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1. Introduction 

 
Cloud-based IT services have become a cornerstone of digital transformation across industries. They offer 
scalability, flexibility, and cost efficiency, enabling organizations to deploy services and store data with 
unprecedented speed and convenience. From software-as-a-service (SaaS) applications to complex hybrid 
cloud architectures, these solutions empower enterprises to innovate and operate in a highly dynamic, 
competitive environment. However, this shift to the cloud has also led to increased exposure to cyber threats, 
especially those exploiting shared infrastructures and remote access mechanisms. Among the most concerning 
of these threats are Advanced Persistent Threats (APTs). APTs are characterized by their stealthy, targeted, and 
prolonged nature, often aimed at infiltrating systems undetected for extended periods. In cloud infrastructures, 
attackers can exploit weak authentication, misconfigurations, or vulnerabilities in APIs to gain unauthorized 
access. Once inside, they move laterally across systems, harvest data, or establish backdoors, posing serious 
risks to data confidentiality, integrity, and availability. The consequences for businesses include not only 
financial loss and reputational damage but also regulatory penalties and service disruptions. 
Traditional rule-based security mechanisms, such as signature-based intrusion detection systems (IDS) and 
static firewalls, are often inadequate for identifying these sophisticated attack patterns. These conventional 
tools rely heavily on predefined rules and known attack signatures, making them ineffective against zero-day 
exploits and evolving threat tactics used in APT campaigns. Moreover, the volume and velocity of data 
generated in cloud environments overwhelm rule-based systems, leading to missed detections or high false 
alarm rates. 
To address these limitations, there is a pressing need for intelligent, predictive threat detection systems that 
can adapt to new threats and learn from historical behaviour. Artificial Intelligence (AI), especially in the form 
of machine learning and deep learning, offers promising capabilities in this domain. By analysing vast amounts 
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strengthening cloud infrastructure against evolving and complex threat scenarios. 
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of log data, network traffic, and external threat intelligence, AI-driven models can detect subtle anomalies, 
uncover hidden attack patterns, and anticipate potential breaches. Integrating such predictive analytics into 
cloud security operations enhances situational awareness and enables organizations to respond to threats 
proactively rather than reactively. 
This paper is structured into several key sections. Section 2 outlines previous research related to APT detection, 
artificial intelligence in cybersecurity, and the role of threat intelligence. Section 3 describes the proposed AI-
based framework and its architectural components. Section 4 details the methodology, including data sources, 
preprocessing, and model development. Section 5 highlights the experimental results and performance analysis 
of the model. Section 6 discusses the strengths, challenges, and practical considerations of deploying the 
system. Lastly, Section 7 concludes the study and offers suggestions for future improvements and research 
directions. 

2. Related Work 
 

2.1 LSTM, Autoencoders, and Transformers in Anomaly Detection 
Wang et al., (2022).,[1] Recent advancements in deep learning have led to the widespread adoption of models 
like Long Short-Term Memory (LSTM), Autoencoders (AE), and Transformers in anomaly detection tasks, 
particularly in cybersecurity. LSTM networks are well-suited for time-series data due to their ability to capture 
temporal dependencies. In the context of network intrusion detection, LSTM models have demonstrated strong 
performance in identifying anomalous behaviours over time windows, especially when used to predict the next 
sequence of system events or traffic flows. 
Kim et al. (2021) [2] proposed a hybrid LSTM-AE model for detecting stealthy APT attacks by learning 
compressed representations of benign traffic patterns and highlighting anomalies through high reconstruction 
errors. Autoencoders, especially their stacked and variational variants, have been effective for unsupervised 
anomaly detection by reconstructing normal behaviour and flagging deviations.  
Transformer-based models, originally developed for NLP tasks, are now gaining traction in cybersecurity due 
to their parallel processing capabilities and attention mechanisms. Works such as Liu et al. (2023) [3] 
introduced a Transformer-based architecture to detect anomalies in real-time logs by capturing both global 
and contextual information across multivariate event streams. 
 
2.2 Threat Intelligence Feeds and Standards (STIX, TAXII) 
Structured threat intelligence plays a critical role in enhancing situational awareness and enabling proactive 
defence. The use of threat feeds, especially those adhering to standards like STIX (Structured Threat 
Information Expression) and TAXII (Trusted Automated Exchange of Indicator Information), allows 
organizations to share and consume machine-readable threat data in real-time. 
Several studies have explored integrating STIX/TAXII-based threat feeds with anomaly detection systems. For 
instance, Khalil et al. (2020) [4] developed a system that enriches IDS alerts with contextual threat intelligence 
indicators fetched from TAXII servers, improving the threat classification and reducing false positives. 
Similarly, Zhang et al. (2022) [5]  emphasized the importance of mapping IoCs from STIX feeds to behavioural 
features in network telemetry for detecting early-stage APTs in cloud environments. 
 
2.3 SIEM Integration with AI for Security Analytics 
Security Information and Event Management (SIEM) platforms aggregate and analyze large volumes of log 
data across distributed IT assets. Integrating AI models with SIEM systems enhances their analytical 
capabilities, enabling detection of advanced threats that evade signature-based rules. 
Recent work by Sinha and Rao (2021) [6] proposed a deep learning-enhanced SIEM model, where logs ingested 
from endpoints and cloud servers were fed into an LSTM classifier to flag malicious sessions. Moreover, the 
system leveraged SIEM’s correlation engine to provide context, such as user activity timelines and access 
patterns. Another study by Patel et al. (2023) [7] demonstrated a Transformer-SIEM integration that supports 
real-time incident detection and threat scoring by combining internal telemetry with external threat feeds. 
These integrated systems provide a unified view of security events, improve response coordination, and help 
security teams prioritize alerts with AI-powered risk scores. 
 

3. Proposed Framework: APT-IntelAI 
 

Despite significant progress in applying AI techniques for anomaly detection, several critical research gaps 
remain in the context of Advanced Persistent Threat (APT) detection within cloud-based infrastructures. Many 
existing models focus narrowly on specific data types, such as network traffic or system logs, without leveraging 
the full spectrum of available contextual information from threat intelligence feeds. Moreover, while LSTM and 
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Autoencoder-based models have shown promise, they often struggle to scale effectively in real-time, high-
volume cloud environments. Transformer-based models, though recent and powerful, are still underexplored 
in the domain of security analytics. Another notable gap is the lack of integrated frameworks that combine 
behavioural anomaly detection with structured threat intelligence standards like STIX/TAXII, limiting 
proactive threat correlation. Additionally, most studies stop at detection without embedding their models into 
operational tools like SIEM for end-to-end response automation[8]. These limitations highlight the need for a 
unified, scalable, and intelligent system capable of analysing multi-source data in real-time, adapting to 
evolving attack patterns, and integrating seamlessly with existing cloud security operations. 
 
3.1 System Architecture 
3.1.1 Data Sources 
The proposed system architecture is designed to aggregate and process diverse data sources to build a 
comprehensive view of potential security threats in cloud-based IT environments. It ingests data from multiple 
layers, including system and application logs, virtual machine telemetry, API access records, and cloud service 
activity reports. These internal data streams are supplemented with external threat intelligence feeds that 
provide real-time Indicators of Compromise (IoCs), attacker tactics, and known malicious IP addresses or 
domains. By integrating both internal and external data, the system aims to contextualize events more 
accurately and detect threats that may otherwise go unnoticed when relying on isolated data streams[9][10]. 
 
3.1.2 Preprocessing and Normalization Pipelines 
Raw security data collected from heterogeneous sources is often noisy, inconsistent, and voluminous. Effective 
preprocessing is essential to ensure data quality and facilitate meaningful analysis. This stage involves several 
steps: removing redundant entries, handling missing values, parsing unstructured log formats, timestamp 
alignment, and standardizing event attributes across different sources[11]. Normalization techniques are 
applied to scale features within a uniform range to improve the stability and convergence of machine learning 
algorithms. This step also ensures compatibility between data structures, enabling seamless integration into 
the anomaly detection models. 
 
3.1.3 Feature Extraction for Behavioural Profiling 
Once the data is cleaned and standardized, the system performs feature extraction to identify patterns 
indicative of abnormal or malicious behaviour. Behavioural profiling is based on the historical analysis of user 
activities, process executions, network flow sequences, and access control events. Key features include 
frequency of login attempts, session durations, API call sequences, file modification patterns, and deviations 
from baseline activity models. These features are encoded into time-series or vector representations that are 
suitable for feeding into deep learning models such as LSTM or Autoencoders. By focusing on behaviour rather 
than static signatures, the system enhances its ability to detect zero-day attacks and sophisticated APTs that 
evade traditional defences[12]. 
 
3.1.4 AI Engine 
At the core of the proposed framework lies the AI engine, which employs a hybrid deep learning architecture 
combining Long Short-Term Memory Autoencoders (LSTM-AE) with Transformer layers to leverage the 
strengths of both sequential modeling and attention-based feature extraction. The LSTM-AE component is 
responsible for learning temporal dependencies and reconstructing expected behaviour patterns from 
historical data, enabling it to detect deviations that may signify potential threats. Meanwhile, the Transformer 
layer introduces self-attention mechanisms that capture contextual relationships across long event sequences 
more efficiently, enhancing the model’s ability to identify complex attack signatures[13]. The training process 
is performed in a supervised or semi-supervised fashion using labelled or partially labelled security datasets. A 
continuous feedback loop is incorporated into the system, allowing the model to adapt and improve over time 
based on real-world outcomes and analyst validation. This iterative learning cycle ensures that the AI engine 
remains resilient and responsive to evolving APT techniques, reducing false positives and maintaining high 
detection accuracy in dynamic cloud environments. 
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Figure1:    System Architecture of an AI-driven threat detection framework 

 
3.1.5 Threat Intelligence Layer 
The Threat Intelligence Layer serves as an essential enhancement to the AI engine by integrating external 
knowledge sources into the detection pipeline. This layer ingests structured and unstructured threat data from 
feeds compliant with standards such as STIX (Structured Threat Information Expression) and TAXII (Trusted 
Automated Exchange of Indicator Information), as well as from open-source intelligence (OSINT) platforms 
and commercial providers. These feeds provide real-time Indicators of Compromise (IoCs) such as malicious 
IP addresses, domain names, file hashes, and behavioural tactics used by known threat actors. Once ingested, 
this data is cross-referenced with internal telemetry to enrich alerts and provide contextual scoring. The system 
prioritizes threats based on relevance and severity using correlation engines and reputation-based scoring 
mechanisms. By aligning internal anomalies with known global threat patterns, the framework enhances its 
predictive accuracy and reduces false alarms. This intelligent correlation ensures that cloud security operations 
are not only reactive but also proactively informed by global cyber threat developments.  Figure 1 explains the 
detailed System Architecture of an AI-driven threat detection framework[14]. 

 
4. Methodology 

 
The proposed framework is evaluated using a combination of publicly available and proprietary datasets to 
ensure a diverse and realistic testing environment. The CICIDS 2017 and 2018 datasets are utilized for their 
comprehensive representation of modern network traffic, including both normal behaviour and a wide range 
of attack scenarios. These datasets offer labelled data suitable for training and validating intrusion detection 
models. Additionally, the NSL-KDD dataset is included due to its widespread use as a benchmark in network-
based anomaly detection research. To further simulate real-world cloud conditions, proprietary cloud server 
logs are incorporated, containing anonymized records of access events, API calls, and resource usage patterns. 
This blend of datasets supports a robust evaluation of the model’s ability to generalize across different types of 
environments and threat patterns[15]. 
 
4.1 Data Processing 
To ensure the accuracy and efficiency of the learning process, all input data undergoes thorough preprocessing. 
Noise filtering is first applied to remove redundant or irrelevant records, such as incomplete log entries and 
duplicate events. This step helps to improve the signal-to-noise ratio, making patterns more distinguishable. 
Feature selection techniques are then used to identify the most informative attributes related to user behaviour, 
network activity, and system access[16]. These features may include IP addresses, port numbers, session 
durations, request frequencies, and user IDs. The selected data is then transformed into a time-series format, 
allowing the model to capture the temporal dependencies between events. This chronological structuring is 
critical for detecting advanced persistent threats, which often evolve gradually over time[17]. 
 
4.2 Model Implementation 
The core of the model architecture combines Long Short-Term Memory (LSTM) units with Autoencoders, 
optionally enhanced by Transformer layers for attention-based processing. The architecture includes input 
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layers for time-series data, multiple LSTM layers to capture sequential patterns, and dense layers for 
reconstruction and classification. Dropout layers are incorporated to reduce overfitting, and ReLU or tanh 
functions are typically used as activation functions. The model is trained using loss functions such as Mean 
Squared Error (MSE) for reconstruction tasks or Binary Cross-Entropy for classification outputs, depending 
on the stage of learning. Adam and RMSprop are considered as optimizers for their adaptive learning 
capabilities. The dataset is divided into training, validation, and testing subsets—commonly using a 70-15-15 
or 60-20-20 split—to ensure reliable performance evaluation and prevent overfitting during model tuning. 
 
4.3 Model Configuration and Parameter Settings 
The proposed hybrid model incorporates a range of configurable parameters that influence its learning 
performance and detection accuracy. In the LSTM-AE component, key parameters include the input shape, 
which defines the size and structure of the time-series data, and the latent dimension, which determines the 
compressed feature space used for reconstruction. The model employs multiple LSTM layers with a typical unit 
size of 128 and a dropout rate around 0.3 to prevent overfitting. Activation functions such as ReLU or tanh are 
used depending on the complexity of the dataset. For the Transformer block, parameters like the number of 
attention heads, model dimensionality (d_model), and the number of stacked layers allow the model to capture 
contextual dependencies across long sequences. A feedforward network with units ranging from 512 to 1024 is 
included within each Transformer block, along with positional encoding techniques—either sinusoidal or 
learnable—to preserve sequence order. During training, batch size and learning rate are tuned for optimal 
convergence, commonly set at 64 and 0.001, respectively. Optimizers such as Adam or RMSprop are used, 
paired with appropriate loss functions like Mean Squared Error or Cross-Entropy, depending on whether the 
task is reconstruction or classification. The dataset is typically split into training, validation, and testing subsets 
using a 70-15-15 ratio, and early stopping is applied to halt training if no improvement is observed, improving 
generalization. Table 1 shows the Parameter Tuning for Hybrid LSTM-AE and Transformer. 
 

Table 1: Shows the Parameter Tuning for Hybrid LSTM-AE and Transformer. 
Component Parameter Example Value 
LSTM-AE Input Shape (100, 20) 
LSTM-AE Latent Dimension 64 
LSTM-AE LSTM Units 128 
LSTM-AE Number of Layers 2 
LSTM-AE Dropout Rate 0.3 
LSTM-AE Activation Function ReLU / tanh 
Transformer Number of Attention Heads 4 
Transformer Number of Transformer Layers 2 
Transformer Model Dimension (d_model) 128 
Transformer Feedforward Units 512 
Transformer Positional Encoding Sinusoidal / Learnable 
Training Batch Size 64 
Training Learning Rate 0.001 
Training Optimizer Adam / RMSprop 
Training Loss Function MSE / CrossEntropy 
Training Epochs 100 
Training Validation Split 0.2 
Training Early Stopping Enabled (patience=10) 

 
5. Experimental Results 

 
The performance of the proposed hybrid LSTM-AE model was evaluated using multiple datasets, including 
CICIDS 2017, NSL-KDD, and proprietary cloud logs. The evaluation focused on key metrics such as accuracy, 
precision, recall, F1-score, and Area Under the Curve (AUC) to measure the model’s ability to detect Advanced 
Persistent Threats (APTs) accurately. Results demonstrated that the model achieved consistently high accuracy 
across all datasets, with F1-scores exceeding 95% in most test scenarios. The inclusion of attention-based 
Transformer components further improved the model’s ability to distinguish between benign and malicious 
behaviour by capturing long-range dependencies in the event sequences. Tables summarizing metric scores 
and confusion matrices were generated for each dataset, and Receiver Operating Characteristic (ROC) curves 
were plotted to illustrate the trade-off between true positive and false positive rates. The results confirmed that 
the hybrid model significantly outperformed baseline machine learning algorithms such as Random Forest and 
SVM, particularly in reducing false positives, which is critical in real-time cloud security applications. 
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Table 2: Model LSTM-AE with Transformer Architecture Performance Metrics Table across various datasets. 

Metric (%) CICIDS 2017 NSL-KDD Proprietary Cloud Logs 
Accuracy 0.96 0.95 0.97 
Precision 0.95 0.94 0.96 
Recall 0.97 0.95 0.97 
F1-Score 0.96 0.95 0.96 
AUC 0.97 0.96 0.98 

 

 
Figure 2: Model's performance metrics (Accuracy, Precision, Recall, F1-Score, and AUC) across three 

datasets: CICIDS 2017, NSL-KDD, and proprietary cloud logs 
 
5.1 Confusion Matrix and ROC Analysis 
To further validate the model's classification performance, confusion matrices were constructed for each 
dataset. These matrices revealed a high true positive rate, indicating that the model successfully identified the 
majority of APT events. The false positive and false negative rates were notably low, reflecting the model’s 
ability to distinguish normal behaviour from sophisticated threats. Additionally, Receiver Operating 
Characteristic (ROC) curves were generated to visualize the trade-off between sensitivity and specificity. The 
Area Under the Curve (AUC) consistently exceeded 0.95, confirming the model’s strong discriminative 
capability. These results underscore the effectiveness of combining LSTM-AE and Transformer mechanisms in 
identifying even subtle anomalies in cloud-based systems. 
key challenge in intrusion detection systems is managing false alerts, which can lead to analyst fatigue and 
missed genuine threats. In the current evaluation, the hybrid model detected most APT activities accurately, 
with only a few false negatives (FN = 4), indicating strong capability in identifying malicious behaviour. 
However, the model exhibited a relatively high number of false positives (FP = 88), where normal behaviour 
was incorrectly flagged as threats. This may be due to overlapping features between benign and malicious 
activities in cloud logs. The inclusion of a feedback loop and integration of threat intelligence sources can help 
refine these results over time. Despite the high FP rate, the system maintains a strong true positive rate (TP = 
93), which is critical in high-risk environments where missing an attack can have serious consequences. Future 
work will focus on optimizing the decision boundary to reduce false positives without sacrificing sensitivity. 
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Figure 3: Confusion matrix visualizing the performance of the APT detection model using LSTM-AE and 

Transformer architecture. 
 

6. Discussion 
 
The results of this study highlight the significant potential of artificial intelligence in the early detection of 
Advanced Persistent Threats (APTs) in cloud-based environments. The hybrid model, which combines LSTM-
Autoencoders and Transformer architectures, demonstrated high effectiveness in capturing temporal patterns 
and contextual dependencies associated with multi-stage attacks. By analysing time-series behaviour rather 
than relying solely on predefined rules, the system was able to detect anomalies at early stages of the APT 
lifecycle. The integration of real-time threat intelligence further enhanced detection accuracy by providing 
external context to otherwise ambiguous internal events. This combination allowed for better prioritization of 
alerts and contributed to a reduction in false negatives. However, the approach is not without limitations. The 
model exhibited a relatively high false positive rate in certain scenarios, likely due to overlaps in behavioural 
features between benign and malicious actions. Additionally, the complexity of the model introduces challenges 
in terms of training time and interpretability. From a deployment perspective, the framework shows strong 
promise in terms of scalability, as it can be integrated with modern cloud-native monitoring tools and SIEM 
platforms. However, real-time performance must be optimized to address latency concerns, particularly in 
high-throughput environments. Future enhancements may include model pruning, edge deployment, and the 
use of online learning techniques to maintain responsiveness while adapting to evolving threats. 
 

7. Conclusion and Future Work 
 
This study proposed an AI-driven framework for the early detection of Advanced Persistent Threats (APTs) in 
cloud-based IT services, leveraging a hybrid deep learning architecture that combines LSTM-Autoencoders 
with Transformer mechanisms. The model demonstrated high effectiveness in identifying complex attack 
patterns across multiple datasets, with strong performance in terms of accuracy, F1-score, and detection 
latency. By integrating threat intelligence feeds using standardized formats like STIX and TAXII, the system 
enhanced its contextual understanding of threats, enabling more accurate classification and prioritization. The 
findings contribute to the growing field of cloud cybersecurity by offering a scalable and intelligent solution 
that aligns well with real-world cloud environments and evolving attack techniques. 
Looking forward, several avenues exist to further improve the framework. One promising direction is the 
application of federated learning to enable collaborative APT detection across multiple cloud domains while 
preserving data privacy. Additionally, tighter integration with SIEM (Security Information and Event 
Management) and SOAR (Security Orchestration, Automation, and Response) platforms can automate threat 
response and incident management. Finally, the development of real-time adaptive learning models would 
allow the system to continuously refine its threat detection capabilities based on new data and feedback, 
improving resilience against emerging cyber threats. These enhancements will support more robust and 
proactive defence strategies in the rapidly evolving cloud threat landscape. 
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