
Journal of Information Systems Engineering and Management

2025, 10(4)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1540 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Evaluating the Efficacy of Automated Penetration Testing

Tools in Identifying Vulnerabilities in Modern Web

Applications

Fawaz A. Mereani1, Emad Shafie2

1Corresponding Author | Department of Computer and Applied Science, Applied College, Umm Al-Qura University, Mecca, Saudi Arabia |

Email: famereani@uqu.edu.sa
2Department of Engineering and Applied Science, Applied College, Umm Al-Qura University, Mecca, Saudi Arabia | Email:

Eashafie@uqu.edu.sa

ARTICLE INFO ABSTRACT

Received: 10 Nov 2024

Revised: 25 Dec 2024

Accepted: 22 Jan 2025

Considering the increasing and rapidly evolving security vulnerabilities of modern web

applications, numerous research studies can be undertaken. This study aimed to evaluate the

efficacy of five automated penetration tools to detect SQL injection vulnerabilities in modern web

applications. An experimental study was done in which five tools were used to test SQL injection,

XSS and CSRF. To test the efficiency, the detection rate, precision, recall, scan time and false

positive rate were used. Overall, the results suggest that the most robust approach for evaluating

the security of web applications involves integrating both automated and manual penetration

testing strategies. By combining the strength of automated tools in rapidly scanning and

identifying potential vulnerabilities and the insight of manual analysis to verify and investigate

the context and impact of these findings, organisations can ensure a more comprehensive security

posture. The implications of these findings are pivotal for cybersecurity strategies, encouraging a

balanced and holistic approach to vulnerability assessment. Further scope of research lies in

testing genetic fuzzy algorithms and combining detection and prevention techniques using single

studies.

Keywords: SQL injection attacks, modern web applications, automated penetration testing

tools, and manual testing.

Introduction

Evaluation of the efficacy of automated penetration testing tools to identify vulnerabilities of modern web

applications

Automated penetration testing tools use software to simulate cyberattacks and identify weaknesses in systems,

networks, and applications. They are effective for identifying vulnerabilities in modern web applications, especially

when used in conjunction with manual testing, as they can quickly scan for common issues and simulate real-world

attacks. There are many types of tools, such as Dynamic Application Security Testing (DAST) and vulnerability

scanners (examples: Burp Suit, Core Impact, Nessus). Their efficiency is tested using speed, precision, accuracy and

repeatability. Automated tools are most effective when used along with manual penetration testing, focusing on

more complex and nuanced vulnerabilities. However, these tools have limitations in the identification of false

positives, the complexity of some tools and the possibility of missing some complex vulnerabilities. SQL injection,

Cross-site Scripting (XSS), server-side request forgery (SSRF) and security misconfiguration are some common

vulnerabilities which can be detected using these tools.

Based on the above information, this study aimed to test the efficacy of five automated penetration testing tools

(combined with manual testing) in two test environments. In this study, five tools were tested to test SQL injection,

XSS and CSRF. To test the efficiency, the detection rate, precision, recall, scan time and false positive rate were

used.

Journal of Information Systems Engineering and Management

2025, 10(4)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1541 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Literature Review

The findings obtained by Yadav, Rounak, and Sharma (2024) indicated that their newly developed automated

scanner, created using Python and Selenium, outperformed conventional techniques in identifying various

vulnerabilities, such as SQL injection, cross-site scripting (XSS), and new threats, particularly when it came to

recognising intricate and evolving vulnerabilities.

A system designed to automate the identification of vulnerabilities in web applications demonstrated its ability to

utilise the advantages of combining the two forms of automation within the tool. It successfully automated the

detection of vulnerability risks and presented the findings to the user in a straightforward manner, proving to be

cost-effective and needing minimal user involvement (Moreira, Seara, Pavia, & Serrão, 2024).

Cloud security testing involves assessing the cloud infrastructure and applications for weaknesses and ensuring the

protection of sensitive data. These tools, known for their effectiveness, precision, and cost-efficiency, mark a major

improvement over conventional manual testing methods. They effectively handle the complexity and scale of cloud

operations, lessening manual effort and reducing human errors, which are vital in the intricate and ever-changing

landscape of cloud computing. Nonetheless, the deployment and proper utilisation of these automated tools face

challenges due to the intricacies of cloud environments, the necessity for ongoing updates and improvements to

combat emerging threats, and integration hurdles. These obstacles require a strategic plan that encompasses

continuous maintenance, adherence to best practices, and keeping up to date with the latest trends and techniques

in cloud security (Ghazizadeh, Tamm, & Creutzburg, 2024).

Through a case study involving interviews and experiments, Alkhurayyif and Almarshdy (2024) found that

affordable automated penetration testing tools can protect small organisations from cybersecurity threats. The

penetration testing tools revealed that the organisation's website possessed several vulnerabilities. The Nessus tool

detected at least 37 vulnerabilities on the web application. The ZAP testing tool indicated that the web application

was facing critical failures, resulting in multiple vulnerabilities. The system was found to have three medium-risk,

12 low-risk, and four informational-risk vulnerabilities. By evaluating open ports, the NMAP tool uncovered various

vulnerabilities. These results hold significant importance for small organisations. Firstly, automated penetration

testing tools can be easily utilised by small organisations to enhance their cybersecurity without the need for

expensive expert assistance. Secondly, based on these findings, it is advisable to use automated penetration testing

tools in various combinations, as different tools offer unique benefits to cybersecurity.

This study highlighted the limitations of relying solely on one scanning tool by using evidence from penetration

testing methods, tools, and OWASP risk methodologies, as shown by the varying results obtained from different

techniques and tools. The most successful approach for detecting and addressing web application vulnerabilities is

to employ a thorough testing strategy that integrates various types of vulnerability scanners and techniques. These

issues become particularly clear when using grey box testing techniques alongside both manual and automated

scanning tools like Acunetix, Invicti, Burp Suite Professional, and OWASP ZAP, which assess factors such as

vulnerability coverage, scanning speed, vulnerability detection, and false positive rates. By implementing the

described method, the security community can gather trustworthy information to aid in making educated choices

when selecting penetration testing techniques and tools to effectively safeguard information in websites and

applications. According to these findings, a suggested approach is a combination of manual testing and automated

scanning due to its high effectiveness (Echefunna, et al., 2024).

A groundbreaking architecture utilises the powerful features of the Metasploit Framework and OWASP ZAP,

enabling organisations to proactively detect and address vulnerabilities in their web applications. The Metasploit

Framework (a deliberately vulnerable virtual machine) provides a controlled setting for mimicking actual

cyberattacks. Its wide array of vulnerabilities, ranging from basic misconfigurations to intricate exploits, creates an

optimal environment for evaluating the strength of web applications. OWASP ZAP (a prominent open-source

security tool) enhances this framework with its extensive set of scanning and testing capabilities. By automating the

vulnerability detection and analysis process, OWASP ZAP simplifies the workflow of penetration testing, facilitating

the efficient identification of potential threats (Samgir, Gutte, Kolhe, & Patil, 2024).

Journal of Information Systems Engineering and Management

2025, 10(4)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1542 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A model proposed by Alhogail and Alkahtani (2024) consisted of a collection of information followed by

vulnerability assessment to test and exploit. The results are generated automatically as a report. A tool, Kashef

model, was also developed to examine the accuracy and effectiveness of the model. Tests showed the proposed

model as an effective tool to identify vulnerabilities of the application.

A comparison study of two emerging tool types, Interactive Application Security Testing (IAST) and Runtime

Application Self-Protection (RASP), with well-established tools like Dynamic Application Security Testing (DAST)

and Static Application Security Testing (SAST), showed that IAST performed relatively well compared to other

tools, performing second-best in both efficiency and effectiveness. IAST detected eight Top-10 OWASP security

risks compared to nine by SMPT and seven for EMPT, DAST, and SAST. IAST found more vulnerabilities than

SMPT. The efficiency of IAST (2.14 VpH) is second to only EMPT (2.22 VpH). These findings imply that our study

benefited from using IAST when conducting black-box security testing. RASP prevented only Injection attacks in

Open MRS. Thus, in the context of a large, enterprise-scale web application such as Open MRS, RASP does not

replace vulnerability detection, while IAST is a powerful tool that complements other techniques (Seth,

Bhattacharya, Elder, Zahan, & Williams, 2025).

A non-intrusive systematic review of 81 papers by Adeniran, et al. (2024) on various knowledge-based

authentication techniques, vulnerabilities, and attacks, stressed the significance of data, the effects of

vulnerabilities over data, and the tools used in detection and prevention. It also attempts to create awareness of the

importance of adopting the latest security measures to be protected from attacks. The authors used many charts to

describe the categorisation of knowledge-based authentication (KBA) methods, their applications, their historical

progression, key performance criteria, vulnerability categories and the pros and cons of each.

Chaturvedi, Lakhani, Agarwal, Moharir, and Kumar AR (2024) examined the capabilities of incorporating

OpenVAS, Wireshark, Nmap, and Metasploit for a thorough evaluation and analysis of vulnerabilities in IT

environments as well as in both public and private sectors. OpenVAS acts as a powerful platform for vulnerability

scanning, while Wireshark analyses network traffic for possible threats. Nmap detects open ports and associated

vulnerabilities, and Metasploit enables ethical hacking and penetration testing. Collectively, these tools empower

organisations to proactively identify and remediate security weaknesses, thereby enhancing defences against cyber

threats. The paper recommends regular integration within a cohesive vulnerability management framework,

fostering a proactive and efficient strategy for protecting against cybersecurity issues.

The above review of papers shows that the efficacies of automated penetration testing tools can widely differ and

depend on the comparison methods and the penetration test platforms. The methods used in this study were

similar to many of these papers.

Methodology

The study aimed to evaluate the efficacy of automated penetration testing tools in identifying vulnerabilities in

modern web applications. The methodology was structured into several key phases: tool selection, test environment

setup, vulnerability testing, and result analysis. Each phase involved specific algorithms and systematic approaches

to ensure a comprehensive evaluation.

1. Tool Selection

− Criteria Definition: We defined criteria for selecting automated penetration testing tools, focusing on

popularity, ease of use, comprehensiveness, and support for current web technologies.

− Tool Selection: Five tools, Tool A, Tool B, Tool C, Tool D, and Tool E, were selected for analysis based on

the criteria. These tools are:

o Tool A: OWASP ZAP

o Tool B: Burp Suite Community Edition

o Tool C: Acunetix Free Edition

o Tool D: Netsparker Community Edition

o Tool E: Arachni

Journal of Information Systems Engineering and Management

2025, 10(4)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1543 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

First, the comparative advantages and disadvantages of automated and manual tools need to be evaluated when

considering the selection of automated tools for web vulnerability testing (Singh, Meherhomji, & Chandavarkar,

2020). To reduce false positives, Awang and Manaf (2013) suggested a framework consisting of an automatic

Blackbox testing followed by a manual method. The combined method detected five different vulnerabilities. For

their experiments, Abdulghaffar, Elmrabit, and Yousefi (2023) selected the latest versions of OWASP (Arachni and

Zap) as the automated targeting software. They tested a union list and an intersection list of these two tools. Union

list performed best for true positives, False positives were the highest for OWASP ZAP, but closely followed by

Union list with the highest precision and recall and the lowest false negatives. The reputation of tools was the basis

of tools selection of the two tools (Burp Suite and OWASP ZAP) in the studies of Shah (2020). False positive rates

were 0% and 0.02% for them, respectively. Alkhurayyif and Almarshdy (2024) found that some tools are very

effective and affordable in identifying vulnerabilities of small business web applications. Therefore, the selection of

tools for testing web vulnerabilities needs to be based on effectiveness and affordability.

All the factors identified in the above papers were used for the selection of the five tools of this research. The

criteria listed above demonstrate this.

2. Test Environment Setup

− Web Application Selection: We selected five modern web applications with diverse tech stacks, including

the following:

o DVWA (Damn Vulnerable Web App) – Classic PHP/MySQL stack for basic vulnerabilities.

o NodeGoat – Node.js/Express-based purposely vulnerable app.

o Juice Shop – An intentionally insecure Angular-based web application.

o Vulnerable Django Application – Created in-house based on public open-source templates for

Django.

o ReactGoat – A custom-built React-based vulnerable app following guidelines from the OWASP

Benchmark project.

− Mock Vulnerabilities: Using algorithmic approaches, specific known vulnerabilities were embedded into

these applications, ensuring they represented real-world scenarios like SQL injection, cross-site scripting

(XSS), and cross-site request forgery (CSRF).

3. Vulnerability Testing

− Automated Scanning: Each selected tool was used to perform automated scanning on all five applications.

Each scan was run thrice to ensure consistency, following standard operation procedures recommended by

tool developers, including:

o Using default or recommended scan profiles targeting web application vulnerabilities (SQLi, XSS,

CSRF).

o Ensuring all scans were unauthenticated (black-box), except where a tool required authentication

setup for some tests.

o Running each scan three times to account for tool variability/scan randomness and average the

outcomes.

o Resetting application state between scans to ensure tests were reproducible.

− Data Collection: Using algorithms, we systematically collected data on the number and type of

vulnerabilities identified, scan duration, and false-positive rates.

4. Result Analysis

− Performance Metrics: We utilised several performance metrics, such as detection rate, precision, recall, and

scan time efficiency.

− Data Analysis Algorithms: Statistical algorithms, including logistic regression and ANOVA, were used to

analyse the collected data and determine the statistical significance of the results.

The pseudocode used for implementing the methodology for this work is shown below.

Journal of Information Systems Engineering and Management

2025, 10(4)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1544 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

BEGIN

1. Initialise Tool Performance Data Storage

 SET metrics for detection_rate[], precision[], recall[], scan_time[], false_positive_rate[], false_negative_rate[]

2. Tool Selection

 FOR each tool IN [Tool A, Tool B, Tool C, Tool D, Tool E]

 SELECT based on criteria: ["Popularity", "Ease of Use", "Comprehensiveness", "Compatibility"]

3. Test Environment Setup

 SELECT 5 diverse web applications

 FOR each application IN selected applications

 INJECT vulnerabilities: [SQL Injection, XSS, CSRF]

4. Vulnerability Testing

 FOR each tool IN selected tools

 FOR each application IN selected applications

 PERFORM scan 3 times

 RECORD: vulnerabilities_detected, scan_duration, false_positives, false_negatives

 CALCULATE: average_detections, precision, recall

5. Data Collection and Analysis

 STORE: detection_rate[], precision[], false_positives[], false_negatives[]

 CALCULATE metrics: recall[], scan_time[]

 PERFORM statistical analysis (logistic regression, ANOVA) FOR each metric

6. Evaluate Performance

 IDENTIFY the best tool with the highest performance based on all metrics

7. Conclusions

 PRINT results emphasizing the importance of combining automated and manual testing

END

The pseudocode begins with the initialisation phase, where data structures are established to store the performance

metrics for each of the automated penetration testing tools under consideration. This step is crucial to organise and

facilitate the subsequent data collection and analysis processes. Following initialisation, the tool selection and

environment setup phase involves the criteria-based selection of tools, ensuring that the chosen tools align with

pre-defined standards of popularity, ease of use, comprehensiveness, and compatibility with current web

technologies. This phase also includes the embedding of known vulnerabilities into selected web applications,

providing a representative test bed for evaluating the tools' capabilities.

During the testing and data collection phase, each selected tool undergoes multiple scans across various web

applications. The objective here is to meticulously record the number of detected vulnerabilities, the time taken for

each scan, and the incidence of false positives. This detailed data collection is essential for the generation of

performance metrics, which include calculating the detection rate, precision, recall, and scan time efficiency. These

metrics provide a quantitative measure of each tool's efficacy.

Journal of Information Systems Engineering and Management

2025, 10(4)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1545 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the statistical analysis phase, sophisticated statistical methods, such as logistic regression and ANOVA, are

employed to scrutinise the collected metrics and establish their statistical significance. This analysis is vital for

providing reliable insights into each tool's performance. Performance evaluation is then conducted to identify the

tool with the highest efficacy across all metrics, with particular emphasis on tools that demonstrate superior

performance, such as Tool D in this study.

The conclusions drawn from the analysis stress the importance of manual verification alongside automated testing

due to the potential for false positives. The study advocates for an integrated approach, combining both automated

and manual penetration testing, to achieve the most thorough security evaluation. Overall, this pseudocode outlines

a systematic strategy for assessing the efficiency of automated penetration testing tools through a combination of

statistical analysis and comprehensive performance metrics.

Results

The results section of this study provides a comprehensive analysis of the performance of various automated

penetration testing tools employed to identify vulnerabilities in modern web applications. This section begins by

presenting the performance metrics obtained from a series of thorough and systematic evaluations of the selected

tools, including Tool A, Tool B, Tool C, Tool D, and Tool E. These metrics—detection rate, precision, recall, scan

time efficiency, and false positive rate—were carefully calculated and compiled into a detailed table for ease of

comparison. The evaluation results demonstrated varying effectiveness across different tools. The performance

metrics are detailed below (Table 1 and Figures 1 and 2), summarised for each tool across all tested applications.

Table 1

Performance metrics

Metric Tool A Tool B Tool C Tool D
 Tool

E

Detection Rate 85% 73% 78% 90% 67%

Precision 82% 75% 70% 88% 64%

Recall 84% 70% 76% 92% 62%
Scan Time Efficiency (min per
scan) 25 30 40 20 35

False Positive Rate 15% 20% 30% 10% 25%

False Negative Rate 5% 10% 15% 4% 12%

Figure 1

Performance metrics radar chart

Journal of Information Systems Engineering and Management

2025, 10(4)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1546 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 2

Performance metrics comparison

The results on performance metrics highlight the varying levels of effectiveness exhibited by each tool. Tool D

emerged as the most effective, leading in terms of detection rate (90%), precision (88%), and recall (92%), and

demonstrating the most efficient scan time at 20 minutes per scan. Tool D also has the lowest false positive (10%)

and false negative rates (4%), with the values ranging from 15% to 30% for the other four tools. Tool E showed the

least effective performance, with lower metrics across all categories, including a detection rate of 67%, precision of

64%, recall of 62%, and a high false positive rate of 25%. These measurements stressed Tool D's reliability and its

statistically significant superior capability (p < 0.05) in identifying vulnerabilities, making it a clear standout

among the tested tools. The range of these metrics for the other three tools was between these two extremes.

(Figure 1 and 2).

However, the study also underlines an important caveat: while automated penetration testing tools like the

presence of false positives remains a critical issue, underscoring the continued necessity for manual verification

methods. The highest was for Tool C with 30% false positives. Equally, the false negative results of Tool C was the

highest with 15%. The relatively significant presence of false negatives for all the five tools show that although

automation can significantly aid in the efficiency and breadth of testing, it cannot fully replace the nuanced

understanding provided by skilled human testers.

Discussion and Conclusion

The findings obtained in this study on the inclusion of manual testing and the use of multiple tools for better

efficacy were supported by (Kollepalli, Natarajan, Mathi, and Ramalingam (2024). In a review of SQL injection

attacks, Hajar, Jaafar, and Rahim (2024) recommended the same procedure followed in this study. Identifying and

exploiting vulnerabilities in a controlled, safer environment is vital. A detailed analysis of SQL injection attacks and

types, as well as possible solutions discussed by Sharma and Sharma (2016), agrees with many aspects of this study.

Some of the papers reviewed and discussed by Wimukthi, Kottegoda, Andaraweera, and Palihena (2022) are similar

to this study (example, Li et al., 2019; Kumar & Sujatha, 2022; Rankothge et al., 2020) in their methodological

approaches. A systematic review by Lawal, Sultan, and Shakiru (2016) included the automated detection systems

and found these methods useful for the efficient detection of SQL attacks, based on which preventive steps can be

planned. The review does not contain current examples of tools, as it was published about a decade ago. In a survey

of SQL injection attack countermeasures, Ladole and Phalke (2015) discussed the method followed in this study

related to testing the efficacy of automated penetration testing tools. Thus, this review supports the methodology

used in this study. The intrusion detection system used in some studies mentioned by Abdullayev and Chauhan

Journal of Information Systems Engineering and Management

2025, 10(4)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1547 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(2023) also supports many aspects of this study with similar observations like the efficacy advantage and false

positive disadvantage.

Using a genetic fuzzy rule-based classification system (FRBCS) for SQLI detection, prioritising the accuracy,

learning and flexibility of the obtained rules, a top-down software design approach, a web-based application

software was written in C# programming language that runs on MySQL as the backend database. This was

evaluated using many well-known malicious data sets. The tool restored security in our web-based transactions,

assuring confidence, transparency, integrity, and privacy in our transactions (Agbakwuru & Njoku, 2021). Although

the concept and the methods used in this paper were similar to those used in this study, performance metrics were

not provided.

A different method of web penetration test in SQL injection attacks was used by Alanda, Satria, Ardhana, Dahlan,

and Mooduto (2021). The method consisted of penetration testing using the black-box method to test web

application security based on the list of most attacks on the Open Web Application Security Project (OWASP),

namely SQL Injection. Ten websites were randomly tested using this method, and high levels of vulnerabilities to

SQL injection attacks were detected.

Thus, the concept, methodology and results of this study are generally supported by the literature. A possible future

research is using genetic fuzzy algorithms. There is also scope for research combining detection and prevention into

single studies.

Ultimately, the results suggest that the most robust approach for evaluating the security of web applications

involves integrating both automated and manual penetration testing strategies. By combining the strength of

automated tools in rapidly scanning and identifying potential vulnerabilities and the insight of manual analysis to

verify and investigate the context and impact of these findings, organisations can ensure a more comprehensive

security posture. The implications of these findings are pivotal for cybersecurity strategies, encouraging a balanced

and holistic approach to vulnerability assessment.

References

[1] Abdullayev, V., & Chauhan, A. S. (2023). SQL injection attack: Quick view. Mesopotamian journal of

Cybersecurity, 30-34. doi:https://doi.org/10.58496/MJCS/2023/006,

[2] Adeniran, T. C., Jimoh, R. G., Abah, E. U., Faruk, N., Alozie, E., & Imoize, A. L. (2024). Vulnerability

assessment studies of existing knowledge-based authentication systems: a systematic review. Sule Lamido

University Journal of Science & Technology, 8(1), 34-61. doi:https://doi.org/10.56471/slujst.v7i.485

[3] Agbakwuru, A. O., & Njoku, D. O. (2021). SQL Injection Attack on Web Base Application: Vulnerability

Assessments and Detection Technique. International Research Journal of Engineering and Technology,,

243-252. Retrieved March 12, 2025, from https://d1wqtxts1xzle7.cloudfront.net/105830034/IRJET-

V8I345-libre.pdf?1695190941=&response-content-

disposition=inline%3B+filename%3DSQL_Injection_Attack_on_Web_Base_Applica.pdf&Expires=174174

7452&Signature=VqS-vNFXvL3yZEGDGGcZ06WNZtP30HwQ9RD0bgYNHlB5Gifj

[4] Alanda, A., Satria, D., Ardhana, M. I., Dahlan, A. A., & Mooduto, H. A. (2021). Web application penetration

testing using SQL Injection attack. JOIV: International Journal on Informatics Visualization, 5(3), 320-

326. doi:https://dx.doi.org/10.30630/joiv.5.3.470

[5] Alhogail, A., & Alkahtani, M. (2024). Automated extension-based penetration testing for web

vulnerabilities. Procedia Computer Science, 238, 15-23. doi:https://doi.org/10.1016/j.procs.2024.05.191

[6] Alkhurayyif, Y., & Almarshdy, Y. S. (2024). Adopting automated penetration testing tools: A cost-effective

approach to enhancing cybersecurity in small organisations. Journal of Information Security and

Cybercrimes Research, 7(1), 51-66. doi:https://doi.org/10.26735/RJJT2453

[7] Chaturvedi, A., Lakhani, B., Agarwal, T., Moharir, M., & Kumar AR, A. (2024). A Comprehensive

Vulnerability Tools Analysis for Security and Control in IT Environment and Organizations. 5th

International Conference on Electronics and Sustainable Communication Systems (ICESC), 7-9 August

2024, Coimbatore, India (pp. 612-618). IEEE. doi:https://doi.org/10.1109/ICESC60852.2024.10689860

Journal of Information Systems Engineering and Management

2025, 10(4)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 1548 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[8] Echefunna, C. C., Osamor, J., Iwendi, C., Owoh, P., Ashawa, M., & Philip, A. (2024). Evaluation of

Information Security in Web Application Through Penetration Testing Techniques Using OWASP Risk

Methodology. International Conference on Advances in Computing Research on Science Engineering and

Technology (ACROSET), Indore, India, 27 September 2024 (pp. 1-21). IEEE.

doi:https://doi.org/10.1109/ACROSET62108.2024.10743903

[9] Ghazizadeh, H., Tamm, G., & Creutzburg, R. (2024). Automated Tools for Cloud Security Testing.

Electronic Imaging, 36, 1-7. doi:https://doi.org/10.2352/EI.2024.36.3.MOBMU-319

[10] Hajar, S., Jaafar, A. G., & Rahim, F. A. (2024). A Review of Penetration Testing Process For Sql Injection

Attack. Open International Journal of Informatics, 12(1), 72-87.

doi:https://doi.org/10.11113/oiji2023.11n2.256

[11] Kollepalli, R. P., Natarajan, A., Mathi, S., & Ramalingam, V. (2024). An Experimental Study on Detecting

and Mitigating Vulnerabilities in Web Application. International Journal of Safety & Security

Engineering, 14(2), 523-532. doi:ttps://doi.org/10.18280/ijsse.140219

[12] Ladole, A., & Phalke, D. A. (2015). A Survey on SQL Injection Attack Countermeasures Techniques.

International Journal of Science and Research, 4(11), 1556-1566. Retrieved March 11, 2025, from

https://d1wqtxts1xzle7.cloudfront.net/81549393/ae59eade974103be04ddda8ee29fafea6c71-

libre.pdf?1646199951=&response-content-

disposition=inline%3B+filename%3DA_Survey_on_SQL_Injection_Attack_Counter.pdf&Expires=174170

9512&Signature=LL9j4aO7tiXXBab-Da2LRVnbe

[13] Lawal, M. A., Sultan, A. B., & Shakiru, A. O. (2016). Systematic literature review on SQL injection attack.

International Journal of Soft Computing, 11(1), 26-35. Retrieved March 12, 2025, from

https://www.researchgate.net/profile/Lawal-Muhammad-

Aminu/publication/282377809_Systematic_literature_review_on_SQL_injection_attack/links/574191fc

08ae9f741b36701c/Systematic-literature-review-on-SQL-injection-attack.pdf#page=1.00

[14] Moreira, D., Seara, J. P., Pavia, J. P., & Serrão, C. (2024). Intelligent platform for automating vulnerability

detection in web applications. Electronics, 14(1), 79. doi:https://doi.org/10.3390/electronics14010079

[15] Samgir, A. B., Gutte, V., Kolhe, K., & Patil, D. R. (2024). Automated Penetration Testing Architecture Using

Metasploit and OWASP ZAP for Web Applications. 2nd International Conference on Sustainable

Computing and Smart Systems (ICSCSS), 10-12 July 2024, Coimbatore, India (pp. 649-657). IEEE.

doi:https://doi.org/10.1109/ICSCSS60660.2024.10625033

[16] Seth, A., Bhattacharya, S., Elder, S., Zahan, N., & Williams, L. (2025). Comparing effectiveness and

efficiency of interactive application security testing (IAST) and runtime application self-protection (RASP)

tools in a large java-based system. Empirical Software Engineering, 30(3), 67.

doi:https://doi.org/10.1007/s10664-025-10621-5

[17] Sharma, C. J., & Sharma, A. K. (2016). Explorative study of SQL injection attacks and mechanisms to

secure web application database-A. International Journal of Advanced Computer Science and

Applications, 7(3), 79-87. doi:https//doi.org/10.14569/IJACSA.2016.070312

[18] Wimukthi, H. Y., Kottegoda, H., Andaraweera, D., & Palihena, P. (2022). A comprehensive review of

methods for SQL injection attack detection and prevention. International Journal of Scientific Research in

Science and Technology, 11 pp. Retrieved March 12, 2025, from

https://www.researchgate.net/profile/Yasith-Wimukthi-

Hr/publication/364935556_A_comprehensive_review_of_methods_for_SQL_injection_attack_detection

_and_prevention/links/635f7f2c6e0d367d91e115d5/A-comprehensive-review-of-methods-for-SQL-

injection-attack-det

[19] Yadav, N. S., Rounak, R., & Sharma, P. C. (2024). Web-based Vulnerability Analysis and Detection.

International Journal of Sensors, Wireless Communications and Control.

doi:https://doi.org/10.2174/0122103279319619241008221647

