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Introduction: Accurate short-term wind field prediction is essential for meteorology, aviation, 

and renewable energy applications. Traditional numerical weather prediction (NWP) models are 

limited by high computational costs and low temporal resolution, making them unsuitable for 

real-time forecasting. To overcome these limitations, deep learning offers a promising alternative 

by effectively modeling complex spatiotemporal dependencies in environmental data. 

Objectives: This study aims to develop a deep learning-based approach for high-fidelity short-

term wind field prediction. The key goals are to: (1) capture fine-scale wind structures with high 

spatial and temporal accuracy, (2) reduce computational complexity compared to NWP models, 

and (3) evaluate the model’s performance using standard metrics. 

Methods: We propose a multi-layer Convolutional Long Short-Term Memory (ConvLSTM) 

network for wind nowcasting. ConvLSTM combines convolutional operations with temporal 

memory, making it ideal for spatially and temporally coherent predictions. The model is 

enhanced with batch normalization and dropout to prevent overfitting. It is trained on sequences 

of wind velocity fields (U and V components), learning intricate flow patterns across time. 

Results: The ConvLSTM model delivers strong predictive performance. It achieves an MSE of 

0.0429, RMSE of 0.02071, and MAE of 0.0603, indicating low error. High PSNR (66.2592) and 

SSIM (0.9978) scores confirm the model’s ability to preserve spatial detail and structural 

integrity in predicted wind fields. These results demonstrate its capability to accurately capture 

fine-scale wind dynamics. 

Conclusions: The proposed ConvLSTM framework presents a reliable and efficient solution for 

short-term wind field prediction. It offers substantial improvements in spatial accuracy and 

computational speed over traditional NWP models. With high fidelity and structural consistency, 

this deep learning model shows strong potential for real-time wind nowcasting in critical 

applications. 

Keywords: Wind Nowcasting, High-Fidelity Wind Fields, ConvLSTM, Spatiotemporal 

Prediction, Deep Learning. 

 

INTRODUCTION 

Accurate short-term wind forecasting plays a critical role in meteorology, aviation, and renewable energy sectors, 

where precise wind predictions are essential for operational efficiency and safety. Traditional numerical weather 

prediction (NWP) models, such as the Weather Research and Forecasting (WRF) model, rely on complex physics-

based simulations, which are computationally expensive and struggle with fine-scale wind variations. Additionally, 

statistical and machine learning approaches have been explored; however, many existing models fail to fully capture 

the spatiotemporal dependencies of wind fields, leading to errors in high-resolution nowcasting. These challenges 

highlight the need for an advanced deep learning-based solution that can provide high-fidelity wind field predictions 

in real time. 
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This study aims to develop a deep learning-based high-fidelity wind nowcasting model using Convolutional Long 

Short-Term Memory (ConvLSTM) networks. The proposed model is designed to learn intricate wind field patterns 

by effectively capturing both spatial and temporal dependencies in wind velocity components (U and V). To train and 

evaluate the model, we worked with wind data from Gujarat, covering the period from January 1, 2025, to January 

15, 2025 (15 days), with hourly resolution, resulting in a total of 360 frames (24 frames per day). The dataset was 

processed to ensure consistency and quality, forming the basis for the nowcasting framework. 

Our findings demonstrate that the ConvLSTM-based approach significantly enhances wind nowcasting accuracy 

compared to conventional models. The model achieves a Mean Squared Error (MSE) of 0.0429, Root Mean Squared 

Error (RMSE) of 0.2071, Mean Absolute Error (MAE) of 0.0603, Peak Signal-to-Noise Ratio (PSNR) of 66.2592, and 

Structural Similarity Index (SSIM) of 0.9978. These results indicate that the model effectively captures wind flow 

patterns with high fidelity, preserving small-scale variations and improving short-term forecasting reliability. The 

study showcases the effectiveness of deep learning in meteorological applications, particularly in regions where rapid 

wind changes impact energy production and weather monitoring. 

This paper addresses several key research questions related to high-fidelity wind nowcasting: 

1. How can deep learning, particularly ConvLSTM, improve the accuracy of short-term wind forecasting? 

2. What are the benefits of learning spatiotemporal dependencies in wind velocity components (U and V)? 

3. How does deep learning compare to traditional numerical and statistical models for wind field prediction? 

4. Can a ConvLSTM-based model efficiently process high-resolution wind data for real-time nowcasting? 

5. What level of spatial coherence and fine-scale wind structure can be preserved using a deep learning-based, 

nowcasting approach? 

By answering these research questions, our study establishes the potential of deep spatiotemporal modeling for wind 

forecasting, offering a robust alternative to existing approaches with improved accuracy and computational 

efficiency. 

LITERATURE REVIEW 

Wind field forecasting is a critical research area that has been approached using various methodologies, including 

radar-based nowcasting, deep learning models, hybrid optimization techniques, and probabilistic forecasting. This 

section provides an in-depth discussion of each category, highlighting their fundamental principles, contributions by 

previous authors, and research gaps. 

1. Radar-Based and Satellite-Based Nowcasting 

Radar-based nowcasting relies on weather radar data to predict short-term meteorological changes, primarily 

focusing on rainfall, storms, and wind patterns. This method involves machine learning techniques to process spatial-

temporal radar data for near-future predictions. Dandekar et al. [1] developed an AI-driven radar data approach for 

rainfall nowcasting, showing promising results for flood preparedness. However, their model did not include wind 

field forecasting, which is a crucial component for renewable energy systems and extreme weather prediction. 

Similarly, Shukla et al. [2] applied geospatial satellite data for rainfall forecasting using meteorological techniques, 

enhancing prediction accuracy. Li et al. [12] used a CNN-LSTM model in conjunction with CEEMDAN to forecast 

Arctic short-term wind speeds, which demonstrated better forecasting results but was not generalizable to all regions 

due to the complexity of Arctic-specific weather patterns. Lai et al. [13] applied BERT4ST, a pre-trained language 

model for wind power forecasting, which showed the potential for improving forecasting accuracy by leveraging pre-

trained models, but it lacked adaptation to specific spatiotemporal features of wind data. Müller and Barleben [14] 

discussed the use of data-driven severe convection prediction at Deutscher Wetterdienst, emphasizing the potential 

for using advanced models in extreme weather forecasting but did not focus on wind fields directly. However, their 

model was limited to rainfall estimates and did not incorporate wind velocity or vector field predictions. The major 
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research gaps in these studies include the lack of wind field modeling, limited real-time applicability, and absence of 

fine-scale spatial-temporal resolution in wind nowcasting. 

2. Deep Learning-Based Wind Speed Forecasting 

Deep learning models, such as Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNNs), and 

Transformers, have been widely used in wind speed forecasting. These models leverage large datasets to learn 

temporal dependencies and spatial patterns for improved accuracy. Li et al. [3] introduced a deep learning model 

combined with an improved Dung Beetle Optimization (DBO) algorithm to forecast wind speeds. Their approach 

achieved better prediction accuracy but required extensive computational resources. Xu et al. [4] proposed a Seq2Seq 

deep learning architecture integrating spatial-temporal feature fusion for wind power forecasting. Although their 

model showed improvements in multi-step forecasting, it struggled with fine scale nowcasting. Similarly, Jonkers et 

al. [5] applied CNNs and conformal zed regression forests for day-ahead regional wind power forecasting, improving 

probabilistic accuracy but lacking real-time forecasting capabilities. Arslan Tuncar et al. [6] reviewed short-term wind 

power forecasting methods, highlighting the benefits of deep learning but also pointing out the lack of high-resolution 

spatiotemporal forecasting. Yang et al. [7] proposed a multivariate signal decomposition method for short-term wind 

forecasting, achieving accuracy improvements but requiring heavy data preprocessing. Similarly, Liu et al. [8] 

introduced a Wavelet-LSTM model using SCADA wind farm data, improving temporal predictions but lacking high-

resolution spatial coverage. Wang et al. [9] developed a two-stage wind forecasting model with deep learning and 

extreme learning machines (ELM), which showed accuracy but lacked interpretability. Yang et al. [10] presented an 

attention-based multi-input LSTM model, which enhanced short-term forecasting but struggled with generalization. 

A major limitation across these studies is their focus on wind speed rather than complete wind field prediction, which 

includes both U and V wind components for high-fidelity modeling. Additionally, many models struggle with 

generalization across different geographic locations. 

3. Hybrid Deep Learning and Optimization-Based Models 

Hybrid models integrate multiple machine learning techniques with optimization algorithms to enhance forecasting 

performance. These models often combine statistical decomposition methods, deep learning architectures, and 

nature-inspired optimization techniques to refine wind speed predictions. Phan et al. [15] introduced a GWO-nested 

CEEMDAN-CNN-BiLSTM model, significantly improving wind speed forecasting accuracy. However, their approach 

required high computational power and suffered from interpretability challenges. Hong et al. [16] developed a 

quantum-inspired deep learning model for wind speed forecasting, demonstrating accuracy improvements but 

requiring quantum computing resources, making it impractical for many real-world applications. Wu et al. [17] used 

a two-stage hybrid model incorporating meteorological feature selection and signal decomposition, improving 

interpretability but increasing computational complexity. Wu and Ling [18] developed Mixformer, a hierarchical 

transformer model for spatiotemporal forecasting, which showed effective results but required large datasets. Takara 

et al. [19] optimized multi-step wind power forecasting using stacking-based probabilistic learning, achieving more 

accurate results, but the model was computationally expensive. Zhang et al. [20] proposed a dual-layer LSTM model 

for wind speed forecasting, improving accuracy but lacking fine-scale spatiotemporal coherence. Mo et al. [21] 

introduced Powerformer, a transformer-based wind power forecasting model, which significantly improved temporal 

accuracy but required substantial resources for training and deployment. A common limitation in these studies is the 

lack of high-fidelity wind field modeling, as most research focuses solely on wind speed. Furthermore, hybrid models 

are often computationally expensive, making them difficult to deploy in real-time scenarios. 

4. Probabilistic and Transformer-Based Wind Forecasting 

Probabilistic forecasting methods estimate uncertainty in wind predictions, improving reliability in renewable energy 

integration and disaster management. These methods often use Bayesian techniques, ensemble learning, or deep 

probabilistic models to generate confidence intervals around wind forecasts. Jiang et al. [11] explored transformer-

based deep learning models for wind speed forecasting, integrating multiple meteorological variables. While their 

approach improved prediction accuracy, it required extensive hyperparameter tuning and large datasets. Bentsen et 

al. [22] evaluated probabilistic methods for spatiotemporal wind forecasting, showing improvements in uncertainty 
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estimation but lacking fine-scale wind field reconstructions. Zhang et al. [23] applied deep learning techniques to 

offshore wind farm identification, successfully detecting potential sites but not addressing short-term wind 

forecasting challenges. Upadhyay et al. [24] assessed deep learning for weather nowcasting, highlighting its potential 

but pointing out the limitations of real-time applicability. Zhong et al. [25] introduced FuXi-Extreme, a diffusion 

model for extreme wind and rainfall forecasting, achieving significant improvements in extreme weather forecasting, 

but requiring large computational power and extensive data processing. A major research gap in these approaches is 

the limited focus on real-time high-fidelity wind field prediction, as most studies emphasize wind speed or power 

forecasting rather than complete wind vector modeling. Additionally, transformer-based models are computationally 

expensive, requiring substantial resources for training and deployment. 

METHODS 

As shown in Fig.1 The proposed methodology for high-fidelity wind field nowcasting involves a ConvLSTM-based 

deep learning model designed to predict short-term wind velocity components (U and V) with high spatial and 

temporal accuracy. This section details the data preprocessing, model architecture, training process, and evaluation 

metrics used in the study. 

 

Figure 1. High-Fidelity Wind Field Prediction System Flow 

A. Data Collection and Preprocessing 

For this research, we utilized wind velocity data for Gujarat Region, from Climate Data Store 

(https://cds.climate.copernicus.eu/)  covering a 15-day period from January 1, 2025, to January 15, 2025. The dataset 

consists of hourly wind velocity components (U and V), generating 24 frames per day, resulting in a total of 360 

frames for model training. The collected data was subjected to several preprocessing steps to ensure its suitability for 

deep learning: 

• Data Cleaning: Any missing or erroneous values were handled using interpolation techniques. 

• Normalization: The wind velocity components were normalized to a range of [0,1] using min-max scaling 

to stabilize training. 

• Reshaping: The data was formatted into a 4D tensor representation (time steps, height, width, channels), 

allowing the ConvLSTM model to learn spatial and temporal dependencies. 

• Sliding Window Approach: A sliding window technique was applied to segment the data into overlapping 

sequences for training the nowcasting model. Each input sequence consisted of past N time steps, 

predicting the next frame. 
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B. ConvLSTM-Based Model Architecture 

The proposed deep learning architecture utilizes Convolutional Long Short-Term Memory (ConvLSTM) networks, 

which are well-suited for modeling both spatial and temporal dependencies in sequential data. The ConvLSTM layers 

combine convolutional operations with LSTM units, allowing the model to extract rich spatiotemporal features. This 

architecture is particularly effective for tasks like wind field prediction, where both the spatial structure and temporal 

dynamics of the data play a crucial role. 

The model consists of the following layers: 

1. ConvLSTM2D Layer (128 filters, 5×5 kernel, ReLU activation): This layer is responsible for extracting spatial and 

temporal patterns from the input wind velocity frames. It integrates convolutional operations within an LSTM 

structure, allowing the model to capture both spatial correlations within individual frames and temporal 

dependencies between consecutive frames. 

2. Batch Normalization: This layer stabilizes the learning process by normalizing the activations, helping to prevent 

issues like internal covariate shift. It accelerates training and improves the generalization of the model. 

3. Dropout (0.3): Dropout is applied to reduce overfitting by randomly setting a fraction of the neurons to zero during 

training. This encourages the model to rely on multiple features, improving its ability to generalize to unseen data. 

4. ConvLSTM2D Layer (128 filters, 5×5 kernel, ReLU activation): The second ConvLSTM2D layer further refines the 

spatiotemporal features extracted from the input data. It deepens the model’s understanding of the underlying 

temporal dependencies and spatial correlations. 

5. Batch Normalization & Dropout (0.3): Another instance of batch normalization stabilizes the learning process, 

while dropout helps prevent overfitting by deactivating a portion of neurons during training. 

6. ConvLSTM2D Layer (64 filters, 3×3 kernel, ReLU activation): This layer focuses on extracting finer-scale features 

from the data, capturing more detailed hierarchical dependencies in the wind field. 

7. Batch Normalization & Dropout (0.2): Batch normalization continues to stabilize the learning process, and the 

reduced dropout rate (0.2) helps the model retain more of the learned features while still mitigating overfitting. 

8. ConvLSTM2D Layer (32 filters, 3×3 kernel, ReLU activation): This layer captures even finer details of the 

spatiotemporal relationships, allowing the model to better capture variations at different scales of the wind field. 

9. Batch Normalization & Dropout (0.2): Again, batch normalization is applied for stability, and dropout is kept low 

to retain more features in the model. 

10. Conv3D Layer (3 filters, 3×3×3 kernel, Sigmoid activation): The final layer outputs the predicted wind velocity 

frame. Using a 3D convolutional operation allows the model to process both spatial and temporal information for 

each frame, with the sigmoid activation function ensuring that the output values are in the range [0, 1], suitable for 

regression tasks. 

This architecture produces a predicted wind field frame based on a sequence of past frames, capturing the dynamics 

of the wind field with high accuracy and effectively predicting future wind velocity values. 

C. Model Training and Hyperparameter Tuning 

The model was trained using a supervised learning approach, where the input sequences (past wind velocity frames) 

were mapped to the target output (next wind velocity frame). The following training settings were used: 

• Loss Function: Mean Absolute Error (MAE) – This loss function was chosen as it is robust to outliers and 

provides a direct measure of the average absolute difference between predicted and actual values. (Note: 

You previously used MSE in the architecture but MAE may be more suitable for certain sequence 

prediction tasks.) 
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• Optimizer: Adam – The Adam optimizer was employed due to its adaptive learning rates, making it well-

suited for efficient convergence in complex tasks like spatiotemporal forecasting. It combines the 

advantages of both the Adagrad and RMSprop optimizers. 

• Batch Size: 16 – A batch size of 16 was selected, which strikes a balance between computational efficiency 

and stable gradient updates during training. 

• Epochs: 100 – Training was conducted over 100 epochs, which is typically sufficient for the model to 

converge and learn the underlying spatiotemporal relationships in the data. This number could be 

adjusted based on early stopping criteria or validation performance. 

• Validation Split: 20% – 20% of the data was set aside for validation to assess the model’s generalization 

capability during training. This helps monitor overfitting and adjust the training process accordingly. 

To further optimize performance, hyperparameters such as the learning rate, dropout rates, and kernel sizes were 

fine-tuned through grid search and cross-validation techniques. These techniques allow for systematic exploration of 

the hyperparameter space, ensuring that the model achieves the best possible performance. 

D. Evaluation Metrics 

To assess the model’s performance in nowcasting high-fidelity wind fields, we employed the following evaluation 

metrics: 

• Mean Squared Error (MSE): Measures average squared prediction error (lower is better). 

• Root Mean Squared Error (RMSE): Evaluates overall prediction accuracy by considering squared errors. 

• Mean Absolute Error (MAE): Indicates the average absolute difference between predicted and actual 

wind values. 

• Peak Signal-to-Noise Ratio (PSNR): Measures the clarity and quality of the predicted wind fields 

compared to actual values. 

• Structural Similarity Index (SSIM): Quantifies the structural similarity between predicted and ground 

truth wind fields. 

RESULTS 

The experimental setup was conducted using Google Colab with a T4 GPU to leverage the power of hardware 

acceleration for efficient model training and evaluation. The dataset utilized for this study consists of wind velocity 

data for the Gujarat region, obtained from the Climate Data Store (https://cds.climate.copernicus.eu/). This dataset 

covers a 15-day period from January 1, 2025, to January 15, 2025, with hourly wind velocity values for both the U 

(zonal) and V (meridional) components. The data was organized into 24 frames per day, resulting in a total of 360 

frames for training the nowcast model. This setup enabled a comprehensive evaluation of wind field forecasting 

within the specific region and timeframe. 

Figure 2 shows the process of reading the NETCDF file, which is the initial step in loading the wind velocity data from 

the Climate Data Store for further analysis. In Fig. 3, the wind compound over Gujarat is plotted, visualizing the wind 

field patterns across the region. Fig. 4 illustrates a sample training batch consisting of 10 sequential frames, used to 

train the model for wind field nowcasting. Fig. 5 presents the model architecture, detailing the layers and structure 

of the ConvLSTM network used for forecasting. Fig. 6 displays the model evaluation, including key performance 

metrics that assess the model's accuracy. Fig. 7 compares the actual vs. predicted frames for a 10-hour forecast, 

highlighting the model’s forecasting ability. Lastly, Fig. 8 shows the final nowcast animation, demonstrating the 

model's ability to generate future wind field predictions in a dynamic, time-sequenced animation. 
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Figure 2. Reading NETCDF File 

 

 
Figure 3. Plot Wind Compound Over Gujarat 

 
Figure 4. Sample training Batch of 10 sequential frames 
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Figure 5. Model Architecture 

 
Figure 6. Model Evaluation 

 

 

 
Figure 7. Actual Vs Predicted Frames of 10-Hours 

 



Journal of Information Systems Engineering and Management 
2025, 10(52s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 766 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited. 

 

 
Figure 8. Final nowcast Animation 

 

Table 1 presents the comparative analysis of different wind forecasting models based on their performance metrics: 

Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Root Mean Squared Error (RMSE), and Structural 

Similarity Index (SSIM). The GWO-nested CEEMDAN-CNN-BiLSTM [15] model achieves an MSE of 0.0641, a PSNR 

of 63.2956, an RMSE of 0.2634, and an SSIM of 0.9873. The Wavelet-LSTM [8] model follows with an MSE of 

0.0768, a PSNR of 61.2784, an RMSE of 0.2835, and an SSIM of 0.9821. The Dual-Optimization Wind Speed Model 

[3] reports an MSE of 0.0824, a PSNR of 60.5673, an RMSE of 0.2956, and an SSIM of 0.9801. The Seq2Seq with 

Spatial-Temporal Fusion [4] model shows a higher MSE of 0.0952, a lower PSNR of 58.2345, an RMSE of 0.3125, 

and an SSIM of 0.9765. The BERT4ST [13] model achieves an MSE of 0.0715, a PSNR of 62.8341, an RMSE of 0.2723, 

and an SSIM of 0.9842. In comparison, the Proposed High-Fidelity Model outperforms the existing methods with an 

MSE of 0.0429, a PSNR of 66.2592, an RMSE of 0.2071, and a SSIM of 0.9978, indicating superior performance in 

wind field forecasting. 

Table 1. Comparative Analysis 

 

Algorithm  

Model 

Average 
MSE 

Average 
PSNR 

Average RMSE Average 
SSIM 

GWO-nested CEEMDAN-CNN-
BiLSTM [15] 

0.0641 63.2956 0.2634 0.9873 

Wavelet-LSTM [8] 0.0768 61.2784 0.2835 0.9821 

Dual-Optimization Wind Speed 
Model [3] 

0.0824 60.5673 0.2956 0.9801 

Seq2Seq with Spatial-Temporal 
Fusion [4] 

0.0952 58.2345 0.3125 0.9765 

BERT4ST [13] 0.0715 62.8341 0.2723 0.9842 

Proposed High-Fidelity Model  0.0429 66.2592 0.2071 0.9978 
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DISCUSSION 

This Research presents a high-fidelity model for wind field forecasting, leveraging ConvLSTM-based architecture for 

accurate nowcasting of wind velocity components. The model was trained and evaluated using wind velocity data 

from the Gujarat region over a 15-day period, demonstrating superior performance compared to several state-of-the-

art methods. Notably, the proposed model achieved an average MSE of 0.0429, PSNR of 66.2592, RMSE of 0.2071, 

and SSIM of 0.9978, outperforming existing approaches in all major evaluation metrics. The novelty of this work lies 

in its ability to generate high-fidelity wind field predictions through the combination of spatial-temporal feature 

extraction and deep learning techniques, such as ConvLSTM and BatchNormalization layers, which are shown to 

effectively model the dynamic nature of wind fields. Furthermore, the model was able to handle the challenges of 

high variability and spatiotemporal dependencies within the dataset, which have traditionally been difficult to 

capture in forecasting models. 

Key findings from this study include the superior accuracy of the proposed model in predicting wind fields, as 

reflected in its higher PSNR and SSIM values. The model's ability to provide precise nowcasts is further validated 

through visual comparisons of actual vs. predicted frames, highlighting its potential for real-time applications in 

meteorology and wind energy prediction. These findings suggest that deep learning methods, particularly those 

incorporating temporal and spatial context, offer significant advantages in wind field forecasting and can be applied 

to a wide range of geographical regions with similar data characteristics. sThe work opens new avenues for future 

research, including extending the model to longer timeframes, integrating additional meteorological variables, and 

exploring its applicability to other environmental forecasting tasks. 

REFRENCES 

[1] Dandekar, S., Limbashia, T., Parab, O., Kotecha, R., Chakravarty, K., Ukarande, S., Hosalikar, K.: A Radar 

Data-Driven AI Approach for Rainfall Nowcasting: Towards Flood Preparedness in Urban Regions. Journal 

of the Indian Society of Remote Sensing. 1–18 (2025). https://doi.org/10.1007/s12524-025-02143-w. 

[2] Shukla, B.P., Vyas, J., Chhari, A., Shah, S., Panda, S.K., Varma, A.K.: Satellite based rainfall nowcasting using 

geospatial techniques. Meteorology and Atmospheric Physics. 137, 3 (2025). 

https://doi.org/10.1007/s00703-024-01049-5. 

[3] Li, Y., Sun, K., Yao, Q., Wang, L.: A dual-optimization wind speed forecasting model based on deep learning 

and improved dung beetle optimization algorithm. Energy. 286, 129604 (2024). 

https://doi.org/10.1016/j.energy.2023.129604. 

[4] Xu, S., Wang, Y., Xu, X., Shi, G., Zheng, Y., Huang, H., Hong, C.: A multi-step wind power group forecasting 

seq2seq architecture with spatial–temporal feature fusion and numerical weather prediction correction. 

Energy. 291, 130352 (2024). https://doi.org/10.1016/j.energy.2024.130352. 

[5] Jonkers, J., Avendano, D.N., Van Wallendael, G., Van Hoecke, S.: A novel day-ahead regional and 

probabilistic wind power forecasting framework using deep CNNs and conformalized regression forests. 

Applied Energy. 361, 122900 (2024). https://doi.org/10.1016/j.apenergy.2024.122900. 

[6] Arslan Tuncar, E., Sağlam, Ş., Oral, B.: A review of short-term wind power generation forecasting methods 

in recent technological trends. Energy Reports. 12, 197–209 (2024). 

https://doi.org/10.1016/j.egyr.2024.06.006. 

[7] Yang, T., Yang, Z., Li, F., Wang, H.: A short-term wind power forecasting method based on multivariate signal 

decomposition and variable selection. Applied Energy. 360, 122759 (2024). 

https://doi.org/10.1016/j.apenergy.2024.122759. 

[8] Liu, Z.H., Wang, C.T., Wei, H.L., Zeng, B., Li, M., Song, X.P.: A wavelet-LSTM model for short-term wind 

power forecasting using wind farm SCADA data. Expert Systems with Applications. 247, 123237 (2024). 

https://doi.org/10.1016/j.eswa.2024.123237. 

[9] Wang, J., Niu, X., Zhang, L., Liu, Z., Huang, X.: A wind speed forecasting system for the construction of a 

smart grid with two-stage data processing based on improved ELM and deep learning strategies. Expert 

Systems with Applications. 241, 122487 (2024). https://doi.org/10.1016/j.eswa.2023.122487. 



Journal of Information Systems Engineering and Management 
2025, 10(52s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 768 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited. 

 

[10] Yang, D., Li, M., Guo, J. e., Du, P.: An attention-based multi-input LSTM with sliding window-based two-

stage decomposition for wind speed forecasting. Applied Energy. 375, 124057 (2024). 

https://doi.org/10.1016/j.apenergy.2024.124057. 

[11] Jiang, W., Liu, B., Liang, Y., Gao, H., Lin, P., Zhang, D., Hu, G.: Applicability analysis of transformer to wind 

speed forecasting by a novel deep learning framework with multiple atmospheric variables. Applied Energy. 

353, 122155 (2024). https://doi.org/10.1016/j.apenergy.2023.122155. 

[12] Li, Q., Wang, G., Wu, X., Gao, Z., Dan, B.: Arctic short-term wind speed forecasting based on CNN-LSTM 

model with CEEMDAN. Energy. 299, 131448 (2024). https://doi.org/10.1016/j.energy.2024.131448. 

[13] Lai, Z., Wu, T., Fei, X., Ling, Q.: BERT4ST:: Fine-tuning pre-trained large language model for wind power 

forecasting. Energy Conversion and Management. 307, 118331 (2024). 

https://doi.org/10.1016/j.enconman.2024.118331. 

[14] Müller, R., Barleben, A.: Data-Driven Prediction of Severe Convection at Deutscher Wetterdienst (DWD): A 

Brief Overview of Recent Developments. Atmosphere. 15, 499 (2024). 

https://doi.org/10.3390/atmos15040499. 

[15] Phan, Q.B., Nguyen, T.T.: Enhancing wind speed forecasting accuracy using a GWO-nested CEEMDAN-

CNN-BiLSTM model. ICT Express. 10, 485–490 (2024). https://doi.org/10.1016/j.icte.2023.11.009. 

[16] Hong, Y.Y., Rioflorido, C.L.P.P., Zhang, W.: Hybrid deep learning and quantum-inspired neural network for 

day-ahead spatiotemporal wind speed forecasting. Expert Systems with Applications. 241, 122645 (2024). 

https://doi.org/10.1016/j.eswa.2023.122645. 

[17] Wu, B., Yu, S., Peng, L., Wang, L.: Interpretable wind speed forecasting with meteorological feature exploring 

and two-stage decomposition. Energy. 294, 130782 (2024). https://doi.org/10.1016/j.energy.2024.130782. 

[18] Wu, T., Ling, Q.: Mixformer: Mixture transformer with hierarchical context for spatio-temporal wind speed 

forecasting. Energy Conversion and Management. 299, 117896 (2024). 

https://doi.org/10.1016/j.enconman.2023.117896. 

[19] De Azevedo Takara, L., Teixeira, A.C., Yazdanpanah, H., Mariani, V.C., dos Santos Coelho, L.: Optimizing 

multi-step wind power forecasting: Integrating advanced deep neural networks with stacking-based 

probabilistic learning. Applied Energy. 369, 123487 (2024). 

https://doi.org/10.1016/j.apenergy.2024.123487. 

[20] Zhang, H., Wang, J., Qian, Y., Li, Q.: Point and interval wind speed forecasting of multivariate time series 

based on dual-layer LSTM. Energy. 294, 130875 (2024). https://doi.org/10.1016/j.energy.2024.130875. 

[21] Mo, S., Wang, H., Li, B., Xue, Z., Fan, S., Liu, X.: Powerformer: A temporal-based transformer model for 

wind power forecasting. Energy Reports. 11, 736–744 (2024). https://doi.org/10.1016/j.egyr.2023.12.030. 

[22] Bentsen, L.Ø., Warakagoda, N.D., Stenbro, R., Engelstad, P.: Relative evaluation of probabilistic methods for 

spatio-temporal wind forecasting. Journal of Cleaner Production. 434, 139944 (2024). 

https://doi.org/10.1016/j.jclepro.2023.139944. 

[23] Zhang, J., Zhang, T., Li, Y., Bai, X., Chang, L.: Study on mining wind information for identifying potential 

offshore wind farms using deep learning. Frontiers in Energy Research. 12, 1419549 (2024). 

https://doi.org/10.3389/fenrg.2024.1419549. 

[24] Upadhyay, A.B., Shah, S.R., Thakkar, R.A.: Theoretical Assessment for Weather Nowcasting Using Deep 

Learning Methods. Archives of Computational Methods in Engineering. 31, 3891–3900 (2024). 

https://doi.org/10.1007/s11831-024-10096-5. 

[25] Zhong, X., Chen, L., Liu, J., Lin, C., Qi, Y., Li, H.: FuXi-Extreme: Improving extreme rainfall and wind 

forecasts with diffusion model. Science China Earth Sciences. 1–13 (2023). https://doi.org/10.1007/s11430-

023-1427-x.  


