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In recent years, machine learning has gained traction as a potential tool for improving 

the accuracy and timeliness of illness diagnoses. The use of machine learning for the 

diagnosis of cardiovascular and renal disorders is critically examined in this research. 

To enhance patient outcomes, it is essential to diagnose cardiovascular and hepatic 

illnesses early and accurately. The interpretation of complicated clinical data and the 

identification of detailed patterns indicative of these disorders, however, may be 

difficult for standard diagnostic approaches. This study thoroughly tests three 

cutting-edge boosting algorithms: XGBoost (Extreme Gradient Boosting), CatBoost, 

and AdaBoost. Enabling the capture of complex nonlinear interactions and 

management of varied data sources, these ensemble approaches repeatedly integrate 

and optimize numerous weak learners. After conducting thorough experiments on 

massive clinical datasets, results show that the XGBoost algorithm is the best for 

certain types of diseases. Intelligent diagnostic tools that can reliably identify 

cardiovascular and hepatic diseases early on are within reach, according to the results 

of this study. This will lead to better patient care and disease management methods. 

Keywords: Boosting Algorithms, CatBoost, XGBoost, AdaBoost, Cardiovascular Disorders, 

Hepatic Disorders, Machine Learning. 

 

I. INTRODUCTION 

An expanding subfield of AI, pattern recognition is ostensibly concerned with the mechanization of 

learning as it pertains to the automated finding of data regularities via the use of computer programs. An essential 

assurance of pattern recognition algorithms is that they will discover any data structure that permits accurate 

categorization. Since the null hypothesis may be accepted regardless of the data, pattern recognition has a clear 

advantage over traditional statistical analysis. 

Like sketching a tree, the decision-making process for illness diagnosis involves considering several 

alternatives, chances, and decisions at each branch point. Determining diagnoses based on probability alone 

becomes increasingly challenging as illness complexity increases, and it is challenging to express decision-making 

processes as simple if-then-else rules. Here, R is a rule, algorithm, or decision something; O is an observed dataset; 

and T is a finite set of diagnoses; the alternative to a rule-based system is a mapping R: O -> T for diagnostic 

entities. This method allows for a more comprehensive evaluation of a variety of observations, making it more 

adaptable and less limiting in its pursuit of a diagnosis. 

Both in India and across the globe, a sizable portion of the population is impacted by cardiac and hepatic 

problems, which constitute a significant group of diseases when considering the impact on health and death 
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rates[1]. The goal of better illness treatment must include early and precise diagnosis. Diagnostic imaging 

examinations such as X-ray, CT, or MRI, in addition to a thorough clinical examination and evaluation of 

symptoms, are considered the gold standard for these types of disorders[2]. Diagnostic uncertainty and 

inconclusiveness persist in many situations when using regular clinical and imaging data, despite the high cost and 

huge number of tests involved. Patients with these illnesses are often treated symptomatically or empirically 

without settling on a definitive diagnosis since many of these diagnostic tests are not available or affordable in rural 

and remote places. 

BACKGROUND 

In light of the present state of illness diagnosis and the possibilities presented by machine learning, we are 

interested in comparing the efficacy of various machine learning approaches for the diagnosis of chronic diseases, 

cardiovascular disease, and renal disease. By looking for patterns in the symptoms reported by patients with each 

condition, this research will help in the creation of diagnostic tools. The machine learning algorithms have been 

refined for automated diagnosis and this study's findings are used to personalize treatment plans for each patient. 

The field of medical diagnostics stands to benefit greatly from machine learning (ML). Its predictive power 

and capacity to understand patterns in data might be a game-changer in medical diagnosis[3]. The use of machine 

learning for diagnosis has advanced to the point where several examples of success exist now.  

Healthcare practitioners are facing a critical shortage of time and diagnostic resources due to the rising 

number of patients requiring medical attention. People who suffer from heart failure often have more than one co 

morbid illness and must make difficult choices about which treatment is best for them. There are a lot of other 

illnesses that seem similar[4].  

Due to its potential beneficial effects on healthcare spending and quality, the subject of illness diagnosis has 

garnered a lot of interest during the last few decades. Medical expenses and illness progression may both be 

mitigated with prompt and precise diagnosis. More than 35% of the global population deals with some kind of 

chronic illness, says the World Health Organization (WHO). In addition, they said that diabetes and cardiovascular 

disease had surpassed all others as the leading killers in the last five years. The prevalence of infectious diseases is 

another issue that has grown in less developed nations. Ineffective disease control measures have been used in 

those nations due to a lack of reliable diagnoses and monitoring. Infectious diseases, in contrast to chronic diseases, 

are those that arise from a microbe or other pathogen. If caught early on, this condition is more amenable to 

treatment. Opposite to this are chronic illnesses. In spite of a 5.5-year rise in worldwide life expectancy between 

2000 and 2015, research found that the number of years people lived with impairment due to chronic illness rose 

by as much as 52% over the same time period. 

BOOSTING ALGORITHMS 

Over the last ten years, boosting algorithms have exploded in popularity. Improving performance above 

random guessing is all that is needed for the generic boosting framework to operate[5], [6]. A committee classifier 

significantly lowers the training and testing error rates by merging these weak learners using a weighted majority 

vote. In this study, we investigate three different boosting algorithms: 

Adaptive Boosting of weights (the name of the technique) and fitting of weak learners (sometimes called 

"base procedures") constitute a sequential additive process that, when combined, yields a single ensemble learner, 

according to AdaBoost, a boosting algorithm[7]. A linear combination of the predictions from the ensemble of weak 

learners is fed into the final learner so it can create predictions. While Freund and Schapire first presented the 

approach in the context of binary classification[8], it has since been modified to address regression issues. Because 

of its resistance to overfitting and its effectiveness in providing correct ensembles, AdaBoost was dubbed the "best 

off-the-shelf classifier in the world". 

Chen and Guestrin presented XGBoost, short for "eXtreme Gradient Boosting," a tree boosting technique 

that is very scalable[9]. Quickly rising to prominence since its release, XGBoost is now among the machine learning 

community's most popular and effective boosting algorithms[10]. In particular, we highlight the following XGBoost 

features:  

1. XGBoost uses a loss function + regularization formalism for tree boosting.  

2. It combines regression and classification problems into one unified approach. XGBoost computes scores 
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or weights based on the chosen loss function and regularization parameters.  

3. Instead of a first-order approach, which is used in gradient boosting implementations, it uses Newton 

approximations to solve the loss + regularization optimization problem.  

4. Depending on data volumes, computing infrastructure, and parallelization capabilities, one can choose 

from multiple algorithms to grow trees.  

5. A subsampling approach that includes both feature space and training samples to avoid overfitting, along 

with regularization. 

A robust open-source gradient boosting technique for machine learning, CatBoost was created by 

Yandex[11], [12]. In particular, it excels at handling data with several categorical attributes, although it can manage 

numerical, categorical, and text data as well. The speed, precision, and good handling of missing information and 

outliers are some of CatBoost's well-known characteristics. 

CONTRIBUTIONS 

This study will focus on the prediction of long-term health risks in particular. The main points of the paper 

are as follows: 

• Building a state-of-the-art ML system that incorporates accelerated ensemble learning for precise 

diagnostic categorization of hepatic and cardiovascular diseases. 

• Thorough assessment and comparison of three cutting-edge boosting algorithms: XGBoost (Extreme 

Gradient Boosting), CatBoost, and AdaBoost, within the framework of diagnosing hepatic and 

cardiovascular diseases. 

• Capturing complex patterns and correlations within multimodal data requires the integration of multiple 

clinical data sources, such as patient demographics, physiological measures, laboratory findings, medical 

imaging data, and more. 

• Results from rigorous testing on massive clinical datasets show that the XGBoost algorithm performs better 

than competing algorithms when it comes to diagnosing liver and cardiovascular diseases. 

• In a quantitative study, the suggested strategies outperformed both conventional diagnostic procedures and 

standalone ML models in terms of classification accuracy. 

• Setting the stage for XGBoost-based intelligent diagnostic systems to be developed for the early and 

accurate diagnosis of hepatic and cardiovascular diseases, with the possibility of their incorporation into 

clinical decision support systems. 

• Aid in the widespread use of enhanced ensemble learning methods for medical diagnosis and illness 

categorization by providing evidence of their effectiveness in managing complicated clinical data and 

enhancing diagnostic precision. 

What follows is an outline of the rest of the paper. In Section 1, we get a brief synopsis of the paper's goals 

and an overview of the global literature on cardiovascular and hepatic disorders related to bleeding and machine 

learning-based prediction models. The second section provides a literature overview of related works. Part 3 of the 

article lays out the necessary background information to tackle the issue at hand by explaining the technique that 

will be used in the suggested solution. Section 4 presents the outcomes that were achieved using the technique that 

was suggested. The article concludes with the statements made in Section 5. 

LITERATURE REVIEW 

Different types of liver illnesses are classified according to the causes and symptoms they cause. Infections, injuries, 

toxic material or medication exposure, processes, or genetic abnormalities (such hemochromatosis) may all be 

causes. Hepatitis, cirrhosis, and stones are all possible outcomes of the aforementioned conditions; as stones get 

larger, they may cause obstructions, fatty infiltration, and, very rarely, liver cancer. The buildup and accumulation 

of toxic substances, including iron or copper, and disruptions to essential liver activities may also result from 

genetic disorders[13], [14]. 
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Lipid buildup in the liver is a hallmark of non-alcoholic fatty liver disease (NAFLD), a leading cause of liver 

damage. A condition known as "non-alcoholic steatohepatitis"[15] occurs when the liver cells become inflamed and 

damaged. Among the most devastating liver illnesses is cirrhosis. Scar tissue develops in lieu of healthy tissue as a 

result of this condition. As a result, the liver is crippled and will never work the same. Drunkenness, non-alcoholic 

fatty liver disease, chronic hepatitis C, and chronic hepatitis B are the primary factors that lead to liver 

cirrhosis[16]. 

Acute hepatitis[17] causes the liver to inflame and die quickly, whereas chronic hepatitis[18] causes the 

liver to inflame and die slowly over a long time. Infection with a member of the hepatitis virus family is the most 

common cause of hepatitis, however, any of the aforementioned may lead to the disease. Hepatitis A, B, C, D, and E 

are the names given to these viruses in the sequence in which they were found. 

Histopathological examinations have long been the foundation upon which medical reports of patients' 

conditions have been built. Efficient techniques for data collecting, processing, and visualization have emerged 

because of advancements in information and communication technology, particularly in machine learning (ML) 

and artificial intelligence (AI)[19]. By integrating the results of clinical procedures with those of AI and ML models, 

clinicians may enhance their illness detection judgments even more. Predicting the early onset of complications in 

diabetes (as a classification problem[20] or a regression task for short-term glucose prediction[21]), 

cholesterol[22], hypertension[23], hypercholesterolemia[22], COPD, COVID-19 [24], stroke[1], CKD, lung 

cancer[25], sleep disorders, CVDs[26], etc. has benefited greatly from ML techniques. 

MATERIAL AND METHODS 

I. Dataset 

Datasets used in this study include those pertaining to liver disease[27] and heart disease[28]. There are 

3,197,95 records in the Heart Disease dataset, which includes 17 distinct attributes that include patients' health 

information. The liver dataset includes demographic information such as age, gender, height, weight, status, 

duration till death or last follow-up, and last follow-up. All of the data used in this study came from publicly 

available sources. We hoped to show that our suggested machine learning model was robust and generalizable by 

using these two different datasets to forecast the occurrence of liver disease and heart disease, two common health 

problems that have substantial social and economic consequences. 

II. Methodology 

Machine learning models for the categorization of hepatic and cardiovascular illnesses were developed in 

this work using three state-of-the-art boosting algorithms: XGBoost (Extreme Gradient Boosting), CatBoost, and 

AdaBoost. 

A.  XGBoost 

It utilizes a parallel and distributed computing approach, making it suitable for handling large-scale 

datasets. 

Step 1: Initialize the Model 

 Initialize the prediction for each instance with a constant value (e.g., the mean of the target variable for 

regression or the log-odds for classification): 

𝑦𝑖
0 =  𝑐, 𝑓𝑜𝑟 𝑖 =  1, 2, … , 𝑛(1) 

Where: 

𝑦𝑖
0 is the initial prediction for instance i. 

c is a constant value (e.g., mean or log-odds). 

n is the number of training instances. 

Step 2: Iterate for M Boosting Rounds  

For m = 1 to M: 

1. Calculate the Gradients and Second-Order Gradients: For each instance i, calculate the gradient 𝑔𝑖 and the 
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second-order gradient ℎ𝑖: 

𝑔𝑖 =
𝜕𝐿(𝑦𝑖 , 𝑦𝑖

𝑚−1)

𝜕𝑦𝑖
𝑚−1 (2) 

ℎ𝑖 =
𝜕2𝐿(𝑦𝑖,𝑦𝑖

𝑚−1)

𝜕(𝑦𝑖
𝑚−1)2

(3) 

Where: 

• 𝑦𝑖  is the true target value for instance i. 

• 𝑦𝑖
𝑚−1 is the predicted value from the previous iteration. 

• L is the loss function (e.g., mean squared error for regression or logistic loss for classification). 

2. Fit a Decision Tree: Fit a decision tree 𝑓𝑚(𝑥) to the gradients 𝑔𝑖 and second-order gradients ℎI using the 

objective function: 

𝑜𝑏𝑗𝑚 =  𝑠𝑢𝑚{𝑖=1}
𝑛 [𝑔𝑖𝑓𝑚(𝑥𝑖) +  (

1

2
) ℎ𝑖𝑓𝑚

2(𝑥𝑖)
] +  𝛺(𝑓𝑚)(4) 

Where: 

• 𝛺(𝑓𝑚) is the regularization term to control the complexity of the tree. 

3. Calculate Optimal Leaf Weights : For each leaf j of the decision tree 𝑓𝑚(𝑥), calculate the optimal weight 𝑤𝑗
∗ 

using: 

𝑤𝑗
∗ =  −

(𝑠𝑢𝑚{𝑖∈𝐼𝑗}𝑔𝑖
)

(𝑠𝑢𝑚{𝑖∈𝐼𝑗}ℎ𝑖
+  𝜆)

(5) 

Where: 

• 𝐼𝑗is the set of instances that belong to leaf j. 

• λ is the L2 regularization parameter. 

4. Update the Model: Update the predictions for each instance by adding the new decision tree with the 

optimal leaf weights: 

𝑦𝑖
𝑚 =  𝑦𝑖

𝑚−1 +  𝑓𝑚(𝑥𝑖)(6) 

Where: 

• 𝑦𝑖
𝑚 is the updated prediction for instance i after iteration m. 

Step 3: Output the Final Model 

The final model is the sum of all the decision trees from the M boosting rounds: 

𝑦𝑖 =  𝑠𝑢𝑚{𝑚=1}
𝑀 𝑓𝑚(𝑥𝑖)(7) 

Where: 

• 𝑦𝑖  is the final prediction for instance i. 

During the training process, XGBoost also employs techniques such as column and row subsampling, and 

parallel and distributed computing to improve efficiency and prevent overfitting. 

B. CatBoost 

CatBoost employs techniques such as Ordered Target Encoding and Ordered Boosting to improve its 

predictive performance. 

Step 1: Data Preprocessing: CatBoost performs several preprocessing steps on the input data: 
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1. Ordered Target Encoding: For categorical features, CatBoost replaces each category value with the 

corresponding average of the target variable for that category. For a categorical feature 𝑥𝑗 and target y, the 

encoding is: 

𝑥𝑗
𝑒𝑛𝑐𝑜𝑑𝑒𝑑  = avg(y | 𝑥𝑗)(8) 

2. Missing Value Handling: Missing values in numerical and categorical features are treated as separate 

categories during training. 

3. Feature Combinations: CatBoost automatically generates new features by combining existing features, 

which can capture non-linear interactions. 

Step 2: Initialize the Model: Initialize the prediction for each instance with a constant value (e.g., the mean 

of the target variable for regression or the log-odds for classification): 

𝑦𝑖
0 =  𝑐, 𝑓𝑜𝑟 𝑖 =  1, 2, … , 𝑛(9) 

Where: 

• 𝑦𝑖
0 is the initial prediction for instance i. 

• c is a constant value (e.g., mean or log-odds). 

• n is the number of training instances. 

Step 3: Iterate for M Boosting Rounds 

For m = 1 to M: 

1. Calculate the Gradients: For each instance i, calculate the gradient 𝑔𝑖: 

𝑔𝑖 =
𝜕𝐿(𝑦𝑖 , 𝑦𝑖

𝑚−1)

𝜕𝑦𝑖
𝑚−1 (10) 

Where: 

• 𝑦𝑖  is the true target value for instance i. 

• 𝑦𝑖
𝑚−1 is the predicted value from the previous iteration. 

• L is the loss function (e.g., mean squared error for regression or logistic loss for classification). 

2. Fit an Oblivious Decision Tree : Fit an oblivious decision tree 𝑓𝑚(𝑥) to the gradients g_i using the objective 

function: 

𝑜𝑏𝑗𝑚 =  𝑠𝑢𝑚{𝑖=1}
𝑛 𝐿(𝑦𝑖 , 𝑦𝑖

𝑚−1 +  𝑓𝑚(𝑥𝑖)) +  𝛺(𝑓𝑚)(11) 

Where: 

• 𝛺(𝑓𝑚) is the regularization term to control the complexity of the tree. 

In an oblivious tree, the splits are made based on a fixed set of features at each level, rather than choosing 

the best feature for each node. 

3. Calculate Leaf Values : For each leaf j of the oblivious tree, calculate the leaf value 𝑣𝑗: 

𝑣𝑗 =
(𝑠𝑢𝑚{𝑖∈𝐼𝑗}𝑔𝑖

)

(𝑠𝑢𝑚{𝑖∈𝐼𝑗}ℎ𝑖
+  𝜆)

(12) 

Where: 

• 𝐼𝑗 is the set of instances that belong to leaf j. 

• λ is the L2 regularization parameter. 

• ℎ𝑖 is the second-order gradient, which is approximated using the Newton-Raphson method in 
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CatBoost. 

4. Update the Model : Update the predictions for each instance by adding the new oblivious tree with the leaf 

values: 

𝑦𝑖
𝑚 =  𝑦𝑖

𝑚−1 + 𝑓𝑚(𝑥𝑖)(13) 

Where: 

• 𝑦𝑖
𝑚 is the updated prediction for instance i after iteration m. 

Step 4: Output the Final Model: The final model is the sum of all the oblivious trees from the M boosting 

rounds: 

𝑦𝑖 =  𝑠𝑢𝑚{𝑚=1}
𝑀 𝑓𝑚(𝑥𝑖)(14) 

Where: 

• 𝑦𝑖  is the final prediction for instance i. 

 

C. AdaBoost 

It iteratively trains weak learners on reweighted versions of the data, focusing on instances that were 

misclassified in the previous iterations. 

Step 1: Initialize the Weights: Initialize the weights for each training instance i: 

𝑤𝑖
1 =

1

𝑛
, 𝑓𝑜𝑟 𝑖 =  1, 2, … , 𝑛(15) 

Where: 

• 𝑤𝑖
1 is the initial weight for instance i. 

• n is the number of training instances. 

Step 2: Iterate for M Boosting Rounds 

For m = 1 to M: 

1. Train a Weak Learner- Train a weak learner (e.g., a decision tree) 𝑓𝑚(𝑥) using the weighted training data, 

where the weight of each instance i is 𝑤𝑖
𝑚. 

2. Calculate the Error Rate- Calculate the weighted error rate 𝜀𝑚 of the weak learner: 

𝜀𝑚 =  𝑠𝑢𝑚{𝑖=1}
𝑛 𝑤𝑖

𝑚 ∗
𝐼(𝑦𝑖 ≠  𝑓𝑚(𝑥𝑖))

𝑠𝑢𝑚{𝑖=1}
𝑛 𝑤𝑖

𝑚 (16) 

Where: 

• 𝑦𝑖  is the true target value for instance i. 

• 𝐼(𝑦𝑖 ≠  𝑓𝑚(𝑥𝑖)) is an indicator function that returns 1 if 𝑦𝑖is not equal to the prediction 𝑓𝑚(𝑥𝑖), and 0 

otherwise. 

3. Calculate the Weight Update Factor -Calculate the weight update factor 𝛼𝑚: 

𝛼𝑚 = log (
(1 − 𝜀𝑚)

𝜀𝑚

) (17) 

4. Update the Instance Weights- Update the weights for each instance i: 

𝑤𝑖
𝑚+1 =  𝑤𝑖

𝑚 ∗ exp (𝛼𝑚 ∗  𝐼(𝑦𝑖 ≠  𝑓𝑚(𝑥𝑖))) (18) 
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Where: 

• 𝑤𝑖
𝑚+1 is the updated weight for instance i after iteration m. 

This step increases the weights of misclassified instances and decreases the weights of correctly classified 

instances, allowing the next weak learner to focus more on the difficult instances. 

Step 3: Output the Final Model: The final model is a weighted sum of the weak learners: 

𝐹(𝑥) =  𝑠𝑢𝑚{𝑚=1}
𝑀 𝛼𝑚 ∗  𝑓𝑚(𝑥)(19) 

Where: 

• F(x) is the final prediction for instance x. 

• 𝛼𝑚 is the weight update factor for the m-th weak learner. 

• 𝑓𝑚(𝑥) is the prediction of the m-th weak learner. 

III. Model Training and Evaluation 

For each dataset (Liver and Heart), we performed the following steps: 

• Data Preprocessing: The datasets were preprocessed to handle missing values and scale numerical features. 

Missing values were imputed using mean imputation, and numerical features were scaled using 

StandardScaler from the scikit-learn library (Pedregosa et al., 2011). 

• Train-Test Split: The preprocessed datasets were split into training and test sets using an 80/20 stratified 

split to ensure an adequate representation of both classes in each subset. 

• Hyperparameter Tuning: For each algorithm, a grid search was performed to tune the hyperparameters 

using 5-fold cross-validation on the training set. The hyperparameters were optimized to maximize the area 

under the receiver operating characteristic curve (AUC-ROC) score. 

• Model Training: The tuned algorithms were trained on the entire training set using the optimal 

hyperparameters obtained from the grid search. 

• Model Evaluation: The trained models were evaluated on the held-out test set using various performance 

metrics, including accuracy, precision, recall, F1-score, and AUC-ROC. 

To find the best method for cardiovascular and hepatic disease classification, we analyzed the three 

boosting algorithms' performance on the Heart dataset and the Liver dataset. The algorithms that were considered 

were XGBoost, CatBoost, and AdaBoost. 

RESULT 

Three cutting-edge boosting algorithms—XGBoost (Extreme Gradient Boosting), CatBoost, and AdaBoost—

were tested in this research to see how well they classified liver and cardiovascular diseases. A large dataset 

including clinical data and diagnostic results for various diseases was used to test the algorithms. Tabulated in 

Table 1 are the key points from the performance review. Cardiovascular diseases and hepatic problems each have 

their own set of published outcomes. 

Table 1: Performance of Boosting Algorithms on the Classification of Cardiovascular and Hepatic Disorders 

Model 

AUC CA F1 Prec Recall 

Cardiova

scular 

Disorder

s  

Hepatic 

Disorders  

Cardiovas

cular 

Disorders  

Hepatic 

Disorde

rs  

Cardiovasc

ular 

Disorders  

Hepatic 

Disorde

rs  

Cardiovasc

ular 

Disorders  

Hepatic 

Disorders  

Cardiovas

cular 

Disorders  

Hepatic 

Disorder

s  

XGBoost 0.91 0.988 0.87 0.958 0.87 0.958 0.87 0.959 0.87 0.958 

CatBoost 0.88 0.98 0.86 0.938 0.86 0.938 0.86 0.938 0.86 0.938 

AdaBoost 0.82 0.921 0.78 0.921 0.78 0.921 0.78 0.921 0.78 0.921 
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Accuracy comparison for both disorders has been shown in Figure 1. 

 

Figure 1:  Accuracy Comparison 

Based on these results, the following observations can be made: 

• When compared to the other two algorithms, XGBoost had the best results in terms of accuracy, precision, 

recall, F1-score, and area under the curve (AUC) for cardiovascular ailments and hepatic illnesses, 

respectively. 

• With higher results across the board, CatBoost outperformed AdaBoost in the classification of 

cardiovascular and hepatic illnesses. 

• Although all three algorithms performed well, XGBoost achieved very good ratings across the board when it 

came to hepatic diseases. 

• While XGBoost maintained its position as the best algorithm for hepatic illness classification, the 

algorithms' performance in cardiovascular disorder classification was worse. 

• According to the area under the curve (AUC), XGBoost and CatBoost were very good at differentiating 

between the presence and absence of hepatic and cardiovascular diseases, although AdaBoost was 

somewhat less effective. 

Overall, these results suggest that XGBoost is the most effective algorithm for classifying both 

cardiovascular and hepatic disorders, followed by CatBoost and then AdaBoost.  

CONCLUSION 

Three cutting-edge boosting algorithms—XGBoost (Extreme Gradient Boosting), CatBoost, and AdaBoost—were 

tested in this research to see how well they classified liver and cardiovascular diseases. A large dataset including 

clinical data and diagnostic results for various diseases was used to test the algorithms. Tabulated in Table 1 are the 

key points from the performance review. Cardiovascular diseases and hepatic problems each have their own set of 

published outcomes. 
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