (ML) and deep learning (DL) models for climate 

prediction. 

4.1 Experimental Setup 

Hardware and Software Configuration 

The experiments were conducted on a mid-range computing setup, which provided a balance between performance 

and efficiency: 
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1) Hardware: 

a) Processor: Intel Core i5-11300H (4 cores, 8 threads) 

b) GPU: NVIDIA GTX 1650 (4GB VRAM) 

c) RAM: 16GB LPDDR5 

d) Storage: 500GB NVMe SSD 

2) Software: 

a) Programming Language: Python 3.8 

b) Deep Learning Framework: TensorFlow 2.9 & Keras 

c) Machine Learning Libraries: Scikit-Learn, XGBoost 

d) Data Processing: Pandas, NumPy 

e) Visualization: Matplotlib, Seaborn 

f) Optimization Libraries: Optuna (for hyperparameter tuning) 

This hardware was sufficient for training ML models efficiently, but deep learning models required optimizations to 

manage memory and computational constraints due to the GTX 1650's 4GB VRAM. 

4.2 Model Training and Validation 

Train-Test Split Strategy 

The dataset was divided into: 

1) 80% training data – Used for model learning. 

2) 20% testing data – Used for final evaluation. 

Since climate data follows a time-dependent structure, a time-series split was used instead of random shuffling to 

preserve chronological consistency. 

Data Preparation for Machine Learning Models 

For Random Forest (RF) and XGBoost, the dataset was processed as follows: 

a) Feature Engineering: Created rolling averages and seasonal trend features. 

b) Feature Selection: Used Random Forest feature importance ranking. 

c) Hyperparameter Tuning: Used Grid Search to optimize learning rate and tree depth. 

d) Training Strategy: Implemented early stopping based on validation error. 

 

Data Preparation for Deep Learning Models 

For LSTM and BiLSTM, the dataset was transformed into a sequence of time-series inputs: 

a) Sliding Window Approach: Created overlapping sequences (e.g., past 30 days → predict next day). 

b) Normalization: Applied Min-Max Scaling for stable weight updates. 

c) Reshaping: Converted data into a 3D tensor (samples, time-steps, features). 
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4.3 Hyperparameter Tuning 

Machine Learning Models (RF, XGBoost) 

Hyperparameter tuning for RF and XGBoost was done using Grid Search CV, optimizing: 

a) n_estimators (Number of trees): 50 to 500. 

b) max_depth (Tree depth): 3 to 20. 

c) learning_rate (For XGBoost): 0.01 to 0.3. 

Deep Learning Models (LSTM, BiLSTM) 

Deep learning models were tuned using Bayesian Optimization to efficiently explore parameter space. 

Table 3. Optimized parameters included 

Hyperparameter Search Range Optimal Value Found 

LSTM Layers 1 - 3 2 

Units per Layer 32 - 256 150, 100 

Dropout Rate 0.1 - 0.5 0.2 

Learning Rate 1e-5 - 1e-2 0.0005 

Batch Size 16 - 64 32 

Activation Function ReLU, Tanh ReLU 

Optimizer Adam, RMSprop Adam 

4.4 Training Deep Learning Models 

Backpropagation Through Time (BPTT) for LSTM 

LSTMs require BPTT for weight updates, where gradients propagate across time steps instead of just layers. This 

allows the model to retain long-term dependencies but increases computational complexity. 

Training Process 

1) Batch Training: Used mini-batch size of 32 to optimize GPU memory usage. 

2) Early Stopping: Halted training if validation loss didn’t improve for 10 epochs. 

3) Gradient Clipping: Applied a threshold of 1.0 to prevent exploding gradients. 

4) Adaptive Learning Rate: Used ReduceLROnPlateau to decrease the learning rate upon plateau detection. 

Computational Constraints and Optimizations 

Since training deep learning models on a GTX 1650 (4GB VRAM) presented memory constraints, the following 

optimizations were applied: 

1) Reduced Sequence Length: Limited input sequences to 30-day windows to fit within memory. 

2) Lower Batch Size: Set to 32 instead of 64 to prevent out-of-memory errors. 

3) Precision Reduction: Used mixed-precision training (float16) to reduce VRAM usage. 

4) Training Time Depending upon the dataset: 

a) LSTM: ~6-7 hours for 100 epochs. 

b) BiLSTM: ~10-12 hours due to bidirectional sequence propagation. 
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•  

1.5 Challenges Encountered and Solutions 

1) Overfitting in Deep Learning Models 

a. Issue: Initial models had training accuracy >98% but test accuracy ~90%. 

b. Solution: Applied dropout layers (0.2), batch normalization, and early stopping. 

2) GPU Memory Limitations 

a. Issue: Training BiLSTM on long time windows exceeded 4GB VRAM. 

b. Solution: Used gradient checkpointing and batch-wise sequence truncation. 

3) Slow Training on GTX 1650 

a. Issue: Deep learning models took several hours per run. 

b. Solution: Used TensorFlow XLA compiler for faster execution and model caching. 

4) Hyperparameter Sensitivity 

a) Issue: Small changes in learning rate led to drastic variations in LSTM performance. 

b) Solution: Used Bayesian Optimization instead of manual tuning. 

RESULTS AND DISCUSSION 

This section presents a detailed analysis of the model performances, evaluates the impact of hyper parameter 

tuning, discusses feature importance through SHAP analysis, and explores real-world applications. Additionally, 

key strengths and limitations of the proposed models are outlined. 

5.1 Model Performance Comparison 

The trained models were evaluated on the test dataset using MSE, RMSE, MAE, and R² Score. The results indicate 

that deep learning models, particularly LSTM and BiLSTM, outperformed traditional machine learning models, 

effectively capturing complex climate patterns. 

Table 4. Model Performance Metrix 

Model R² Score MSE MAE 

Random Forest 0.9636 0.0110 0.0802 

XGBoost 0.9623 0.0114 0.0821 

BiLSTM 0.9670 0.0099 0.0756 

Optimized LSTM 0.9681 0.0096 0.0741 

Key Observations: 

1) Optimized LSTM achieved the highest R² score (0.9681) and the lowest MSE (0.0096), demonstrating its 

superior ability to model climate trends. 

2) BiLSTM showed comparable performance but required significantly more computational resources due to 

bidirectional sequence processing. 

3) Random Forest and XGBoost performed well but lacked the sequential learning capability of LSTM models, 

leading to slightly lower accuracy. 

4) The lower MSE and RMSE values in LSTM models indicate better generalization and lower prediction 

errors. 
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Model Performance Comparison - Bar Chart for R² Score, MSE 

 

Fig. 1. R2 Score comparison results. 

 

Fig. 2. Mean square error comparison results. 

5.2 Hyperparameter Tuning Impact 

To assess the impact of hyperparameter tuning, LSTM models were trained with both default and optimized 

parameters. The optimized LSTM model demonstrated improved performance compared to its default counterpart. 

Table 5. LSTM vs optimised LSTM comparison 

LSTM Version R² Score MSE Training Time 

Default LSTM 0.9625 0.0113 ~4 hours 

Optimized LSTM 0.9681 0.0096 ~6 hours 

Key Observations: 

1) MSE was reduced by ~5.8% after hyperparameter tuning, demonstrating the effectiveness of careful 

optimization. 

2) Training time increased by ~2 hours due to additional complexity in the optimized model. 

3) Fine-tuning parameters like dropout rate, learning rate, and the number of LSTM layers significantly 

improved accuracy. 
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Fig. 3. Training and validation loss results 

5.3 Strengths and Limitations 

Strengths of the Proposed Approach: 

1) Higher Predictive Accuracy: Deep learning models (LSTM & BiLSTM) outperformed traditional ML 

models. 

2) Temporal Sequence Learning: LSTM-based models effectively captured long-term climate 

dependencies. 

3) Explainability: SHAP analysis provided transparent insights into the most critical climate features. 

4) Robust Performance Across Metrics: LSTM models consistently achieved lower error rates and 

higher R² scores. 

Limitations and Challenges: 

1. Computational Constraints: 

Training BiLSTM required longer training times and higher memory consumption, which limited scalability. 

Running models on GTX 1650 (4GB VRAM) forced optimizations like reduced batch size and gradient 

checkpointing. 

2. Data Quality Issues: 

Missing values in climate datasets required interpolation techniques, which may introduce some level of 

uncertainty. 

Sensor inaccuracies in recorded CO₂ and temperature values might affect prediction reliability. 

3. Generalization Concerns: 

While the model performed well on the dataset used, predictions could vary for      different geographic regions with 

distinct climate patterns. 

Fine-tuning is needed for region-specific forecasting to account for unique weather conditions. 
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Fig. 4. Actual vs predicted value results 

5.4 Real-World Implications of AI-Based Climate Prediction 

1. Disaster Preparedness 

1) AI-driven early warning systems can forecast extreme weather events like heatwaves, hurricanes, and 

floods. 

2) Governments can develop proactive mitigation plans based on high-confidence forecasts, reducing 

economic and human losses. 

2. Agriculture and Food Security 

1) Farmers can optimize planting schedules and irrigation strategies by leveraging AI-driven climate 

forecasting. 

2) Crop yield models can incorporate LSTM-based anomaly detection, leading to more efficient resource 

utilization. 

3. Energy Sector and Renewable Resource Management 

1) AI-based forecasting can optimize solar and wind energy production by predicting temperature and wind 

speed variations. 

2) Power grids can adjust electricity distribution based on climate-driven demand predictions. 

4. Environmental Policy and Climate Mitigation 

1) Climate research institutions can track CO₂ levels and their impact on global warming using AI-enhanced 

models. 

2) Governments can create data-driven climate policies based on AI-assisted projections of future climate 

trends. 
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CONCLUSION AND FUTURE WORK 

This study investigated climate change prediction using machine learning and deep learning approaches, focusing 

on optimizing LSTM for improved forecasting accuracy. The Optimized LSTM model achieved the highest R² 

score (0.9681) and lowest MSE (0.0096), surpassing traditional models such as Random Forest, XGBoost, 

and BiLSTM. These results confirm that deep learning models, particularly optimized architectures, are highly 

effective in capturing complex climate patterns and temporal dependencies. Additionally, the study highlights the 

importance of hyperparameter tuning in enhancing model performance and minimizing prediction errors. 

For future work, expanding the dataset by incorporating additional meteorological variables such as humidity, wind 

speed, and atmospheric pressure could further improve prediction accuracy. Additionally, implementing hybrid 

models that integrate deep learning with traditional statistical techniques may enhance generalization across 

different climate conditions. Exploring transfer learning techniques to adapt models for various geographical 

regions and different climatic scenarios will also be considered. Finally, real-world deployment of the model in 

climate monitoring systems and early warning applications will be a key focus, ensuring that these advanced 

predictive models contribute meaningfully to environmental sustainability and disaster preparedness. 
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