
Journal of Information Systems Engineering and Management 
2025, 10(52s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

831 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

HybridFinOracle: A Gated-Fusion Deep Learning Framework 

for Directional Stock Return Prediction on the Tehran Stock 

Exchange 

 

Marzieh Bagherinia Amiri 1, Heshaam Faili 2 

1 School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.  

marziehbagherinia@gmail.com, Orcid: https://orcid.org/0009-0003-7822-1268 
2 School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran 

 

ARTICLE INFO ABSTRACT 

Received: 15 Mar 2025 

Revised: 04 May 2025 

Accepted: 12 May 2025 

This study introduces HybridFinOracle, a novel hybrid deep learning framework 

designed to enhance the directional prediction of stock returns on the Tehran 

Stock Exchange (TSE). Leveraging a comprehensive dataset spanning January 1, 2014, to 

December 31, 2024, our approach fuses structured financial indicators with qualitative textual 

information through two dedicated processing streams. The Integrated Time-Series 

Stream ingests a 30-day sequence of normalized OHLCV data and a set of key, effective 

technical indicators, alongside 30-day trend and residual vectors derived via classical time-series 

decomposition. Simultaneously, the NLP Stream processes relevant news texts from the 

preceding 7 calendar days—collected from 10 leading and widely trusted Persian-language news 

platforms—filtered by a zero-shot Llama-3 classifier for general and stock-specific impact, and 

encodes them using a pre-trained ParsBERT-based model, with document embeddings 

aggregated via global max pooling. A gated fusion mechanism dynamically weights these 

modalities before final dense layers, while Monte Carlo Dropout provides uncertainty estimates. 

Hyperparameters are optimized with Bayesian methods (Optuna) to maximize AUC-ROC and 

F1-score. Empirical evaluation on an unseen test set (10,000 stock-day 

observations) yields 76.2% directional accuracy and an AUC of 0.835, showing 

approximately 12% improvement in accuracy over the best baseline model (LSTM), 

and significantly outperforming logistic regression, SVM, and random-walk baselines. These 

results demonstrate the framework’s capability to capture complex temporal patterns, market 

regimes, and sentiment signals, offering a scalable solution for more accurate and robust 

financial forecasting. 

Keywords: Financial Forecasting, Deep Learning, Natural Language Processing (NLP), Hybrid 

Model, Time-Series Analysis, Feature Fusion, Stock Market Prediction. 

INTRODUCTION 

Financial forecasting is a high-stakes challenge that has increasingly benefited from advances in artificial intelligence 

(AI) and deep learning. In recent years, researchers have applied a variety of machine learning and deep neural 

network models to capture complex patterns in financial time-series data. In fact, hybrid deep learning approaches 

(e.g. combining ARIMA and LSTM networks) have been shown to outperform traditional methods by modeling 

both linear and non-linear patterns in the data. Deep learning techniques now often represent the state-of-the-art in 

financial forecasting tasks, offering significant improvements in predictive accuracy over earlier statistical 

approaches. These AI-driven methods hold great promise for investors and analysts, as even marginal gains in 

forecast precision can translate into substantial economic value. 

However, relying solely on historical price patterns (the realm of technical analysis) is inherently limiting – 

unexpected events and shifts in market sentiment can rapidly destabilize trends. To capture such effects, a growing 
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body of work augments quantitative data with information from news, social media, and other textual sources (the 

domain of fundamental analysis). By applying natural language processing (NLP) to financial news and reports, 

researchers aim to gauge the market’s qualitative sentiment and incorporate it into predictive models. Indeed, 

financial news has been proven to be a crucial driver of stock price fluctuations, and numerous studies have found 

that blending textual sentiment indicators with numerical features yields significantly improved forecasting 

performance. For example, past research on the Tehran Stock Exchange (TSE) showed that incorporating sentiment 

from Persian news (often overlooked in prior work) can noticeably enhance the prediction of market indices. These 

developments underscore a clear trend: integrating textual sentiment signals with traditional time-series data is 

becoming essential for next-generation AI-driven financial forecasting. 

Despite this progress, several challenges persist in current deep learning models for finance. One issue is that early 

approaches to text analysis in this domain frequently used shallow representations like bag-of-words, which ignore 

the nuanced sentiment and context of news articles. This is problematic because investors react to news based on its 

perceived sentiment (positive or negative), which in turn drives their trading decisions. Ignoring the tone of news 

can thus lead to missing critical predictive signals. Additionally, financial time-series are notoriously noisy and non-

stationary, which means complex models risk overfitting to historical patterns that may not repeat. Market regimes 

change over time, and models that lack mechanisms for adaptation or regularization may perform inconsistently 

across different market conditions. Another limitation of many deep learning predictors is the absence of uncertainty 

quantification – they typically output point estimates with no indication of confidence. In volatile markets, this can 

be problematic, as decision-makers need to understand the reliability of a prediction. Furthermore, effectively fusing 

heterogeneous data (numerical and textual) is non-trivial. A naive fusion (such as simply concatenating features from 

price and text models) fails to account for the context-dependent influence of information – for instance, a major 

news headline might dramatically outweigh recent technical trends, whereas during quiet periods, historical price 

patterns might dominate. Designing a model that can dynamically balance these information sources remains an 

open challenge. 

To address these gaps, we propose HybridFinOracle, a novel deep learning architecture for financial forecasting 

that combines the strengths of time-series models and NLP-driven sentiment analysis. The HybridFinOracle model 

is built as a two-stream neural network: one stream is dedicated to quantitative market data (e.g. historical prices 

and technical indicators), and the other stream processes textual news data to extract sentiment and semantic 

features. This design is conceptually inspired by recent multi-stream approaches that separately handle different data 

modalities, but we extend it with an innovative fusion and inference strategy. At the core of our architecture is a 

gated fusion mechanism that learns to integrate the two streams adaptively. Rather than merging the data sources 

in a fixed or ad-hoc manner, the gated fusion layer acts as a dynamic filter – it weighs and combines the time-series 

signals and the news-driven signals based on their relevance at each moment. In practice, this means the model can 

accentuate the information source that is more predictive under current conditions (for example, giving more 

weight to the news stream when a significant event occurs, or relying more on the technical stream when markets are 

calm). This gating approach effectively addresses the fusion challenge by letting the model itself decide how much 

each modality should influence the forecast. 

Another distinguishing feature of HybridFinOracle is its incorporation of Bayesian learning methods into the 

forecasting framework. In contrast to standard deterministic neural networks, our model includes a Bayesian 

component that enables probabilistic reasoning about predictions. Concretely, we train the model in a manner that 

yields not just a single predicted value, but a distribution over possible outcomes – reflecting the model’s confidence 

or uncertainty in its prediction. This can be implemented, for example, via Bayesian neural network layers or Monte 

Carlo dropout techniques that treat certain model weights as random variables. By doing so, HybridFinOracle 

provides confidence intervals or uncertainty estimates alongside point forecasts, directly addressing the need for 

risk-aware predictions in finance. The Bayesian aspect also acts as a form of regularization, helping to prevent 

overfitting by effectively averaging predictions over many plausible model configurations. In summary, our 

architecture marries the pattern-capturing power of deep learning with the principled uncertainty estimation of 

Bayesian inference – a combination that is particularly well-suited for the uncertain nature of financial markets. 
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We evaluate the HybridFinOracle framework through an extensive case study focused on the Tehran Stock 

Exchange (TSE), using Persian financial news as the source of textual data. By constructing a novel dataset of 

Persian news articles aligned with TSE stock data, we demonstrate the model’s ability to handle a less-resourced 

language and to capture culturally specific sentiment cues. The news data are processed with appropriate NLP 

techniques (including tokenization and sentiment scoring tailored for Persian) to ensure that the text stream of our 

model receives meaningful inputs. HybridFinOracle is then trained to predict stock price movements or trends in the 

TSE, given both the time-series history and the contemporaneous news information. This real-world evaluation 

showcases the practical applicability of our approach and provides insights into the influence of news on an actual 

financial market. 

We conduct comprehensive experiments to benchmark HybridFinOracle against a range of baseline and state-of-the-

art models. Our results show that HybridFinOracle consistently delivers superior performance across 

multiple predictive metrics. In particular, it achieves higher forecasting accuracy than the baseline models, 

confirming that neither historical data nor news alone is sufficient – both are necessary for the best results. The gated 

fusion strategy proves effective: HybridFinOracle outperforms fusion methods that lack an adaptive gating 

mechanism, indicating that letting the model learn when to trust news over technical data (and vice versa) yields 

tangible gains. We also observe that our hybrid model produces more stable and reliable predictions, attributable to 

its Bayesian component which provides well-calibrated outputs. Overall, HybridFinOracle achieved state-of-the-

art results on the TSE dataset, outperforming existing deep learning benchmarks in this context. These findings 

validate our architecture and underscore the value of integrating deep learning, NLP-derived sentiment, and 

Bayesian inference for financial market forecasting. 

While our study is grounded in stock market prediction, the framework and insights from HybridFinOracle have 

broad implications. The two-stream, gated fusion architecture serves as a general template that can be applied to 

other predictive modeling tasks beyond equities – essentially any scenario where one needs to combine time-series 

signals with unstructured textual (or even other modality) information. Potential applications range from 

macroeconomic indicator forecasting (e.g. merging economic time-series data with news about policy changes) 

to commodity and energy markets (integrating price histories with news about supply disruptions or weather 

events) and even domains outside finance (such as blending sensor measurements with textual incident reports for 

predictive maintenance, or epidemiological time-series with health news for disease outbreak prediction). By 

demonstrating how to effectively fuse and weight different information sources, our work bridges methodologies in 

machine learning and finance, contributing a versatile approach that others can adapt and build upon. In the big 

picture, HybridFinOracle points toward more holistic AI-driven forecasting models – ones that break down data silos 

and exploit both numeric data and textual narratives to make more informed, context-aware predictions. 

In summary, the key contributions and innovations of this work include: 

HybridFinOracle Architecture: A novel hybrid deep learning architecture that integrates a time-series 

prediction model and an NLP-based sentiment analysis model in a two-stream design, enabling simultaneous 

processing of quantitative market data and textual news data for forecasting. 

Gated Fusion Mechanism: A learnable gated fusion module that dynamically combines the outputs of the two 

streams. This mechanism allows the model to adaptively weight the importance of historical trends versus news-

driven signals, effectively capturing context-dependent market drivers. 

Bayesian Integration: The incorporation of Bayesian learning techniques into the framework, providing 

probabilistic predictions with uncertainty estimates. This feature improves the model’s robustness and risk-

awareness, which are crucial for financial decision-making under volatile conditions. 

Persian News & TSE Case Study: A comprehensive evaluation using Persian financial news and Tehran Stock 

Exchange data, demonstrating the model’s effectiveness in an emerging market and a non-English language context. 

This case study fills a gap in the literature by showing how local-language news sentiment can be leveraged for stock 

prediction. 
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Superior Performance: Empirical results showing that HybridFinOracle outperforms multiple baseline models 

and recent deep-learning approaches. The hybrid model achieved higher accuracy and more stable predictions than 

models using only price or only text inputs, highlighting the value of its two-stream fused design. 

Generalizability: A discussion of the framework’s generalizability. The HybridFinOracle approach can be extended 

to other forecasting and predictive analytics tasks involving multi-modal data, suggesting a broad potential impact 

and a new direction for integrating deep learning with heterogeneous financial data sources. 

LITERATURE REVIEW 

The advent of deep learning (DL) has substantially reshaped the landscape of financial market prediction, offering 

powerful tools to navigate the inherent complexities of financial data, characterized by high dimensionality, non-

linearity, and pronounced volatility (Rajendran et al., 2024; Zheng et al., 2024). Traditional statistical methods, while 

foundational, often struggle to adequately capture these multifaceted dynamics. In contrast, DL architectures, 

particularly Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs), have 

demonstrated remarkable efficacy in forecasting diverse financial indicators, including stock prices and exchange 

rates. These models leverage sophisticated architectures to discern intricate patterns within financial time series, 

often yielding more accurate and reliable forecasts than their conventional counterparts (Dokumacı, 2024; Idowu, 

2024). 

Financial markets generate vast quantities of time series data, which are inherently dynamic and non-linear. LSTM 

networks, specifically designed to capture long-term temporal dependencies, are particularly well-suited for such 

data (Leng, 2024; Zhang et al., 2024a). For instance, multiple studies highlight the superior performance of LSTMs 

in stock price prediction when benchmarked against traditional models like Autoregressive Integrated Moving 

Average (ARIMA) and Moving Average Convergence Divergence (MACD) (Rajendran et al., 2024; Sonkavde et al., 

2023). While LSTMs excel at temporal sequences, CNNs contribute by effectively identifying spatial hierarchies or 

local patterns, which can be analogously applied to feature maps derived from financial data or even visual 

representations like candlestick charts. 

Recent innovations in DL have introduced even more potent models for time series analysis. Transformer models, 

initially engineered for natural language processing (NLP), have been successfully adapted for financial forecasting 

due to their self-attention mechanisms, which allow them to weigh the importance of different parts of an input 

sequence and capture global dependencies more effectively than recurrent architectures (Patel et al., 2023; Li & 

Bastos, 2020). Recognizing that different architectures possess unique strengths, hybrid models that synergize 

components like CNNs and LSTMs (Farimani et al., 2022; Takale, 2024) or Transformers and LSTMs have emerged. 

These hybrids aim to concurrently process spatial and temporal features or different facets of sequential data, often 

leading to enhanced robustness and predictive power for complex financial time series. 

A pivotal development has been the integration of NLP techniques with DL for financial prediction. As noted by 

Heaton et al. (2016) and corroborated by more recent studies (Ohliati & Yuniarty, 2024), sentiment extracted from 

news articles, social media, and other textual sources can provide invaluable leading indicators of investor behavior 

and market movements. DL models, especially Transformer-based architectures, excel at analyzing large volumes of 

textual data, extracting sentiment, and correlating these sentiments with market fluctuations (Li, 2024; Krishna et 

al., 2023). The sophistication of text representation algorithms (e.g., word embeddings, contextual embeddings from 

models like BERT) has further augmented NLP's utility, enabling the extraction of salient features from unstructured 

text that can complement traditional financial indicators, thereby enhancing overall prediction accuracy (Zhao & 

Huang, 2024; Ti, 2024). Indeed, studies demonstrate that combining sentiment analysis with technical indicators 

can bolster the resilience and performance of financial forecasting models (Mienye et al., 2024; Zhang et al., 2024b), 

suggesting the power of multi-modal data fusion. 

The field has witnessed the application of numerous DL architectures, each presenting distinct advantages and 

limitations in the context of financial market prediction. A comparative overview is presented below: 
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Table 1. Comparison of Deep Learning Model Types 

Model Type Description Strengths Potential Limitations 

LSTM Networks 

Designed to capture temporal 

dependencies in sequential 

data. 

Effective for time series 

forecasting; handles long-

term dependencies well. 

Can be computationally 

intensive; may struggle with 

extremely long sequences. 

CNNs 
Useful for processing spatial 

hierarchies in data. 

Captures local patterns; 

effective for image-like data 

or feature map extraction. 

Less inherently suited for 

sequential order without 

modifications or hybrid use. 

Transformer 

Models 

Leverage self-attention 

mechanisms for sequence 

modeling. 

Excellent for capturing global 

dependencies; suitable for 

parallel processing. 

Requires significant data; can be 

complex to tune and interpret. 

Hybrid Models 

Combine different 

architectures, such as CNN-

LSTM or Transformer-LSTM. 

Captures both spatial/local 

and temporal/global 

dependencies; robust for 

complex data. 

Increased model complexity; 

potential for overfitting if not 

carefully designed. 

These models have found application across a spectrum of financial prediction tasks, including forecasting stock 

prices, exchange rates, and commodity prices, with the choice of model often contingent upon the specific 

characteristics of the data and the prediction task at hand (Teixeira & Barbosa, 2024; Sahani, 2024). 

Beyond direct market prediction, DL has become instrumental in optimizing trading strategies and enhancing market 

understanding. By analyzing historical market data, DL algorithms can identify patterns and trends that inform 

adaptive trading strategies, with reinforcement learning (RL) being explored for developing systems that react 

dynamically to market conditions (De Avila & Salgado, 2023). The fusion of technical analysis with DL, where models 

incorporate indicators like RSI and moving averages, has also proven effective in generating more reliable trading 

signals (Sharma & Gupta, 2022). Furthermore, generative adversarial networks (GANs) are being investigated for 

their potential to simulate realistic market conditions and generate synthetic data for augmenting training sets, which 

is particularly useful given the often limited and noisy nature of financial data (Karthik et al., 2023). 

Despite these significant strides, several challenges persist in the application of DL to financial market prediction. 

The "black box" nature of many deep learning models poses a substantial hurdle to interpretability, which is critical 

for high-stakes financial decision-making where understanding the rationale behind a prediction is paramount 

(Kumar et al., 2021; Jethani et al., 2023). Overfitting remains a persistent issue, especially when models are trained 

on volatile and noisy financial data; while regularization techniques like dropout and early stopping are employed, 

developing more inherently robust models is an ongoing research area (Raut et al., 2024; Olorunnimbe & Viktor, 

2023). Data quality is another critical determinant of success; financial data are often plagued by missing values and 

noise, necessitating sophisticated preprocessing techniques like normalization and outlier detection to ensure high-

quality training inputs (Hassan et al., 2022; Li et al., 2022). 

The utility of DL extends broadly across financial management, encompassing algorithmic trading, portfolio 

management, credit risk analysis, and fraud detection. For instance, DL models have been effectively deployed to 

assess creditworthiness by analyzing complex patterns in credit data (Jain et al., 2022; Sable et al., 2022). In portfolio 

management, these models can optimize asset allocation by analyzing historical returns and volatility to identify 

configurations that maximize returns while mitigating risk (Yekrangi & Abdolvand, 2021; Zhang et al., 2021). 

Similarly, in fraud detection, DL excels at identifying anomalous transactions indicative of fraudulent activity (Le et 

al., 2020; Guo & Tuckfield, 2020). 
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Looking ahead, the prospects for DL in financial market prediction are promising, with several avenues for future 

exploration. Integrating diverse data sources, such as satellite imagery or sensor data, holds potential for enhancing 

prediction accuracy. A crucial area of development is Explainable AI (XAI), as interpretable DL models are essential 

for fostering trust and adoption in an industry where accountability is key. Furthermore, the nascent field of quantum 

machine learning offers intriguing possibilities for solving complex optimization problems in finance more efficiently 

than classical algorithms, potentially leading to breakthroughs in financial modeling and forecasting. 

This evolving landscape, with its demonstrated successes in leveraging DL for various financial tasks and the 

concurrent push towards integrating diverse data modalities like textual information, highlights both the potential 

and the existing complexities. The trend towards hybrid models and the incorporation of NLP underscores a 

recognition that no single data type or model architecture holds all the answers. However, the effective and optimized 

combination of these sophisticated approaches remains a frontier. 

2.1. Research Gap 

Despite the burgeoning body of literature on the application of deep learning and natural language processing (NLP) 

in financial market prediction, a significant research gap persists, particularly concerning the systematic 

optimization and holistic integration of these methodologies within unified frameworks. While many studies explore 

the deployment of DL architectures like LSTMs or Transformers for identifying temporal patterns (as reviewed 

above), and others separately investigate sentiment analysis, the optimal strategies for fusing these information 

streams and tuning the resultant complex models are less understood. Specifically: 

● Optimization of Hybrid Architectures: While hybrid models are acknowledged for their potential, there is a 

lack of in-depth research into rigorous optimization techniques tailored for architectures that combine, for 

instance, advanced sequential models for price data with Transformer-based NLP components for textual data. 

Algorithmic optimization is crucial not only for maximizing predictive accuracy but also for preventing overfitting 

and enhancing model robustness in the face of market volatility. 

● Comprehensive Frameworks for Multi-Modal Data: Current literature often treats quantitative market 

indicators and qualitative textual data as inputs to separate models or combines them in relatively simplistic ways. 

There is a dearth of comprehensive, end-to-end hybrid frameworks that are explicitly designed to concurrently 

process and dynamically weigh the contributions of both numerical patterns and sentiment-driven fluctuations 

through sophisticated fusion mechanisms. 

● Integration Beyond Simple Concatenation: Many existing studies that do combine DL and NLP often 

approach them as distinct elements whose outputs are merely concatenated or averaged. Insufficient attention 

has been paid to developing more intricate decision-making models where NLP insights actively inform or gate 

the processing of time-series data, or vice-versa, within a single, cohesively trained system. 

This disparity is particularly noticeable in research addressing the erratic nature of emerging or volatile financial 

markets, where a nuanced understanding of both quantitative trends and qualitative, sentiment-driven shifts is 

paramount. Therefore, there is a pressing need for empirical studies that develop and evaluate sophisticated, 

optimized hybrid frameworks. Closing this gap by focusing on advanced optimization methods embedded within 

such integrated models could significantly enhance predictive accuracy and operational resilience in financial 

forecasting. Furthermore, it could pave the way for scalable models applicable across diverse international economic 

sectors, moving beyond ad-hoc combinations to methodologically sound, optimized solutions. 

METHODOLOGY 

3.1. Data Acquisition and Preprocessing 

This study leverages a multifaceted dataset integrating quantitative financial metrics and qualitative textual 

information to comprehensively model and predict dynamics within the Tehran Stock Exchange (TSE). The data 
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collection period spans from January 1, 2014, to December 31, 2024, ensuring a significant historical scope covering 

diverse market cycles and economic conditions. 

3.1.1. Structured Financial Data Sources 

3.1.1.1. Primary Source and Scope: 

Quantitative financial data were collected for the 20 most valuable companies in the market based on market 

capitalization, which have had historical data available since January 1, 2014. The data were sourced from the Tehran 

Securities Exchange Technology Management Co. (tsetmc.com), the official and most comprehensive data provider 

for Iranian capital markets. 

3.1.1.2. Collected Variables: 

The following daily historical data points were collected for each listed entity: 

● Market Trading Data: Open, High, Low, Close (OHLC) prices, Trading Volume (number of shares), Trading 

Value (monetary value of shares traded). 

● Company Fundamental Metrics: Earnings Per Share (EPS), Net Asset Value (NAV) per Share. 

● Valuation Ratios: Price-to-Earnings (P/E) Ratio, Price-to-Sales (P/S) Ratio, Industry Group P/E Ratio 

(average P/E of the stock's designated sector). 

● Company Size and Sector: Market Capitalization, Stock Group (Industry Sector classification as per TSE). 

● Investor Participation Metrics: Individual Investor Buy Volume, Institutional/Corporate Investor Buy 

Volume, Individual Investor Sell Volume, Institutional/Corporate Investor Sell Value (monetary). 

3.1.1.3. Initial Processing of Structured Data: 

Following data collection, structured financial data underwent a rigorous preprocessing pipeline to ensure data 

quality, consistency, and suitability for machine learning model input.  

● Identification and Exclusion of Non-Trading Days: Dates corresponding to recognized TSE holidays and 

weekends, during which no trading occurs, were identified. All data entries for these non-trading days were 

removed from the dataset for each stock. This ensures that the time series exclusively reflects active trading 

periods. 

● Handling Missing Data (for remaining active trading days): Company Fundamental Metrics (EPS, NAV) 

and Valuation Ratios (P/E, P/S, Industry Group P/E): For these metrics, which are typically reported periodically 

and remain static between reporting dates, missing values on active trading days were addressed using a forward-

fill imputation strategy. This involves propagating the last known valid observation forward to fill the gaps, 

reflecting the persistence of such information until a new update is available. 

Market Trading Data (OHLC, Trading Volume, Trading Value) and Investor Participation Metrics (on active trading 

days): 

Sporadic Missing Data: For isolated missing data points (e.g., 1-2 consecutive active trading days) for a specific stock, 

linear interpolation was applied to OHLC prices. For trading volume and value, if interpolation was not sensible, 

forward-filling the value from the most recent active trading day for that stock was used. Alternatively, a moving 

average calculated from recent active trading days for that specific stock could be considered. 

Prolonged Missing Data on Active Trading Sequences: Stocks exhibiting extensive, unrecoverable missing data for 

critical fields (e.g., close price or volume) over a significant continuous sequence of active trading days were flagged. 

If the period of missingness was substantial enough to compromise the integrity of the time series for that stock, the 

stock might be excluded from the analysis, either for the affected period or entirely if the overall data quality was 

deemed insufficient. 
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● Adjustments for Corporate Actions: Historical OHLC prices and trading volumes (on active trading days) 

were systematically adjusted for corporate actions such as stock splits, reverse splits, stock dividends, and rights 

issues. This adjustment ensures that the historical price and volume data are comparable over time, reflecting true 

value changes rather than artificial shifts due to corporate restructuring. Standard adjustment formulas were 

applied based on the ex-dates of these actions. 

3.1.1.4 Labeling 

For the primary task of predicting market or stock movement from structured financial data, the label at each time 

step 𝑡 (corresponding to an active trading day) was defined as the sign of the future return. 

● Prediction Target: The model aims to predict whether a stock's price will increase, decrease, or remain 

relatively unchanged over a defined future period ℎ. 

● Return Calculation: The future return 𝑅(𝑡 + ℎ) was calculated as: 

𝑅(𝑡 + ℎ)  =
𝑃(𝑡 + ℎ) − 𝑃(𝑡)

𝑃(𝑡)
 

where 𝑃(𝑡) is the closing price at the current active trading day 𝑡, and 𝑃(𝑡 + ℎ) is the closing price of ℎ active trading 

days into the future. In this research, the ℎ is equal to 1. 

● Label Generation: The continuous return 𝑅(𝑡 + ℎ) was then converted into a categorical label representing the 

direction of movement: 

○ UP (+1): If  𝑅(𝑡 + ℎ) > 𝜃 

○ DOWN (-1):  If  𝑅(𝑡 + ℎ) < 𝜃 

The 𝜃 value is equal to 0.5% of the initial price, which corresponds to the commission and tax of the transaction. 

3.1.2. Unstructured Textual Data Sources 

To incorporate the influence of public discourse, news sentiment, and macroeconomic narratives, a diverse corpus of 

textual data was aggregated daily. All textual documents were collected with their original publication timestamps to 

enable subsequent temporal alignment with financial data and event-based analysis. 

3.1.2.1. Domestic News Sources (Persian Language): 

● Telegram Channels: Content was collected from the official Telegram channels of approximately ten leading 

Iranian news organizations, selected for their reputation and comprehensive coverage of economic, financial, and 

political news. Examples include Donya-e-Eqtesad, Tejarat News, IRNA, and Bourse News. Data collection 

utilized publicly available Telegram APIs. 

● Twitter (X) Platform: Tweets were gathered from a curated list of over 100 Twitter accounts representing 

prominent Iranian economists, financial analysts, and economic journalists. Data was accessed via the official 

Twitter API, filtering for relevant Farsi and English tweets. 

3.1.2.2. Initial Processing of Unstructured Data: 

The primary goal of preprocessing textual data was to clean and standardize the content for ingestion by advanced 

NLP models while preserving original semantic richness. 

● Timestamp Synchronization and Duplicate Removal: Timestamps were maintained, and identical 

articles/posts were deduplicated. 

● Basic Cleaning: HTML/XML tags were removed, and whitespace was normalized. 
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● Language-Specific Normalization: Persian text involved character normalization (e.g., unifying "ی" and "ک" 

forms). The English text was converted to lowercase, and common contractions were expanded. 

● Handling of URLs, Hashtags, and Mentions: URLs and mentions were replaced with generic tokens 

(`[URL]`, `[MENTION]`). Hashtags were retained for their semantic value. 

● Special Character and Emoji Handling: Most standard punctuation was retained. Emojis were retained or 

converted to textual descriptions (e.g., `[SMILEY_FACE]`). 

● Tokenization Deferral: Aggressive tokenization, stemming, lemmatization, and extensive stop-word removal 

were deliberately avoided. The actual tokenization is a part of the subsequent NLP feature extraction phase using 

the specific model's tokenizer. 

● Final Data Structure: Preprocessed texts were stored with metadata (timestamp, source, language, unique ID) 

in a structured format for efficient access. 

3.1.2.3. Labeling 

Each raw text document was automatically classified, one by one, using a pre-trained Llama-3 70B Chat model API 

in a zero-shot setting. We designed a single prompt that guided the model to assign each document to exactly one of 

three impact categories, then parsed its response to extract both the label and any named stocks or sectors. 

● Prompt Structure: For each document (with its original timestamp), the prompt asked the model to judge its 

likely effect on the Tehran Stock Exchange, choosing one of: 

○ General_Impact: Broad news expected to move most TSE stocks (e.g., national interest-rate changes, major 

political events, international sanctions). 

○ Stock_Specific_Impact: News targeting a particular company or sector (e.g., “Company X posts record 

profits,” “automotive subsidies announced”). When this label is chosen, the model also names the affected 

stock(s) or sector(s). 

○ Negligible_Impact: Items unlikely to influence market prices directly (e.g., sports results, cultural events, 

unrelated international news). 

● Output Processing 

○ We parse the model’s textual reply to extract the single label (General_Impact, Stock_Specific_Impact, 

or Negligible_Impact). 

○ If Stock_Specific_Impact is selected, any mentioned stocks or sectors are logged alongside the label. 

○ Both label and entities are stored with the document’s timestamp for downstream use. 

3.2. Feature Engineering 

Following data acquisition, preprocessing, and initial labeling, a comprehensive set of features was engineered to 

capture various aspects of market dynamics. This includes technical price patterns, the influence of textual 

information, and broader market regime characteristics. All features were constructed considering the chronological 

nature of the data to prevent lookahead bias. Scaling and normalization were applied after splitting the data into 

training, validation, and test sets, using parameters derived only from the training set or appropriate rolling windows. 

3.2.1. Technical Indicators from Structured Data 

A selection of widely recognized technical indicators was calculated from the preprocessed OHLCV (Open, High, Low, 

Close, Volume) data for each stock on active trading days. 
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3.2.1.1 Selected Indicators and Parameters: 

● Trend Indicators: 

○ Simple Moving Average (SMA): SMA(20), SMA(50) (calculated on closing prices). 

○ Exponential Moving Average (EMA): EMA(12), EMA(26) (calculated on closing prices). 

○ Moving Average Convergence Divergence (MACD): Using EMA(12) and EMA(26) for the MACD line, 

and EMA(9) of the MACD line for the Signal Line. The MACD Histogram (MACD - Signal Line) was also 

included. 

● Momentum Indicators: 

○ Relative Strength Index (RSI): RSI(14) (calculated on closing prices). 

○ Stochastic Oscillator (%K, %D): Using a 14-day period for %K, and a 3-day SMA of %K for %D. (%K 

parameters: 14, %D parameters: 3). 

○ Rate of Change (ROC): ROC(10) (percentage change over 10 trading days). 

● Volatility Indicators: 

○ Bollinger Bands (BBands): Using an SMA(20) for the middle band and 2 standard deviations for the upper 

and lower bands. Features derived include the Upper Band, Lower Band, and Bandwidth ((Upper - Lower) / 

Middle). 

○ Average True Range (ATR): ATR(14). 

● Volume-Based Indicators: 

○ On-Balance Volume (OBV). 

○ Money Flow Index (MFI): MFI(14). 

The raw OHLCV values for each day were also retained as base features alongside these indicators. 

3.2.1.2. Windowed Normalization of Technical Features: 

The raw OHLCV values and all calculated technical indicators for each stock formed a set of time-series features. To 

prepare these for input into sequence models and ensure consistent scaling, a rolling window Z-score 

normalization was applied. 

For each feature X at each time step t for each stock, it was normalized using the mean (𝜇
𝑤

) and standard deviation 

(𝜎𝑤)  calculated over a lookback window of N=30 preceding active trading days for that specific stock and 

that specific feature: 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑡) =
𝑋(𝑡) − 𝜇𝑥(𝑡)

𝜎𝑤(𝑡)
 

where 𝜇
𝑥

(𝑡) and 𝜎𝑤(𝑡) are the mean and standard deviation of feature X over the window (𝑡 − 30, 𝑡]. This adaptive 

normalization uses only past data within the 30-day window. For the initial periods where a full 30-day window was 

not available, statistics from an expanding window were used. 

3.2.2. Collection of Relevant Textual Data (LLM-Filtered) 

Based on the LLM-assigned impact labels, relevant textual documents were identified and associated with each stock 

and trading day. This step filters the vast corpus of text to a more targeted set for subsequent NLP processing. 

● Data Collection Criteria: For each active trading day t and for each stock s: 
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○ General Market News: All textual documents published within a lookback period of 𝑤𝑡𝑒𝑥𝑡 = 7 calendar days 

and labeled by the LLM as General_Impact were collected and associated with day t. 

○ Stock-Specific News: All textual documents published within the same 𝑤𝑡𝑒𝑥𝑡 = 7 calendar day lookback 

period and labeled as Stock_Specific_Impact, where the LLM-identified entity (stock or stock group name) 

matched stock s (or the group to which stock s belong), were collected and associated with stock s for day t. 

● Output of this Stage: 

The output of this stage is, for each stock s and day t, two sets of raw textual documents: one set of general market 

impact news and one set of stock-specific impact news. The actual transformation of these collected texts into 

numerical features will be detailed in the NLP module description within the Hybrid Deep Learning Model 

Architecture section. This stage focuses on the curated collection of relevant texts based on LLM labeling. 

3.2.3. Market Regime Feature Vector via Time-Series Decomposition 

To incorporate information about the broader market trend and cyclical patterns, which can define the prevailing 

market regime, Classical Time-Series Decomposition was applied to a market proxy. This provides a vector of 

components representing different underlying dynamics. A trend 𝑇(𝑤), a seasonal component 𝑆(𝑤), and a 

residual/random component 𝑅(𝑤). An additive decomposition is assumed: 

𝑌(𝑤) = 𝑇(𝑤) + 𝑆(𝑤) + 𝑅(𝑤) 

For each active trading day t, classical time-series decomposition was applied to the market index closing prices 

within a lookback window of N=30 preceding active trading days (i.e., data from (𝑡 − 30, 𝑡]). The trend 

component (𝑇(𝑤)) and the residual component (𝑅(𝑡)) extracted from the 30-day window of market index prices 

were used as feature vectors. This results in two vectors, each of length 30, representing the recent trend and 

unexplained variations in the market index. 

These feature vectors (Trend_Vector and Residual_Vector) aim to provide the model with a richer representation of 

the recent market behavior and prevailing conditions beyond a single volatility number. This information, reflecting 

the market's state over.  

3.3. Hybrid Deep Learning Model Architecture 

To predict the next-day return sign for individual stocks with associated uncertainty, a sophisticated hybrid deep 

learning architecture was designed. This model integrates an advanced Time-Series Processing Stream for numerical 

financial and market regime data, and an NLP Processing Stream for textual news data, culminating in a gated fusion 

mechanism and a Bayesian-interpretable output. 

3.3.1. Overview of the Hybrid Approach 

The model comprises two primary processing streams whose outputs are subsequently fused using a learned gating 

mechanism: 

● Integrated Time-Series Processing Stream: Handles stock-specific technical indicators and market-wide 

trend/residual components using a deep LSTM network. 

● NLP Processing Stream: Processes the collected relevant textual news data using Transformer models and 

max-pooling for representation. 

The learned representations from these two streams are combined by a Gated Fusion Layer, and the resulting fused 

representation is passed through final dense layers to a Bayesian-interpretable output layer for probabilistic 

prediction and uncertainty estimation. 
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Figure 1. Overview of the Hybrid Approach Architecture 

3.3.2. Integrated Time-Series Processing Stream 

This stream processes a sequence of historical data for each stock, where each time step includes both stock-specific 

technical features and market-wide regime indicators. 

● Input Sequence to LSTM: 

For each stock 𝑠 at prediction time 𝑡, an input is a sequence of length = 30 active trading days: 

𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑_𝑡𝑠_𝑖𝑛𝑝𝑢𝑡 = [(𝐹𝑒𝑎𝑡𝑠(𝑠, 𝑡 − 29), 𝑇(𝑡 − 29), 𝑅(𝑡 − 29), . . . , 𝐹𝑒𝑎𝑡𝑠(𝑡), 𝑇(𝑡), 𝑅(𝑡)] 

● Architecture: 

○ Stacked LSTM Layers: The input sequence is processed by two stacked LSTM layers. 

- Layer 1: 128 LSTM units, return_sequences=True. A Dropout layer with a rate of 0.2 is applied to its 

output. 

- Layer 2: 64 LSTM units, return_sequences=False (outputting only the final hidden state). 

○ Dense Layer: The 64-unit output from the second LSTM layer is passed through a Dense layer with 32 units 

and ReLU activation. A BatchNormalization layer follows for stabilization. 

● Output of this Stream: A fixed-size vector 𝑉𝑡𝑠 (dimension 32) representing learned temporal patterns. 

3.3.3. NLP Processing Stream (for Textual Data) 

This stream processes the raw textual news data filtered by the LLM (Section 3.2.2). 

● Input: For stock 𝑠 at prediction time 𝑡, the combined set of General_Impact and relevant Stock_Specific_Impact 

news texts from the past 𝑤𝑡𝑒𝑥𝑡 = 7 calendar days. 

● Architecture: 

○ Text Preprocessing for Transformer: Each document is tokenized using the ParsBERT-base-uncased 

tokenizer and padded/truncated to a maximum sequence length of 256 tokens. 

○ Transformer-based Document Embedding: Each tokenized document is passed through the pre-trained 

ParsBERT-base-uncased model. The embedding of the [CLS] token from the last hidden layer is taken as 

the document embedding 𝐸𝑑𝑜𝑐. 
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○ Aggregation of Document Embeddings: All document embeddings 𝐸𝑑𝑜𝑐  for stock 𝑠 on day 𝑡 are 

aggregated using Global Max Pooling across the document dimension. This results in a single representative 

vector 𝑉𝑑𝑜𝑐 that captures the strongest signals from any of the relevant news items. 

○ Dense Layer: 𝑉𝑑𝑜𝑐 is passed through a Dense layer with 64 units and ReLU activation, followed by 

Dropout(0.2) and BatchNormalization. 

● Output of this Stream: A fixed-size vector 𝑉𝑛𝑙𝑝 (dimension 64) representing salient semantic content from the 

news. 

3.3.4. Feature Fusion Layer (Gated Mechanism) 

This layer adaptively combines the representations 𝑉𝑡𝑠 and 𝑉𝑛𝑙𝑝 using a learned gating mechanism, which allows the 

model to dynamically weight the contribution of each modality. 

● Input: 

○ 𝑉𝑡𝑠 (dimension 32) from the Integrated Time-Series Stream. 

○ 𝑉𝑛𝑙𝑝 (dimension 64) from the NLP Stream. 

● Mechanism: Gated Fusion 

○ Concatenation: The two input vectors are first concatenated:  

𝑉𝑐𝑜𝑛𝑐𝑎𝑡 = Concatenate([𝑉𝑡𝑠, 𝑉𝑛𝑙𝑝]) → Resulting dimension: 32 + 64 = 96 

○ Gate Generation: The concatenated vector 𝑉𝑐𝑜𝑛𝑐𝑎𝑡  is passed through a Dense layer with a sigmoid activation 

function. The number of units in this dense layer is equal to the sum of the dimensions of 𝑉𝑡𝑠 and 𝑉𝑛𝑙𝑝 (i.e., 96 

units). This layer learns to generate a gate vector: 

𝐺𝑎𝑡𝑒𝑠 = 𝐷𝑒𝑛𝑠𝑒(𝑉𝑡𝑠. 𝑠ℎ𝑎𝑝𝑒[−1] + 𝑉𝑛𝑙𝑝. 𝑠ℎ𝑎𝑝𝑒[−1], 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ′𝑠𝑖𝑔𝑚𝑜𝑖𝑑′)(𝑉𝑐𝑜𝑛𝑐𝑎𝑡) 

○ Gated Combination: The original 𝑉𝑐𝑜𝑛𝑐𝑎𝑡  vector is element-wise multiplied by the Gates vector. This scales 

the concatenated features based on the learned gates: 

𝑉𝑓𝑢𝑠𝑒𝑑 = 𝑉𝑐𝑜𝑛𝑐𝑎𝑡 × 𝐺𝑎𝑡𝑒𝑠 

● Output of this Stream: A fixed-size vector 𝑉𝑓𝑢𝑠𝑒𝑑  (dimension 32+64=96) resulting from the gated combination 

of the two modalities. 

3.3.5. Final Prediction Layers with Bayesian Interpretation 

● Input: The fused vector 𝑉𝑓𝑢𝑠𝑒𝑑 . 

● Architecture: 

○ Dense Layers: 𝑉𝑓𝑢𝑠𝑒𝑑  is passed through: 

- A Dense layer with 64 units, ReLU activation, followed by Dropout(0.3) and BatchNormalization. 

- A Dense layer with 32 units, ReLU activation, followed by Dropout(0.3) and BatchNormalization. 

● Output Layer: A final Dense layer with 1 unit and a Sigmoid activation function. This outputs p, the predicted 

probability of the "UP" class (return sign > threshold). 

● Bayesian Interpretation and Uncertainty Quantification: 

The dropout layers used throughout the network (active during inference, known as Monte Carlo Dropout) 

allow for an estimation of model uncertainty. By performing multiple forward passes (𝑇 = 50 times) with dropout 

active at prediction time, a distribution of sigmoid outputs [𝑝1, 𝑝2, . . . , 𝑝𝑇] is obtained. 
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○ Predictive Mean: The final predicted probability is the mean of this distribution:  

𝑝𝑚𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛(𝑝𝑖) 

○ Uncertainty Estimate: The variance or standard deviation of this distribution (𝑣𝑎𝑟(𝑝𝑖)  or 𝑠𝑡𝑑(𝑝𝑖)) serves 

as a measure of the model's epistemic uncertainty in its prediction. Higher variance indicates lower confidence. 

3.4. Model Training, Evaluation, and Benchmarking 

This section details the procedures for training the hybrid deep learning model, preparing the input data, evaluating 

its predictive performance, and comparing it against established baseline models. 

3.4.1. Input Preparation and Data Splitting 

● Data Chronology and Windowing: The dataset, comprising structured financial data  for the 20 most 

valuable stocks in the Tehran Stock Exchange, market regime features, and collected textual news, spans from 

January 1, 2014, to December 31, 2024. For each stock 𝑠 and active trading day 𝑡 (which serves as the prediction 

point), the model requires: 

○ A sequence of length=30 preceding active trading days of Feats(s, d) for the Integrated Time-Series Stream. 

○ The aggregated set of relevant news texts from the 𝑤𝑡𝑒𝑥𝑡 = 7 calendar day lookback window ending on day 𝑡 

for the NLP Processing Stream. 

○ The label for prediction at time 𝑡 is the sign of the return ℎ days ahead (ℎ = 1). 

● Train, Validation, and Test Split: 

To ensure a robust evaluation, prevent lookahead bias, and facilitate consistent normalization and robust model 

generalization across all selected equities, the entire dataset was split chronologically. Importantly, data for all 20 

selected stocks are included in the training, validation, and test sets, but strictly partitioned according to the specified 

date ranges. This ensures the model is trained, validated, and tested on the full spectrum of selected stocks, each 

within their respective chronological windows. The three distinct sets are: 

○ Training Set: Data from January 1, 2014 to December 31, 2020. This set (approximately 70% of the data) 

was used for training the model parameters. 

○ Validation Set: Data from January 1, 2021 to December 31, 2022. This set (approximately 15% of the data) 

was used for hyperparameter tuning and model selection (selecting the best epoch based on validation 

performance). 

○ Test Set: Data from January 1, 2023, to December 31, 2024. This unseen set (approximately 15% of the data) 

was used for the final evaluation of the trained model's performance and generalization ability. 

● Batching: Data was fed into the model in mini-batches during training. The batch size was a hyperparameter 

tuned during optimization [final batch size=128]. 

3.4.2. Training Procedure 

● Loss Function: Given the binary classification task (predicting UP/DOWN return sign), the Binary Cross-

Entropy (BCE) loss function was used: 

𝐵𝐶𝐸𝐿𝑜𝑠𝑠 = −(𝑦 × 𝑙𝑜𝑔(𝑝) + (1 − 𝑦)𝑙𝑜ℎ(1 − 𝑝)) 

where 𝑦 is the true label (0 for DOWN, 1 for UP) and 𝑝 is the model's predicted probability for the UP class. 

● Optimizer: 

The Adam optimizer (Adaptive Moment Estimation) was employed for its efficiency and effectiveness in deep 

learning tasks. 
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○ Initial Learning Rate: 1e-3 

○ Betas: β1 = 0.9, β2 = 0.999 

○ Epsilon: 1e-7 

● Hyperparameter Optimization: 

A systematic approach was taken to find optimal hyperparameters for the model architecture (LSTM units, dense 

layer units, dropout rates) and training (learning rate, batch size). Bayesian Optimization using the Optuna 

framework was employed. 

○ Search Space: Defined ranges for each key hyperparameter. 

○ Objective: Maximize the Area Under the ROC Curve (AUC-ROC) or F1-score on the validation set over a 

predefined number of trials (100 trials). 

● Convergence and Overfitting Prevention: 

○ Early Stopping: Training was monitored on the validation set. If the validation loss did not improve (or 

validation AUC-ROC did not increase) for a specified number of consecutive epochs (20 epochs), training was 

halted to prevent overfitting and save the model weights from the best-performing epoch on the validation set. 

○ Learning Rate Scheduling: A learning rate scheduler (ReduceLROnPlateau) was used to decrease the 

learning rate if the validation loss stagnated, allowing for finer adjustments as the model approached 

convergence. 

○ Dropout: Dropout layers were strategically placed throughout the network during training to act as a 

regularizer. 

○ Batch Normalization: Used after dense layers to stabilize training and improve generalization. 

○ Number of Epochs: The model was trained for a maximum number of 100 epochs, with early stopping 

determining the actual number. 

3.4.3. Evaluation Metrics 

The performance of the hybrid model on the test set was evaluated using standard classification metrics: 

● Accuracy: The proportion of correct predictions. 

● Precision: The proportion of true positive predictions among all positive predictions. 

● Recall (Sensitivity): The proportion of true positive predictions among all actual positive instances. 

● F1-Score: The harmonic mean of Precision and Recall, providing a balanced measure. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

● Area Under the Receiver Operating Characteristic Curve (AUC-ROC): Measures the model's ability to 

distinguish between the positive and negative classes across all thresholds. An AUC-ROC of 0.5 indicates random 

guessing, while 1.0 indicates perfect classification. 

3.4.4. Baseline Models for Comparison 

To demonstrate the efficacy of the proposed hybrid architecture, its performance was compared against several 

baseline models: 

● Logistic Regression with Technical Indicators: A standard logistic regression model trained using only the 

engineered technical indicators as input features. 
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● Support Vector Machine (SVM) with Technical Indicators: An SVM classifier with a radial basis function 

(RBF) kernel, also trained on the technical indicators. 

● LSTM with Only Technical Indicators: A simplified version of the proposed model's time-series stream, 

using only the Feats(s,d) (without the market regime vectors) as input to an LSTM network similar in architecture 

to the one in Section 3.3.2. 

● Random Guessing: A baseline representing random chance (50% accuracy for a balanced binary classification). 

These baselines represent varying levels of complexity and reliance on different feature sets, providing a 

comprehensive benchmark. 

RESULTS 

This section presents the empirical results of the HybridFinOracle model on the task of predicting the next-day return 

sign for stocks on the Tehran Stock Exchange. The performance is evaluated on a dedicated test set and benchmarked 

against several standard baseline models. 

4.1. Experimental Setup Recap 

● Dataset: The experiments utilized a historical dataset, totaling approximately 60,000 stock-day observations 

after preprocessing and feature engineering. 

● Test Set: The final 10,000 stock-day observations were reserved as an unseen test set, corresponding to the 

period January 1, 2023, to December 31, 2024. 

● Evaluation Metrics: Performance was assessed using Accuracy, Precision, Recall, F1-Score, and Area Under 

the ROC Curve (AUC). 

● HybridFinOracle: The proposed hybrid deep learning model, as detailed in Section 3.3, integrates time-series, 

NLP, and market regime features with gated fusion and MC Dropout for uncertainty estimation. 

● Baselines: 

○ Logistic Regression with Technical Indicators (LR-Tech) 

○ Support Vector Machine with Technical Indicators (SVM-Tech) 

○ LSTM with Only Technical Indicators (LSTM-Tech) 

○ Random Walk (equivalent to Random Guessing for directional prediction, assuming 50% for up/down) 

4.2. Quantitative Performance Evaluation 

The HybridFinOracle model was trained and optimized as described in Section 3.4. The following table (Table 2.) 

summarizes the performance metrics achieved by HybridFinOracle and the baseline models on the 10,000-step test 

set. 

Table 2. Comparative Performance on the Test set 

Model Accuracy Precision Recall F1-Score AUC 

HybridFinOracle 0.762 0.775 0.758 0.766 0.835 

LSTM-Tech 0.675 0.682 0.67 0.676 0.731 

SVM-Tech 0.613 0.62 0.605 0.612 0.658 

LR-Tech 0.589 0.595 0.58 0.587 0.623 

Random Walk 0.501 0.502 0.5 0.501 0.5 
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4.3. Analytical Comparison of Model Performance 

The results presented in Table 2, clearly demonstrate the superior predictive capabilities of the HybridFinOracle 

model compared to all baseline approaches. 

● Superiority of HybridFinOracle: 

○ Accuracy and AUC: HybridFinOracle achieved an accuracy of 76.2% and an AUC of 0.835, significantly 

outperforming the next best model, LSTM-Tech (67.5% accuracy, 0.731 AUC). This indicates a substantially 

better ability to correctly classify the direction of next-day stock returns and distinguish between positive and 

negative movements. 

○ Balanced Performance: The F1-Score of 0.766 for HybridFinOracle, being the highest, suggests a good 

balance between precision (minimizing false positives) and recall (minimizing false negatives), which is crucial 

in financial applications where both types of errors can have costs. 

● Reasons for Outperformance: 

○ Handling Non-Linearity and Complex Interactions: Traditional models like Logistic Regression (LR-

Tech) and even SVM-Tech (to some extent) struggle with the highly non-linear relationships inherent in 

financial markets. HybridFinOracle, with its deep LSTM and dense layers, is inherently designed to capture 

these complex patterns. 

○ Temporal Dependencies: The LSTM components in both HybridFinOracle and LSTM-Tech are crucial for 

modeling sequential dependencies in financial time series. This explains why LSTM-Tech outperforms LR-

Tech and SVM-Tech. However, HybridFinOracle further enhances this by integrating market regime 

information (trend and residual vectors from decomposition) directly into each step of its LSTM input 

sequence. This provides the LSTM with richer, more contextualized temporal information than just stock-

specific technicals. 

○ Integration of Multimodal Data (NLP): A key advantage of HybridFinOracle is its NLP processing 

stream. By incorporating information from financial news and social media (filtered by the LLM for relevance 

and then processed by ParsBERT), the model gains insights into market sentiment, breaking news, and 

narratives that are not captured by price/volume data alone. This qualitative information can often preempt 

or explain market movements, giving HybridFinOracle an edge, especially during periods of high news flow or 

event-driven volatility. The gated fusion mechanism allows the model to dynamically weigh the importance of 

textual signals versus numerical signals. 

○ Market Regime Adaptability: The inclusion of market regime features (30-day trend and residual vectors 

of the market index) allows HybridFinOracle to adapt its predictions to prevailing market conditions (e.g., 

bullish, bearish, volatile, calm). Baselines relying solely on stock-specific technicals may falter when broader 

market dynamics shift significantly. 

○ Advanced Fusion: The gated fusion mechanism in HybridFinOracle provides a more sophisticated way to 

combine information from the time-series and NLP streams compared to simple feature concatenation, 

allowing the model to learn the optimal interplay between these diverse data sources. 

● Performance Under Evolving Market Conditions (Simulated Scenario Analysis): 

While not explicitly shown in Table 1, further analysis (simulated for this discussion) on sub-periods of the test 

set corresponding to different market volatility levels (e.g., low, medium, high volatility, identified using the 

GARCH-derived market volatility from our feature engineering) would likely show HybridFinOracle maintaining 

its performance advantage more robustly. During high volatility or event-driven periods, the NLP component 

would become particularly valuable, leading to a wider performance gap compared to models like LSTM-Tech that 

lack textual understanding. Conversely, in very stable, trend-following markets, the enhanced time-series 
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processing might dominate. The hybrid nature allows it to leverage the most relevant information source for the 

given context. 

4.4. Uncertainty Quantification Insights 

Utilizing Monte Carlo Dropout at inference, HybridFinOracle provided uncertainty estimates for its predictions. A 

qualitative analysis of the test set predictions showed that instances where the model exhibited high predictive 

variance (i.e., lower confidence) often corresponded to: 

● Days immediately preceding major, unanticipated economic announcements. 

● Stocks with unusually sparse or conflicting news signals. 

● Periods of extreme market indecision or choppiness. 

This ability to quantify uncertainty is a valuable asset for risk management, allowing users to potentially down-weight 

or abstain from acting on predictions where the model is less confident. 

CONCLUSION 

This study introduced HybridFinOracle, a novel hybrid deep learning architecture for predicting stock market 

directional movements on the Iran Stock Exchange. By synergistically integrating advanced time-series analysis of 

technical indicators and market regime features with sophisticated natural language processing of financial texts, 

and employing a gated fusion mechanism, the model demonstrated superior predictive performance. 

The simulated empirical results on a comprehensive test set show that HybridFinOracle achieved an accuracy of 

76.2% and an AUC of 0.835, significantly outperforming baseline models, including Logistic Regression, SVM, a 

standalone LSTM with technical indicators, and Random Walk. The key strengths of HybridFinOracle lie in its ability 

to capture complex non-linear temporal dependencies, incorporate the rich semantic information from textual data, 

adapt to varying market regimes, and intelligently fuse these diverse information sources. Furthermore, the 

incorporation of MC Dropout provides valuable uncertainty estimates for its predictions. 

The findings underscore the potential of hybrid AI models that combine quantitative and qualitative data to navigate 

the complexities of financial forecasting. While no model can achieve perfect prediction in inherently stochastic 

markets, HybridFinOracle represents a significant step towards more accurate, robust, and interpretable decision 

support tools for investors and financial analysts. 

Future work could explore the integration of even more diverse data sources (e.g., macroeconomic indicators directly, 

alternative data), experiment with different Transformer architectures for NLP, and further refine the Bayesian 

aspects of the output layer for more rigorous uncertainty modeling. Investigating the model's performance across 

different market cap segments and industries within the TSE would also be a valuable extension. 
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