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Wireless Sensor Networks (WSNs) face significant challenges in energy efficiency, load 

balancing, and data transmission. To address these, we propose the Efficient Load Balanced 

Routing based Trusted Clustering to Maximize Network Lifetime using Distributed 

Compressive Sensing (ELRC-DCS) approach. This method employs a hierarchical network 

model with sensors organized in a bi-layer and a static data sink positioned centrally. 

Optimized Cluster Head (CH) selection ensures balanced power consumption, enhanced load 

distribution, and energy efficiency by avoiding low-energy nodes and traffic congestion. The 

model incorporates a Distributed Compressive Sensing Technique (DCST) to reduce energy 

consumption and simplify data transmission, while a trust mechanism ensures secure and 

reliable node-to-node communication. This trust mechanism evaluates direct, indirect, and 

new trust values to improve data reliability and prevent malicious behavior. The ELRC-DCS 

approach optimizes clustering, balances energy usage, minimizes communication expenses, 

and guarantees reliable data transmission, resulting in enhanced network durability. 

Simulation results demonstrate that ELRC-DCS significantly outperforms existing models 

(CACIACA, OCCMPHE, and EMRHPFC), achieving the lowest communication delay (108.30 

ms) and the highest energy efficiency (93.45%). Additionally, ELRC-DCS achieves a data 

success rate of 91.64%, network throughput of 784.26 Kbps, and reduced routing overhead 

with only 898 packets. These results position ELRC-DCS as a robust and efficient solution for 

large-scale WSN deployments in environmental monitoring applications, offering superior 

energy efficiency, reliability, and communication quality compared to traditional methods. 

Keywords:  Load Balancing, Heterogeneous Wireless Sensor Networks (HWSN), Cluster 

Head (CH), and Distributed Compressive Sensing Technique (DCST) 

 

1. INTRODUCTION: 

Wireless sensor networks (WSN) have become a prominent topic of research as e.g., used in industrial applications 

[1] and in everyday uses such as smart grids [2], security monitoring [3] or risk prevention [4]. The battery life of 

mobile sensors depends on the power supplied to the sensor from an external source; other energy supply methods 

are employed to avoid unnecessary energy consumption. Included in these techniques are software, power 

management, and efficient routing. Multi-hop design is employed in routing protocols to prevent the direct 

transmission of packets from sensors to data sinks [5]. Two variations of it are flat routing and hierarchical 

routing. Planar routing involves determining the routes from sensors to sinks that are the shortest. The use of short 

communication distances results in decreased energy usage. With the routing protocol, packets are clustered 

together into clusters, with each CH combining packet data to reduce redundancy and improve the node's lifespan 

[6]. 
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Providing sensor data for transmission to a base station via WAN is not as expensive as possible due to the need for 

high communication costs [7]. However, this technique is constrained by the Niquist–Shannon theorem which 

states that to retrieve compressed data, the sampling rate (N) must be doubled in frequency. Typically, WSNs that 

are limited in resources require multiple instances. In addition, compression methods and defining large 

coefficients can be difficult. To overcome these limitations, pressure has been considered [8]. The concept of CS is 

designed to reconstruct small or small signals using only a few measurements, without knowledge of the signal 

structure [9]. This approach is beneficial when signals are sparse on a known basis, sensor computations are costly, 

and receiver computations are inexpensive - all of which align with WSNs [10]. Compared to data compression, 

implementing compressive sensing in WSNs shows potential for significant improvements as it does not require 

encoding at low-power sensor nodes. 

1.1 Research contribution: 

A routing system that utilizes energy, an innovative ELRC-DCS framework that incorporates check-list and multi-

hop routing. Efforts such as this are effective in balancing energy consumption in cell nodes, prolonging network 

life, and optimizing resource usage in WSNs. To decrease costs associated with data transfer, DCST integration is 

implemented due to pressure. It reduces the energy required for communication by reconstructing data from 

smaller measurements, thereby increasing energy conservation and transmission efficiency in resource-constrained 

WSN environments. Trust-based security is a robust means of ensuring secure and reliable data transmission 

across multiple nodes. By assessing the impact of direct, indirect, and innovative trust values, this model enhances 

data reliability, reduces security risks, and safeguards against malicious activity in WSNs. Enhanced network 

performance and integration, leading to more energy conservation, extended network life, and reliable data 

transfer. The proposed ELRC-DCS model is adaptable to large-scale WSN applications and can be used for practical 

purposes such as monitoring environmental conditions. The organization of the paper Section 1 explains the 

previous model techniques and drawbacks, section 2 explains in detail the previous works, section 3 introduces the 

ELRC-DCS proposed model in detail, Sections 4 and 5 explain detailed about the simulation parameters for the 

ELRC-DCS model, and following section 6 is a conclusion. 

2. RELATED WORKS: 

In [11], it incorporates a reservation and routing algorithm coupled with data aggregate on a threshold for various 

WSNs to minimize redundant transmission of data. The model prevents redundant transmissions and improves 

energy efficiency by using threshold-based conditions. The proposed multi-hop model enhances load balancing and 

reduces end-to-end delay compared to protocols like TSEP, TDEEC, LEACH, and TEEN, ensuring better network 

stability. In [12], the use of GWO is being explored as an alternative approach to optimize urban WSNs for 

sustainable scheduling, while also improving network reliability and energy efficiency. IGWO is compared to GWO 

and other methods and shows better performance in reducing cluster heads, gateways, and dead nodes. The 

algorithm's convergence is demonstrated in a large-scale WSN with 500 sensors and 50 cluster heads, showing 

significant improvements. In [13], an ERCP for WSNs optimizes energy savings and reliable data delivery using 

metrics like link quality, energy, and distance. Experimental results show that ERCP outperforms recent algorithms 

in homogeneous and heterogeneous networks. In [14], active aggregates are utilized as the cell head and spanning 

tree for data transmission in the proposed LB-TBDAS tree-driven data collection scheme for grid-bound WSNs. LB-

TBDAS has the potential to reduce energy consumption and increase network lifetime, which is over 100% less than 

that of GB-PEDAP and PEDAH, while also addressing connection issues. In [15], using K-means and dynamic 

canopy optimization, the DCK-LEACH algorithm is used to select WSNs with dual cluster heads for energy 

conservation. If the strength and distance of the cluster center are factors, they select one over another; if that fails, 

then the selection follows. The second cluster head is chosen by its strengths and proximity to the base 

station. Simulation results indicate that DCK-LEACH outperforms existing techniques in terms of node-capacity 

latency and network latency. In [16], the EEDC scheme and RHCER are utilized in WSN-IoT scenarios to improve 

energy efficiency and load balancing. According to simulation results, EEDC achieves a 31% decrease in energy 

consumption and an increase in packet loss ratio by 30% when compared to current methods. In [17], to optimize 

data collection, Sequential Convex Approximation (SCA) and mobile sink are utilized in the TPEMLB approach to 

balance energy consumption across nodes and improve load distribution. By using this model, the network's 



Journal of Information Systems Engineering and Management 
2025, 10(4) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1391 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

longevity is greatly improved, energy consumption is reduced, and performance is ensured to be better than with 

other methods. In [18], a GA and SCHSM optimize energy usage in IoT-enabled WSNs by considering factors like 

distance, node energy, and density. Multi-mobile synchronous nodes reduce energy consumption and increase 

network life by improving communication continuity. In [19], to address the challenges of load balancing in cloud 

computing, adopt a metaheuristic approach that prioritizes optimization over other approaches and improves 

performance migration, response time management, output control, and error prevention. This approach makes it 

easier to explore and use, avoids local optimization, and evaluates its performance with benchmark algorithms 

using Cloud Sim. In [20], a clustering-based algorithm to improve the quality of the service and energy efficiency in 

WSNs, addressing sensor limitations like battery size. MATLAB simulations show proposed algorithm outperforms 

existing clustering protocols such as LEACH and SEP. In [21], the utilization of UWASN, a multi-layer approach in 

underwater аcoustic sensor networks, tackles load balancing and dynamic network mechanisms while dealing with 

MAC and routing layers. The proposed system using reinforcement learning for slot time allocation and artificial 

fish filtering integrated with a bacterium feeding algorithm for energy-aware QoS routing shows better 

performance compared to current trends. In [22], focusing on trust-based security to identify and mitigate the 

impact of malicious sensor devices while balancing load among cluster heads. SLBR offers improved energy 

efficiency, reduced communication overhead, and better throughput compared to the Exponential Cat Swarm 

Optimization (ECSO) model. Experimental results demonstrate that SLBR enhances network lifetime and 

decreases misclassification rates of malicious sensors, achieving superior overall performance. In [23], enhanced 

cluster head selection, data redundancy, and link creation are achieved by enterprise WSNs through the use of 

redundant and redundant redundancy. Simulation results indicate that DDCS significantly reduces data 

transmission, energy consumption at cluster heads, and overall network delay compared to traditional DCS. In 

[24], enhancing energy efficiency and prolonging network lifetime. by utilizing a distinct cross-modification search 

policy, EOR-iABC determines which cluster head to optimize and improves local search strategies using worker and 

observer phases. Based on simulation results, EOR-iABC is 27% more efficient than the OCABC scheme, and 16% 

more effective than the IABCOCT scheme. In [25], enhance network lifetime by performing dimensionality 

reduction at transmitter and signal reconstruction at receiver using a greedy method. Performance evaluations 

reveal the effectiveness of the greedy method in terms of reconstruction success and error rates, assessed with 

varying data sparsity and applied to real temperature and humidity datasets. In [26], wireless sensor networks 

employ a pressure relief technique to obtain energy-efficient data by gauging the spatial correlation between 

adjacent stations. By utilizing Bayesian inference and belief propagation for signal recovery, the proposed method 

demonstrates improved reconstruction accuracy and reduced energy consumption compared to existing 

techniques. In [27], by utilizing techniques such as ant colony optimization and cuckoo search, the BACREED 

algorithm optimizes data acquisition and routing in WSNs to improve network reliability and energy efficiency. 

Simulation results show an 84% reduction in path length and enhanced performance compared to baseline 

algorithms, highlighting the effectiveness of the integrated FELACS-ODR data compression scheme. In [28], it is an 

EDAS, of WSN wireless sensor networks, using an I-LEACH algorithm that selects the best cluster head while 

reducing data integrity via network encryption. Simulation results show that EDAS effectively reduces energy 

consumption and increases network performance compared to existing data aggregation techniques. In [29], a 

Convolutional Neural Network combined with Fuzzy Logic (CNN-FL) to effectively identify and categorize 

trustworthy and malicious nodes in Wireless Sensor Networks (WSNs). By integrating this with a Neuro Genetic 

Optimizer-based routing strategy built on the LEACH protocol, the method enhances data transmission security 

while significantly reducing latency and energy consumption, outperforming existing protocols in key performance 

metrics.  In [30], the dynamic data aggregation technique for WSNs optimizes energy consumption by dynamically 

deciding whether to aggregate data at cluster heads or transmit it directly to the sink based on hop counts. By 

utilizing metrics like error rate and queue length to select cluster heads, data aggregation efficiency and the 

network's overall performance are enhanced in comparison to previous algorithms. In [31], to enhance energy 

efficiency in WSNs by reducing data size during transmission. By addressing issues like outlier detection and 

optimizing encoding methods, the proposed enhancements lead to significant energy savings and improved data 

accuracy, making these techniques highly beneficial for energy-constrained applications requiring reliable data 

integrity.  
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3. PROPOSED ELRC-DCS TECHNIQUE 

Energy-efficient routing in WSNs is made possible by the proposed ELRC–DCS approach, which employs optimal 

CH selection considering factors such as distance and traffic load, as well as levels of energy consumption. 

electricity. Trust analysis includes direct, indirect, and innovative trust assessments for secure communication 

within and between clusters. By utilizing compression, it can recover dispersed signals and lower the expenses of 

transmitting data. This method automatically selects the most efficient relay nodes to balance the network load and 

maximize lifetime. DCST improves the ability to get information by propagating beliefs in factor graphs. 

 

Figure 1 - Proposed ELRC-DCS 

3.1 Network Model: 

The network model assumes that all sensors are evenly distributed within an R region with a radius of d. In this 

model, the center of each sensor in the cluster receives its data sink from somewhere outside the network. These 

sensors send their detected packets to their CH, aggregate them, and send them to the data sink via the shortest 

path. The probability of rotating the CHs in each cluster is ensured to be equal for all sensors.  Additionally, all 

sensors possess identical initial energy levels (𝐸𝑖𝑛𝑖𝑡). The network employs sensors to collect a range of 

environmental parameters, including humidity, temperature, and air quality. By merging these parameters, they 

are transmitted to the sink through CHs in a transmission path. In a data cycle, CH u sends and receives m packets 

to the sink. Each data cycle contains the CH's 𝑝𝑘, which merges the kth event and produces 𝑔𝑘 packets. The 

calculation of the production rate (𝑟) for each CH u in every data cycle is as follows: 

𝑟𝑢 = ∑ 𝑝𝑘𝑔𝑘
𝑚
𝑘=1                                                                                                           (1) 

To make the power computation model less complicated, the primary factor to consider is the transmission power 

in the path loss model. This is because it consumes more power compared to reception and idle scenarios. 𝑃𝑀(𝑟𝑢) is 

the unit of measurement for power in multi-hop transmission. The lifespan of a CH user node can be depicted in 

this manner: 

𝑁(𝑢) =
𝐸𝑖𝑛𝑖𝑡

𝑃𝑀(𝑟𝑢)
                                                                                                              (2) 

The starting battery capacity for each sensor is referred to as 𝐸𝑖𝑛𝑖𝑡, and the lifecycle is the period between placing 

the sensors in the network and when the first sensor's battery capacity is exhausted. 

3.2 Optimal CH Section Process: 

It is assumed that N nodes are distributed in an area of 𝐴 =  𝑅 ×  𝑅 square meters. For simplicity, we will say that 

the sink is in the middle of this area. 𝑟𝑝(𝑟𝑝 ≤ 𝑑0) is the minimum distance at which each node from its BS or CH can 



Journal of Information Systems Engineering and Management 
2025, 10(4) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1393 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

transmit, with a maximum of d_0 being the range. We assume that after initialization, a "hello" (BS) message is 

sent to all nodes at the specified power level. The distance (𝐷𝑖) between the BS and each node can be estimated by 

using the strength of the received signal. The BS 𝐷𝑎𝑣𝑔 is determined by the following method to determine the 

average distance between nodes: 

𝐷𝑎𝑣𝑔 =
1

𝑁
∑ 𝐷𝑖 ,

𝑁
𝑖=1                                                                                                    (3) 

An approximate value for 𝐷𝑎𝑣𝑔 depends on the model for the energy consumed by the CH in the circle and the 

average distance between each group (𝑑𝐶𝐻), as well as the corresponding average ranges from one to the other. The 

number of clusters, C; the compressed data, Y. The calculation of energy transfer from a non-CH node is as follows: 

𝐷𝑎𝑣𝑔 ≈ 𝑑𝐶𝐻 + 𝑑𝐵𝑆                                                                        (4) 

𝐸𝐶𝐻 = (
𝑁

𝐶
− 1)𝑌. 𝐸𝑒𝑙𝑒𝑐 +

𝑁

𝐶
𝑌 + 𝑌. 𝐸𝑒𝑙𝑒𝑐 + 𝑌. 𝜀𝑓𝑠𝑑𝐶𝐻

2 ,                                                       (5) 

When applying the Euclidean distance formula, the size of each cluster will be equal to 𝜆 =
𝑅2

𝐶
, where 𝜌(𝑥, 𝑦) 

represents the distribution of nodes within the cluster. If we consider that space is a circular shape with a radius of 

𝜂 = 𝑅/√𝜋𝐶, 𝜌(𝑟, 𝜃), and if the density 𝜌 is constant at all points, with a uniform density of 𝜌 = (
1

𝑅2

𝐶

)), 𝑑𝐶𝐻
2 , then the 

expression for d2CH can be simplified in the following manner: 

𝑑𝐶𝐻
2 = ∫∫(𝑥2 + 𝑦2)𝜌(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = ∫∫𝑟2𝜌(𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃,                                   (6) 

𝑑𝐶𝐻
2 = ∫∫(𝑥2 + 𝑦2)𝜌(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝜌 ∫ ∫ 𝑟3𝑑𝑟𝑑𝜃 =

𝑅2

2𝜋𝐶
,

𝑅/√𝜋𝐶

𝑟=0

2𝜋

0=0
                              (7) 

The amount of energy lost in a group during each rotation. The energy dissipation of each cluster will be added 

together, and the overall amount of energy used in the network for each round will equal the combined energy 

consumption of all clusters. This means that the amount of energy used by each cluster will be combined. To find 

ideal number of created clusters, one can calculate the derivative of 𝐸𝑡𝑜𝑡 for C and set it equal to zero. The typical 

distance between a CH and BS, known as 𝑑𝐵𝑆, can be expressed as 𝐴 =  𝑅2/𝑅1. If a large proportion of nodes are 

more than d0 away from the BS, after conducting a similar analysis. By replacing the value in Equation (9) and 

taking the derivative of 𝐸𝑡𝑜𝑡 in terms of C and setting it equal to zero, we can determine: 

𝐸𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ≈ 𝐸𝐶𝐻 +
𝑁

𝐶
𝐸𝑛𝑜𝑛𝐶𝐻 ,                                                                 (8) 

𝐸𝑡𝑜𝑡 = 𝐶𝐸𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑌(𝑁(1 + 𝐸𝑒𝑙𝑒𝑐) + 𝐶𝜀𝑓𝑠𝑑𝐵𝑆
2 ) + 𝑁𝐿(𝐸𝑒𝑙𝑒𝑐 + 𝜀𝑓𝑠𝑑𝐶𝐻

2 ),                               (9) 

𝐶𝑜𝑝𝑡 = √
𝑁𝐿

2𝜋𝑌

𝑅

𝑑𝐵𝑆
= √

𝑁𝐿

2𝜋𝑌

2

0.765
,                                                               (10) 

𝑑𝐵𝑆 = ∫√𝑥2 + 𝑦2 1

𝐴
𝑑𝐴 = 0.765

𝑅

2
,                                                                                 (11) 

𝐸𝐶𝐻 = (
𝑁

𝐶
− 1)𝑌. 𝐸𝑒𝑙𝑒𝑐 +

𝑁

𝐶
𝑌 + 𝑌. 𝐸𝑒𝑙𝑒𝑐 + 𝑌. 𝜀𝑚𝑝𝑑𝐵𝑆

4                                                        (12) 

𝐶𝑜𝑝𝑡 = √
𝑁𝐿

2𝜋𝑌
√

𝜖𝑓𝑠

𝜖𝑚𝑝

𝑅

𝑑𝐵𝑆
2 ,                                                  (13) 

The ideal likelihood for a node to become a CH, 𝑝𝑜𝑝𝑡, can be calculated in the following manner: 

𝑝𝑜𝑝𝑡 =
𝐶𝑜𝑝𝑡

𝑁
,                                                                                                                            (14) 

Identifying the optimal probability of a node being CH is equally significant as determining the proper formation of 

clusters. The groups do not form the optimal path, the total energy consumed by the WSN increases in each round. 

This is especially true when the number of clusters created deviates from the ideal number - more or less. If a 

smaller number of clusters are created, some nodes in the network must send their data over long distances to 
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reach the CH, which increases the energy consumption. On other hand, if there are more clusters than necessary, 

this may lead to reduced routing traffic within each cluster due to fewer members. However, having more clusters 

also means that there will be more one-hop transmissions from CHs to BS and less data aggregation being 

performed within each cluster, leading to increased communication among CHs. 

3.3 Cluster-based Routing Model: 

Once the clusters have been formed, the cluster leaders must transfer their accumulated data to the central node. 

This requires the implementation of an inter-cluster routing protocol. Communication power is the main drain on 

power in wireless networks, and it has a significant impact on communication distance. Therefore, utilizing the 

shortest path can greatly reduce energy consumption. However, it is possible that this approach may not effectively 

extend the network's lifespan. To achieve energy-efficient routing, there must be a balance in energy usage within 

the network. Relying solely on the remaining energy of sensor nodes is not an optimal method for achieving this 

balance. The routing protocol must not require high traffic and low power nodes to be washed after installation. By 

introducing a new recommendation function—the energy load function—which considers the balance of energy and 

traffic load of the sensor nodes, we can significantly influence the selection of soap nodes. The number of messages 

sent by each cluster head is proportional to the number of members and other cluster heads for transmission 

purposes. This means that a relay node should be chosen based on higher energy levels and lower load. Equation 

(15) outlines our proposed relay energy metric for cluster head y at time t.  

𝑅𝐸𝑀𝑦(𝑡) = exp (
𝑅𝐸𝑦(𝑡)−(𝑁𝐷𝑅𝑦(𝑡)∗𝐻𝐸𝑥𝑦)

𝐼𝐸𝑦
)                                                                                 (15) 

Determine the single-hop transmission capacity from 𝑥 𝑡𝑜 𝑦, which is equivalent to 𝐻𝐸𝑥𝑦  and determines the CH Y 

is found. The energy consumption of the cluster head is quantized into a new energy function by equation (15) after 

all messages have been sent. Modifying the input to the coding process can cause significant changes in the output. 

By using the exponential function, even a small change in the energy levels of the nodes can determine the relay 

node with the maximum energy consumption. In ERCP, each group head collects data from its member units and 

evaluates neighboring group heads on a cost basis to determine the best one. Data is then sent to the 

synchronization node from this specific neighbor. Connection quality, power measurements, and distance to the 

synchronization node are among the parameters used to calculate the cost function. The node with a high-power 

measurement value should function as a relay node to ensure equal power consumption. Additionally, the use of a 

short-distance node can decrease energy usage and transmission delay. You can also prevent unreliable connections 

by selecting the node with optimal connection quality. The cost for cluster head x to select cluster head y as a relay 

node is as follows: 

𝑅𝐶𝑜𝑠𝑡𝑥𝑦(𝑡) = (𝑅𝐸𝑀𝑦(𝑡) +
1

𝐸𝐷(𝑦,𝑠𝑖𝑛𝑘)
) ∗ 𝑃𝑅𝑅𝑥𝑦(𝑡)                                                                 (16) 

In equation (16), ERCP inter-cluster routing algorithm 1 is presented, which selects the relay node from its available 

options by using the cluster head with the highest cost and value. 

Algorithm 1: ERCP-Next-Hop-Selection Algorithm 

Input: = 𝑅𝑒𝑙𝑎𝑦 𝑛𝑜𝑑𝑒 𝐼𝐷; 𝑌 =  𝑁𝑒𝑥𝑡 𝑟𝑒𝑙𝑎𝑦 𝑛𝑜𝑑𝑒; 𝑛𝑒𝑥𝑡ℎ𝑜𝑝[] = 𝐴𝑟𝑟𝑎𝑦 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑙𝑎𝑦 𝑛𝑜𝑑𝑒𝑠; 

Output: 𝑋 =  𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑖𝑛𝑘 𝑛𝑜𝑑𝑒; 𝑃[𝑋] =

𝐴𝑟𝑟𝑎𝑦 𝑓𝑜𝑟 𝑠𝑜𝑟𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑛𝑖𝑔ℎ𝑏𝑜𝑟𝑠; 

𝑁𝑜𝑑𝑒 𝑥 𝑠𝑒𝑛𝑑𝑠 “𝑛𝑒𝑥𝑡 ℎ𝑜𝑝 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑒𝑠𝑠𝑎𝑔𝑒” 𝑡𝑜 𝑖𝑡𝑠 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ℎ𝑒𝑎𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑁𝐸𝐵𝑥; 

1. 𝐸𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑦 ∈ 𝑁𝐸𝐵𝑥  𝑠𝑒𝑛𝑑𝑠 𝑟𝑒𝑝𝑙𝑦 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝐸𝑦(𝑡), 𝑃𝑅𝑅𝑥𝑦  (𝑡), 𝑁𝐷𝑅𝑦(𝑡); 

2. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑦 ∈ 𝑁𝐸𝐵𝑥  𝑑𝑜 

3.                  𝐼𝑓 ((𝐸𝐷(𝑦,𝑠𝑖𝑛𝑘) ≥ 𝐸𝐷(𝑥,𝑠𝑖𝑛𝑘)|𝑦 ∈  𝑛𝑒𝑥𝑡_ℎ𝑜𝑝[])) 

4.                               𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝑡ℎ𝑒 𝑟𝑒𝑝𝑙𝑦 𝑚𝑒𝑠𝑠𝑎𝑔𝑒; 

5.                 𝐸𝑙𝑠𝑒 

6.                              𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑅𝐶𝑜𝑠𝑡𝑥𝑦(𝑡)𝑜𝑓 𝑒𝑎𝑐ℎ 𝑦 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐸𝑞𝑢 (15)𝑎𝑛𝑑 𝑒𝑞𝑢 (16); 
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7.                               𝑃[] ← 𝑅𝐶𝑜𝑠𝑡𝑥𝑦(𝑡); 

8.                 𝐸𝑛𝑑 𝑖𝑓 

9. 𝐸𝑛𝑑 𝑓𝑜𝑟 

10. 𝑃𝑚𝑎𝑥 = 0; 

11. 𝑓𝑜𝑟 (𝑟 = 0; 𝑟 = 𝑋; 𝑟 + +) 

12.          𝐼𝑓 (𝑃[𝑟] > 𝑃𝑚𝑎𝑥) 

13.                     𝑃𝑚𝑎𝑥 = 𝑃[𝑟]; 

14.                     𝑥 = 𝑦. 𝑃𝑚𝑎𝑥; 

15.                     𝑛𝑒𝑥𝑡_ℎ𝑜𝑝[] = 𝑦 

16.         𝐸𝑛𝑑 𝑖𝑓 

17. 𝐸𝑛𝑑 𝑓𝑜𝑟 

18. 𝐸𝑛𝑑 𝑃𝑟𝑜𝑐 

3.4 Trust Analysis: 

3.4.1 Direct Trust Analysis 

In this part, the assessment of Direct Trust for communication within a cluster (SD and CH) and between CH to CH 

and CH to BS is discussed. By using 𝐿𝑜
𝑢(𝑥, 𝑦), one can determine that the sensor unit 𝑥 and the associated sensor 

units have reasonable trust in each other after at least some initial interaction in the 𝑢𝑡ℎ session. The Direct Trust is 

calculated using the trustable metric according to the equation below. 

𝐿𝑜
𝑢(𝑥, 𝑦) = 𝑆𝑒𝑐𝑜

𝑢(𝑥, 𝑦).                                                                                                        (17) 

Provided that the sensor unit 𝑦 has an improved transmission function as per Eq (17). The parameter 𝑥 of the 

sensor device is highly reliable. This helps the sensor device 𝑦 obtain a more dependable parameter from 𝑥′𝑠, from 

the viewpoint of the sensor device. 

3.4.2 – Indirect Trust Analysis 

This chapter covers the indirect assessment of in-person and telephonic communication, considering insights from 

traditional musical instruments. To ensure communication, the cell unit requests feedback from other cells about 

its actions. The collected feedback from other sensors is then combined to calculate the Indirect Trust score using 

the following formula. 

𝐺𝑜
𝑢(𝑥, 𝑦) = {

∑ 𝐹𝑜
𝑢(𝑥,𝑝)∗𝐿𝑜

𝑢(𝑥,𝑦)𝑝∈𝑍−{𝑥}

∑ 𝐹𝑜
𝑢(𝑥,𝑝)𝑝∈𝑍−{𝑥}

,        𝑖𝑓 |𝑍 − {𝑥}| > 0,

0,                                                         𝑖𝑓|𝑍 − {𝑥}| = 0.
                                           (18) 

In this context, Z represents the collection of 𝑆(𝑦) and y, which refers to the sensor device that has been in contact 

with the sensor devices. 

3.4.3 – Recent Trust Analysis 

This portion introduces a Contemporary Trust analysis of communication within a cluster and between clusters in 

heterogeneous WSNs. The ultimate reliability factor can be determined by utilizing both direct and indirect 

measures of reliability. In this case, direct reliability is better because the data sensor device has a higher level of 

interaction with the fixed sensor device. At sensor unit 𝑥, the confidence factor for the current measurement is 

𝐶𝑜
𝑢(𝑥, 𝑦) at the time of measurement. The value of the reliability factor is denoted by the letter 𝛿 in this equation. 

𝐶𝑜
𝑢(𝑥, 𝑦) = 𝛿 ∗ 𝐿𝑜

𝑢(𝑥, 𝑦) + (1 − 𝛿) ∗ 𝐺𝑜
𝑢(𝑥, 𝑦)                                                                    (19) 

The variable 𝑇𝑢(𝑥, 𝑦) represents number of times that the sensor device 𝑥 interacts with the sensor device 𝑦 during 

the 𝑢𝑡ℎ session. Similarly, 𝑇⃗ 𝑢(𝑥, 𝑦) represents the average size of interactions initiated by other sensor devices 

towards sensor device y. This is calculated using the equation below. 

𝑇⃗ 𝑢(𝑥, 𝑦) =
∑ 𝐹𝑜

𝑢(𝑥,𝑝)∗𝑇𝑢(𝑝,𝑦)𝑝∈𝑍−{𝑥}

|𝑍−{𝑥}|
                                                                                  (20) 
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3.5 Distributed Compressive Sensing Technique (DCST) 

3.5.1 – Compressive Sensing Process: 

Signals with low or compressibility can be modeled as compressive sensing, where a set of linear projections is used 

to reconstruct sparsely transmitted signals. For example, a sparse signal is one with naturally few non-zero 

elements, while if converting the nature of such compressible signals into another space with minimal energy 

conservation, they can be represented as sparsely equivalent by using this technique. Assuming a sparse 

representation in some form of Fourier or Wavelet basis, let 𝑋 ∈ 𝑅𝑁 be characterized as a discrete signal 

with a corresponding 𝑁 × 1 column vector, and use the following mathematical expression for compressive 

sensing. By assuming a sparsity, the signal can be expressed in terms of the basis that is chosen. It is stated that 

on an orthonormal basis,𝑁 × 𝑁𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑟𝑚𝑎𝑙 𝑏𝑎𝑠𝑖𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 Ψ = [Ψ1, Ψ2, … . . , Ψ𝑁], Ψ𝑘 ,   𝑘 =

 1,2, … , 𝑁 𝑖𝑠 𝑎 𝑁 1𝑣𝑒𝑐𝑡𝑜𝑟, 𝑎𝑛𝑑 𝑎 = [𝑎1, 𝑎2, … , 𝑎𝑁]. This vector is represented by the matrix (𝐾 < 𝑀 ≪ 𝑁) in the 𝛹 

domain. A signal, denoted as can be considered compressible or sparse on this basis if its coefficient vectors have 

mostly small or zero elements with only a few large ones. Most elements are free, to put it simply. According to the 

recognition theory, if the signal is K-sparse, it can be captured and recovered under certain restrictions from non-

integral linear measurements of M. The signal is modelled by CS as follows: 

𝑋 = ∑ 𝑎𝑘Ψ𝑘 = Ψ𝑎𝑁
𝑘=1                                                                                                         (21) 

𝑌 = 𝜑𝑋                                                                                                                               (22) 

In this scenario,   ܻ  represents a measurement matrix where 𝑌 = [𝑦1, 𝑦2, . . , 𝑦𝑀] is 𝑀 × 1 are its elements. 

Correspondingly, 𝜑 = [𝜑1, 𝜑2, … , 𝜑𝑀] is an N×1 sensor matrix with 𝜑, 𝑖 = 1,2, …𝑁 elements. Each element of the 

sensor array is the product of the vector 𝑋 and the vector 𝜑𝑖. The second principle can be viewed as the randomness 

of the measurement matrix, which should be considered. By replacing 𝑋 with Ψ𝑎, y can be rewritten as: 

𝑌 = 𝜙𝑋 = 𝜙Ψ𝑎 = Θ𝑎                                                                                                       (23) 

RIP can be used to reconstruct the scattering profile using M measurements, as proposed by the theory of strain 

induction. Due to this characteristic, the matrices 𝜙 𝑎𝑛𝑑 𝜓 have minimal overlap, which implies that rows of 

minus are not to be confused with columns of less than Ψ, but vice versa. Whenever the smallest number in the 

matrix Θ of order 𝛿𝑘𝜖(0,1) can satisfy the condition of RIP, it is always 𝑀 ×  𝑁. This isometric coefficient (RIC), For 

all values of ||𝑎||0 ≤ 𝐾, 𝑎𝑛𝑑 ||𝑎||0, equation (24) must be satisfied. 𝑙0 is the method for determining the number of 

non-zero elements in a range of 𝑙𝑝. 

(1 − 𝛿𝑘)|||𝑎|𝑝
𝑝

≤ |||Θa|2
2 ≤ −(1 + 𝛿𝑘)||𝑎||2

2                                                                       (24) 

||𝑎||𝑝
𝑝

= ∑ |𝑎𝑖|
𝑝𝑁

𝑖=1                                                                                                                 (25) 

𝑀 ≥ 𝑐𝐾𝑙𝑜𝑔𝑁/𝐾                                                                                                                   (26) 

Although it is a difficult task, the signal 𝑙1 can be retrieved from   ܻ  through optimization. The most used method for 

reconstructing CS signals is 𝑙0 minimization, but 𝑙1 minimization is too complex to compute. The coefficients of the 

scattering signal a can be determined by solving for 𝑙1 minimization. 

𝑋 = Ψ𝑎;   𝑎 = arg    𝑚𝑖𝑛𝑎𝜖𝑅𝑁|||𝑎||𝑙1      𝑠. 𝑡.   𝑌 = 𝜙𝑋                                                         (27) 

3.5.2 – DCST-based Common Part Recovery 

Our suggested method, which relies on belief propagation, employs the use of factorial diagrams is common in the 

creation of a graphical representation model for this model. Before describing the graph, we must first determine 

the probability distribution of the factor elements to be included in the factor graph. We can say that 𝑃(𝑠𝑖 = 1) = 𝛽 

and that every shape variable follows a Bernoulli distribution. Assuming that the signal K is spread, 𝛽 = 𝐾/𝑁 can be 

set. As a result, the prior probability distribution for each character variable can be expressed as: 
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𝑝(𝑠𝑖) = {
𝛽 =

𝐾

𝑁
            𝑠𝑖 = 1

1 − 𝛽 = 1 −
𝐾

𝑁
    𝑠𝑖 = 0     

                                                                              (28) 

Variable nodes (VN), connected nodes (CNs), and edges (Es) are the building blocks of a bipartite graph, which is 

represented by 𝐺 = (𝑉𝑁, 𝐶𝑁, 𝐸). The problem's nature permits us to compute the probability distribution with ease, 

as explained in the previous section. The construction of this graph involves connecting variable nodes and link 

node edges that are not directed when a variable node relies on underlying data. Messages exchanged between 

variables and connection nodes can be utilized to calculate side distribution functions in this manner. Two 

subgraphs in 𝑉𝑁2, nests, have the coefficient {𝑧𝑖} to multiply. The first subgraph (sub-graph 1) is responsible for 

plotting the marginal posterior distribution {𝑧𝑖}. A good solution can only be obtained by selectively selecting the 

appropriate probability distribution functions.  By approximating the signal elements, subgraph 2 provides an 

appendix that indicates the level of signal dispersion. Two variable nodes and a connection node, where the shape 

variables 𝑉𝑁1 and the symbol variables are considered variable Nodes. One example of this, with 𝐶𝑁1, which 

represents underlying nodal relationships between state variables and symbolic elements. By using the belief 

propagation method, the connection node's edges and index coordinates are used to provide information about the 

estimated index coordinate values on this graph. This information is used to update our estimate of the level of 

symptom spread. Therefore, 𝑉𝑁1 gives the distribution of each state variable 𝑝(𝑠𝑖). The Gaussian distribution of 𝑧𝑖𝑘 

can be found by reducing the point elements using shape variables, as shown in 𝐶𝑁1. The next step is to establish 

the boundary between each connection node and each variable point, which can be done by the following methods: 

𝐶𝑁1(𝑧𝑖𝑘 , 𝑆𝑖)~𝑝(𝑧𝑖𝑘|𝑆𝑖)                                                                                                     (29) 

𝜇𝐶𝑁1→𝑍(𝑧) = ∑ 𝐶𝑁1(𝑁(𝐶𝑁1))       ∏ 𝜇𝑣→𝐶𝑁1
(𝑣)𝑣∈𝑁(𝐶𝑁1){𝑍}~(𝑧)                                       (30) 

All the variable nodes associated with 𝐶𝑁1 are denoted by the constant value of 𝑁(𝐶𝑁1) for each number, while - 

represents the sum of all variables except z. The boundaries of the connection node 𝐶𝑁1 and variable nodes are 

denoted by a label: 𝜇𝑣→𝐶𝑁1
(𝑣). In terms of the prevalence of belief, these boundaries represent the degree to which 

the belief is a common descriptor. There are two Gaussian distributions for the zero and non-zero coefficients of the 

signal. 𝑉𝑁2 is used to pass the parameters and compute the mixed Gaussian distribution for the point elements, 

which is determined by arithmetic constant (𝐶𝑁1) in vector geometry. 𝑉𝑁2 is used to calculate the prior probability 

distribution of 𝑧𝑖𝑘 after these parameters have been determined. Given that the 𝑎 𝐷𝑖𝑎𝑟𝑎𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑  

The function 𝛿(𝑥), where [l] for ∫ 𝛿(𝑥)𝑑𝑥 = 1 represents its derivative. In this design, the customer has a chance. 

On the right, the second binary graph has two variable nodes and one connected node: 𝑉𝑁2, which is shared with 

sub-graph 1. The connecting node is defined as a pair of metric variables, with 𝑉𝑁3 and at least two other values 

being used to represent the variable nodes. This subgraph is responsible for determining the edge distribution of 

the point elements. This distribution can be done by multiplying all received messages by different 

nodes. Extracting the input edges from the variable node 𝑉𝑁2 is done only on nodes in the hierarchy, such as nod 0 

and nodule n. The edges present details about the status of the symbolic elements for the connected node. A 

combination of Gaussian densities is present in the input edges. Gaussian density is transmitted between all nodes 

involved in the measurement, with each member node 𝑉𝑁2 sending its value. 𝐶𝑁2 is a delta function node that links 

the signal observation variable nodes - 𝑉𝑁3 and – in particular, between the signals observed by two receivers. This 

connection node is defined as follows: 

𝑝(𝑧𝑖𝑘|𝑠𝑖) = 𝛽 × 𝑝(𝑧𝑖𝑘|𝑠𝑖 = 0) + (1 − 𝛽) × 𝑝(𝑧𝑖𝑘|𝑠𝑖 = 1) = 𝛽 × (𝜇1, 𝜎1
2) + (1 − 𝛽) × 𝑁(𝜇0, 𝜎0

2) = 𝛽 × 𝑁(𝜇1, 𝜎1
2 + (1 −

𝛽) × 𝛿((𝑍𝑖𝑘)                                                                    (31) 

𝐶𝑁2(𝑧) = ∏ 𝜇𝑢→𝑧(𝑧)𝑢∈𝑁(𝑧)                                                                                          (32) 

𝐶𝑁2(𝑍
𝑘 , 𝑦𝑖𝑘) = 𝛿(𝑦𝑖𝑘 − ∑𝑎𝑖𝑘𝑧𝑗𝑘),             𝑧𝑖𝑘𝜖𝑍

𝑘                                                                  (33) 

𝑃(𝑧𝑖𝑘|𝑌) = 𝐶𝑁𝑖𝑘(𝑍
𝑘 , 𝑦𝑖𝑘) × ∏ 𝜇𝑧𝑗𝑘→𝑍𝑌𝑖𝑘(𝑧𝑗𝑘)𝑖≠𝑗                                                                    (34) 

𝑝(𝑍𝑘|𝑌) = ∏ 𝑝(𝑧𝑖𝑘|𝑌)𝑖≠𝑗                                                                                                       (35) 
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A delta node junction function is utilized to compute the marginal distribution for all variables, by multiplying the 

value of the variable 𝑧𝑖𝑘 with the other density functions of each variable node 𝑦𝑖𝑘. Convergence is achieved by 

computing the marginal distribution at each convergence stage of an algorithm. By assuming that the signal 

coefficients are not related, we can determine the connected distribution of the given signal Z. Therefore, all input 

Gaussian denies are gathered by every connection node, and they are calculated as a product of the number of input 

connections to that node. A support set for an indicator is identified in the second section of the chart, which serves 

as its primary purpose. This involves determining the posterior distribution of the state variables at the 

synchronous node based on the sensor reading, which is done by calculating the likelihood ratio specified below. If 

this function is expressed as 𝑧𝑖𝑘, then it should also be possible to divide this likelihood ratio into smaller 

parts.𝑉𝑁3 = 𝑌  are the two distinct nodes in this diagram, with each having a connection point that corresponds to 

another node. Every time that the algorithm is executed, the variable nodes 𝑉𝑁3 = 𝑌  send their marginal 

distribution values to the variables whose value is zero on the matrix. The Gaussian density is computed by 

multiplying the input edges with multiple messages using the variable node 𝑉𝑁2in equation (31). This function's 

parameters are conveyed to the connection node by connecting a pair of connections concerning each other, such as 

the variable nodes 𝑉𝑁3 = 𝑌  and 𝑉𝑁3 and 𝑉𝑁4. As the preceding likelihood ratio is mentioned, these edges become 

the second parameter. The connection node calculates the first part of this ratio 𝐶𝑁3 by considering the Bayesian 

rules and the prior probability distribution. Link node members are linked to the token elements under the 

following support pattern: 

𝑆𝑆𝑒𝑡 = {
𝑖

;
𝑝(𝑠𝑖 = 1|𝑌)

𝑝(𝑠𝑖 = 0|𝑌)

≥ 1}                                                                                     (36) 

𝑝(𝑠𝑖=1|𝑌)

𝑝(𝑠𝑖=0|𝑌)
=

∫𝑝(𝑠𝑖=1|𝑌,𝑧𝑖𝑘)𝑝(𝑧𝑖𝑘|𝑌)

∫ 𝑝(𝑠𝑖=0|𝑌,𝑧𝑖𝑘)𝑝(𝑧𝑖𝑘|𝑌)
                                                                                           (37) 

𝐶𝑁3(|𝑆𝑆𝑒𝑡|, 𝑍) = 𝑝(|𝑆𝑆𝑒𝑡||𝑍) =
𝑃(𝑍||𝑆𝑆𝑒𝑡|)×𝑃(|𝑆𝑆𝑒𝑡|)

𝑃(𝑍)
                                                       (38) 

By denoting |𝑆𝑆𝑒𝑡| and its cardinality by index K, the set of supported identifiers is retrieved. Due to the higher 

ratio than the dispersion level K, it is crucial to reduce the cardinality. Although 𝑝(|𝑆𝑆𝑒𝑡||𝑍) has been calculated in 

equation (31) previously, there are 𝑅 = (
𝑁
𝐾

)  sets that can be used as support sets, with K representing the number 

of zeros. -zero -elements in the support set There are K non-zero elements in the support set, so there are (
𝑁
𝐾

) ways 

to choose the support set. We define 𝑅𝑆𝑒𝑡 = {𝑃𝑆𝑆𝑒𝑡1, 𝑃𝑆𝑆𝑒𝑡2, … . , 𝑃𝑆𝑆𝑒𝑡𝑘} as the set of all possible support sets with 

cardinality K, but (𝑅𝑆𝑒𝑡̅̅ ̅̅ ̅̅ ) denotes the non-all collections may be included. support package to find 𝑃(𝑍||𝑆𝑆𝑒𝑡|), we 

need to compute two marginal distributions: one for the nonzero elements of each support set 𝑃𝑆𝑆𝑒𝑡𝑖  and one for 

the nonzero elements of 𝑃𝑆𝑆𝑒𝑡𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ (non-supportive set). The marginal distribution for elements in 𝑃𝑆𝑆𝑒𝑡𝑖 is computed 

using the Gaussian distribution provided by 𝑝(𝑍𝑖𝑗|𝑠𝑗 = 1), with the value of p being determined for each element of 

(𝑃𝑆𝑆𝑒𝑡𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅), and the values of both SDSS and PSA are presented. For each possible support set, the connected node 

𝐶𝑁3 multiplies the marginal distributions of these elements to obtain the following probability: 

𝑝(𝑍𝑘||𝑃𝑆𝑆𝑒𝑡𝑖|) = ∏ 𝑝(𝑍𝑖𝑘|𝑠𝑖 = 1) × ∏ 𝑝(𝑍𝑗𝑘|𝑠𝑗 = 0)𝑗∈𝑃𝑆𝑆𝑒𝑡𝑖𝑖𝜖𝑃𝑆𝑆𝑒𝑡𝑖
                              (39) 

𝑝(𝑍𝑘||𝑆𝑆𝑒𝑡|) = ∑ 𝑝(𝑧𝑘||𝑃𝑆𝑆𝑒𝑡𝑖|)
(𝑁
𝐾

)

𝑖=1
                                                                               (40) 

In conclusion, the connection node 𝐶𝑁3 combines and includes all these marginal distributions for all members. 

Since each potential support set has an equal chance of being the main support set, the value of 𝑃(|𝑆𝑆𝑒𝑡| = 1/𝑁 can 

be represented as 𝑃(𝑍𝑘). This can be determined using Equation (30). The transfer of 𝑝(𝑧𝑘||𝑆𝑆𝑒𝑡|) and 𝑝(𝑧𝑘|𝑌) 

from connection node 𝐶𝑁3 to index nodes 𝑆𝑆𝑒𝑡 takes place. This variable node calculates the posterior distribution 

which is determined as follows:  

𝑝(|𝑆𝑆𝑒𝑡||𝑌) = ∑ ∑ ∑ (𝑝(|𝑆𝑆𝑒𝑡||𝑧𝑘) × ∏ 𝑝(𝑧𝑖𝑘|𝑌))𝑁
𝑖=1𝑧𝑁𝐾𝑧2𝑘𝑧𝑖𝑘                                        (41) 
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These chances are traded for a set number of repetitions. Once completed, these component distributions are 

employed by Equation (36) to determine the optimal support set for the sink node. The process is resumed by the 

base station once it has identified and selected the most suitable support set. By using the 𝑆𝑆𝑒𝑠𝑡-defined support 

set, it retrieves the prior distribution of the benchmarks. The Z signal is reconfigured through the continuous 

exchange of probability functions between 𝑉𝑁2 and 𝑉𝑁3 and 𝐶𝑁2, which is used to determine marginal probabilities. 

Figures 2 and 3 represent the Factors graph representation, for an individual part, and algorithm 2 provides a 

DCST propagation for sparse signal recovery to achieve optimal recovery in resource-constrained networks like 

WSNs. 

 

Figure 2 - Factor graph representation 

 

Figure 3 - Provide a factorial diagram for the same element. 

Algorithm 2 – DCST with belief propagation 

Input: 𝑋, discrete signal represented as an 𝑁 × 1 vector. Ψ − 𝑁 × 𝑁, orthonormal basis matrix. Φ, measurement 

matrix 𝑀 × 𝑁,𝑤ℎ𝑒𝑟𝑒 𝑀 ≪ 𝑁. Sparsity level K and desired error tolerance. 

Output: Compressed signal Y, recovered signal coefficient a, and posterior distribution 𝑝(|𝑆𝑆𝑒𝑡||𝑌). 

The signal 𝑋 as a sparse representation in terms of the chosen basis Ψ 

 Compute  𝑋 = Ψ𝑎, where 𝑎 = [𝑎1, 𝑎2 … , 𝑎𝑁] is the sparse coefficient vector. 
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 Compress 𝑋 using measurement matrix 𝜙, 𝑌 = 𝜙𝑋 = 𝜓𝑎 = Θ𝑎. 

 Ensure Θ satisfies RIP, allowing recovery of X using M, (1 − 𝛿𝑘)|||𝑎|𝑝
𝑝

≤ |||Θa|2
2 ≤ −(1 + 𝛿𝑘)||𝑎||2

2. 

 Initialize factor graph 𝐺 = (𝑉𝑁, 𝐶𝑁, 𝐸)𝑤𝑖𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛𝑜𝑑𝑒𝑠 V N, connected nodes CN, and edges E. 

 For variable nodes 𝑠𝑖  𝑖𝑛 Ψ, 𝑝(𝑠𝑖) = {
𝛽 =

𝐾

𝑁
            𝑠𝑖 = 1

1 − 𝛽 = 1 −
𝐾

𝑁
    𝑠𝑖 = 0     

, establish connections between VN and CN 

nodes to form the bipartite graph. 

  For each 𝑧𝑖𝑘 and shape variable 𝑠𝑖 , compute Gaussian distribution on 𝐶𝑁1, 𝐶𝑁1(𝑧𝑖𝑘 , 𝑆𝑖)~𝑝(𝑧𝑖𝑘|𝑆𝑖). 

 Update distribution with message 𝜇𝐶𝑁1 → 𝑧(𝑧), 𝜇𝐶𝑁1→𝑍(𝑧) = ∑ 𝐶𝑁1(𝑁(𝐶𝑁1))       ∏ 𝜇𝑣→𝐶𝑁1
(𝑣)𝑣∈𝑁(𝐶𝑁1){𝑍}~(𝑧)      

Identify support set 𝑆𝑆𝑒𝑡 by likelihood ratio, 𝑆𝑆𝑒𝑡 = {
𝑖

;
𝑝(𝑠𝑖 = 1|𝑌)

𝑝(𝑠𝑖 = 0|𝑌)

≥ 1}   

Support set, reconstruct the signal, 𝑋 = Ψ𝑎. 

The recovered signal X and posterior probability 𝑝(|𝑆𝑆𝑒𝑡||𝑌) 

End  

4. SIMULATION ENVIRONMENT 

The Ubuntu OS software ns3 is an integrated network of interconnected devices that can automatically exchange 

data and perform tasks. The languages used in the implementation of Ns3 are C++ and Python. C++ is the 

programming language used for front-end and network construction, while Python is used in analysis and back-end 

processing. Some of the input parameters considered for this analysis are listed in the final calculated results 

compared to CACIACA [29], OCCMPHE [30], EMRHPFC [31], and ELRC-DCS.  

4.1 Communication Delay: The sender to the receiver in the network is known as communication latency. The 

factors that are considered include delivery, generation, processing, and queuing time. Understanding and reducing 

communication latency is critical to increasing the performance and responsiveness of network applications. Fig 4, 

shows the communication delay compared ELRC-DCS model with other existing models. 

 

Figure 4 - Communication Delay Calculation 

4.2 Energy Efficiency Calculation: Efficiency in energy usage involves utilizing less energy to accomplish the 

same task and achieve an identical output, leading to lower overall energy consumption and waste. Technology and 

networks require process optimization to achieve optimal energy efficiency and performance. To achieve stability 
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and reduce operating costs, energy efficiency is crucial in applications such as computing and telecommunications. 

Fig 5, the ELRC-DCS model has been compared with other existing models. 

 

Figure 5 - Energy Efficiency Calculation 

4.3 Data Success Rate: The success ratio of data packets or messages in a communication system is the measure 

of total number of packets sent. The efficiency and dependability of data transmission are evaluated by examining 

factors like packet loss, errors, and retransmissions. The success rate of data is a measure of the strength and 

accuracy of an information system. Optimizing network performance and maintaining high-quality service in 

various applications requires monitoring this speed. Fig 6, data success rate has compared the ELRC-DCS proposed 

model with another existing model. 

 

Figure 6 - Data Success Rate Calculation 

4.4 Network Throughput Calculation: The rate of data transfer from one location to another on a network is 

called network throughput, measured in bits per second. It indicates the actual transfer rate bandwidth and factors 

such as network load, latency, or protocol overhead. Improved network performance, faster data transfer, and a 

better user experience are the benefits of increased throughput in applications like gaming consoles or streaming 

services. Improving network access is essential to meet the needs of large-scale applications and ensure efficient 
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use of resources. Fig 7, network throughput compared with the ELRC-DCS proposed model with other existing 

models. 

 

Figure 7 - Network Throughput Calculation 

4.5 Routing Overhead Calculation: The overhead of routing affects the resources used by routing protocols to 

manage and maintain network paths, including bandwidth and processing power. The process involves exchanging 

routing information, maintaining, and storing routing tables, and devising calculations to identify the optimal 

routes for data transmission. Routing that is advanced can lead to a higher latency and subsequently, lower 

throughput on the network. Fig 8, routing overhead has compared with ELRC-DCS proposed model with other 

existing models. 

 

Figure 8 - Routing Overhead Calculation 

5. RESULT AND DISCUSSION: 

The ELRC-DCS protocol and the proposed model both demonstrate exceptional performance improvements in 

WSNs through optimized clustering and routing strategies that emphasize energy efficiency, low latency, and high 

data success rates. Fig 4, communication delay ELRC-DCS achieves the lowest latency at 108.30 ms, significantly 

outperforming other models like CACIACA at 189.24 ms and OCCMPHE at 165.85 ms. EMRHPFC model achieves 

115.46 ms thus enhancing responsiveness for time-sensitive applications. The proposed model complements this by 

establishing the shortest, energy-efficient routes between CH and the sink, further reducing delay. Fig 5, energy 

efficiency with ELRC-DCS achieving 93.45% efficiency. CACIACA AT 75.16 %, OCCMPHE AT 84.17 %, AND 

EMRHPFC T 91.19 %. The proposed model maintains energy balance by rotating CH roles, thereby preventing 

premature battery depletion among individual nodes. This CH rotation and balanced cluster size also optimize 

energy usage, aligning with the ELRC-DCS’s approach and resulting in an extended network lifespan. Fig 6, the 

data success rate ELRC-DCS outperforms with 91.64%, CACIACA AT 81.17 %, OCCMPHE at 83.12 %, AND 
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EMRHPFC at 89.28 % indicating reliable data transmission with minimal errors. Similarly, the proposed model 

enhances reliability through direct and indirect trust measures, which reduce low-quality data transmissions, 

ensuring dependable communication. Fig 7, network throughput of ELRC-DCS at 784.26 Kbps CACIACA at 459.78 

Kbps, OCCMPHE at 589.28 Kbps, and EMRHPFC at 668.17 Kbps demonstrates its high data handling capacity, a 

significant advantage for high-demand applications. The proposed model supports efficient data handling by 

utilizing the DCST to compress data, thus reducing packet volume and energy use while maintaining data fidelity. 

Fig 8, routing overhead with ELRC-DCS achieving the lowest at 898 packets, CACIACA at 1772 packets, OCCMPHE 

at 987 packets, and EMRHPFC at 923 packets facilitating faster routing and improved bandwidth usage. The 

proposed model’s relay node selection mechanism, based on energy levels and load, further reduces routing 

complexity, contributing to enhanced network performance and longevity. ELRC-DCS and the proposed model 

represent robust solutions for WSN applications, offering comprehensive improvements in efficiency, reliability, 

and network durability, which make them well-suited for sustainable and time-sensitive applications. The overall 

comparison table is shown in Table 1. 

Table 1 - Overall Comparative Performance Analysis  

Parameters CACIACA OCCMPHE EMRHPFC ELRC-DCS 

Communication Delay 

(ms) 
189.24 165.85 115.46 108.30 

Energy Efficiency (%) 75.16 84.17 91.19 93.45 

Data Success Rate (%) 81.17 83.12 89.28 91.64 

Network Throughput 

(Kbps) 
459.78 589.28 668.17 784.26 

Routing Overhead 

(Packets) 
1772 987 923 898 

6. CONCLUSION: 

Energy consumption, network lifetime, data transmission efficiency, and security are among the critical issues that 

HWSNs face, which the proposed ELRC-DCS approach can address. Balanced energy usage across all sensor nodes 

is achieved through hierarchical clustering and energy-efficient multi-hop routing in the ELRC-DCS model, which 

can significantly extend the network's operational lifespan. By utilizing the energy balance, CH is used to select 

which loads to be balanced and maintain uniform energy usage throughout the entire network. Integration of DCST 

to decrease the amount of data being passed through it via the network. The reduction in communication expenses 

is achieved by enabling efficient data reconstruction from incomplete measurements, which reduces the energy 

consumption associated with transmitting excessive or redundant data. The ELRC-DCS framework employs 

compression to optimize network performance, even when resources are limited. The ELRC-DCS method 

incorporates a manual safety mechanism. HWSNs are particularly vulnerable to the transmission of data through 

multiple nodes, which can be easily hacked. By evaluating the direct, indirect, and updated trust values, this model 

ensures reliable communication between nodes and enhances the network's security. By enhancing data integrity, 

this approach safeguards against various security risks, including data manipulation and malicious node 

activity. Compared to traditional routing techniques in WSNs, the ELRC-DCS proposed model is highly effective 

and exhibits significant gains in energy efficiency, network lifetime, and data reliability. By using the ELRC-DCS 

approach, network longevity, and performance enhancement are achieved by reducing energy consumption per 

node, minimizing data transmission delays, and increasing the packet delivery ratio. Especially well-suited for 

large-scale environmental monitoring applications that require energy efficiency and data accuracy, the ELRC-DCS 

model is highly adaptable to this application. The ELRC-DCS model is designed to address various issues in 

HWSNs, including energy efficiency, load-balanced routing, compressive sensing, and security enhancements. By 

combining hierarchical clustering with multi-hop routing, compressive sensing, and trust-based security it is highly 

adaptable to different contexts of deployment for the HWSN. Further improvements to this model are possible 

through the integration of mobility support, improved accuracy of trust-based evaluations, and exploration of 

further compressive sensing techniques for handling higher-dimensional data. ELRC-DCS is an important step 

towards providing stable and low-power HWSNs in real life. The comparative analysis of the four models 
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CACIACA, OCCMPHE, EMRHPFC, and ELRC-DCS. With the lowest communication delay of 108.30 ms and the 

highest energy efficiency at 93.45%, ELRC-DCS demonstrates exceptional performance in enhancing network 

efficiency. Its superior data success rate of 91.64% and network throughput of 784.26 Kbps highlight its capacity to 

maintain robust communication under varying conditions. The minimum routing overhead required to optimize 

the resource usage is 898 packets. The ELRC-DCS model stands as a key solution for improving network 

performance, as it makes a significant contribution to network optimization. 
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