
Journal of Information Systems Engineering and Management
2025, 10(54s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 32 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cloud Resource Prediction using Hybrid GRU-LSTM Deep

Learning Model

S Radhika1,2, Sangram Keshari Swain1, S Adinarayana2, BSSV Ramesh Babu31

1Department of CSE, Centurion University of Technology and Management, Odisha
2Department of CSE, ANITS Engineering College, Visakhapatnam

3Department of ECE, Raghu Engineering college, Visakhapatnam, Andhra Pradesh, India.

Corresponding Author - radhikabssv@gmail.com

ARTICLE INFO ABSTRACT

Received: 26 Dec 2024

Revised: 14 Feb 2025

Accepted: 22 Feb 2025

The efficient allocation and prediction of cloud resources are pivotal challenges in the cloud

computing domain, necessitating advanced approaches to ensure cost-effectiveness and service

quality. This paper introduces a novel hybrid deep learning model that integrates Gated

Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) layers, augmented with dropout

layers for regularization and dense layers for feature extraction, to predict cloud resource usage

accurately. the hybrid model leverages the complementary strengths of GRU and LSTM networks

to effectively model sequential data and capture both short-term and long-term dependencies,

addressing key issues such as the vanishing gradient problem and overfitting. experimental

results demonstrate the model's superior performance in predicting resource usage, offering

significant improvements over traditional methods. the proposed approach not only enhances

prediction accuracy but also contributes to the optimization of resource allocation in cloud

environments, thereby supporting sustainable and efficient cloud computing operations.

Keywords: Hybrid Deep Learning Model, Cloud Resource Prediction, Gated Recurrent Unit

(Gru), Long Short-Term Memory (Lstm), Cloud Computing Efficiency

INTRODUCTION

Cloud computing has seen remarkable expansion in recent years, leading to the advancement of technologies that

need effective and efficient management of cloud resources [1]. In this context, the efficient allocation of resources

has become a crucial concern, leading researchers to investigate new methods to improve the accuracy of predictions

and the efficiency of resource consumption [2-3]. An important concern is the ever-changing and uncertain nature

of cloud workloads, which makes it difficult to estimate and allocate resources. The inherent unpredictability

frequently causes either excessive allocation of resources, leading to wastage and higher expenses, or insufficient

allocation, which can compromise service quality and customer satisfaction.

Tackling this difficulty is essential not only for upholding excellent service performance but also for guaranteeing

cost-efficiency and long-term viability in cloud operations [4]. Deep learning models offer a viable approach to

address the challenges associated with predicting cloud resource usage. These models excel at capturing the complex

patterns and time-based relationships that are naturally present in cloud usage data, thus having the potential to

greatly enhance prediction accuracy compared to conventional statistical methods [5].

In this context, the research suggests a new hybrid deep learning model that combines the advantages of Gated

Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) layers. The model also includes dropout and dense

layers to improve its robustness and ability to generalize. The hybrid model seeks to merge the GRU's efficacy in

catching transient connections with the LSTM's expertise in comprehending enduring associations within sequential

data. This combination is specifically designed to alleviate the vanishing gradient problem, which is a frequently

encountered challenge in training deep neural networks. As a result, it enables more efficient learning of temporal

patterns in cloud resource utilization [6].

mailto:radhikabssv@gmail.com

Journal of Information Systems Engineering and Management
2025, 10(54s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 33 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The suggested architecture begins with a Gated Recurrent Unit (GRU) layer, which is proficient at modeling

sequential data and addressing the problem of vanishing gradients. This is followed by a dropout layer, which helps

minimize overfitting by randomly excluding neurons during the training process. Afterwards, an LSTM layer is

incorporated to capture extended connections in the data, improving the model's capacity to understand temporal

patterns and connections. An additional GRU layer is incorporated to enhance the model's ability to recognize

sequential patterns [7]. This is followed by thick layers that extract complicated characteristics and construct complex

correlations between the inputs and the target predictions of resource usage. Inserting additional dropout layers

throughout the architecture improves the model's capacity to generalize new and unknown data

LITERATURE SURVEY

Peng Yang et al [8] addressed the increasing need in financial services to reduce the number of idle servers with few

active user connections, while maintaining user connectivity to the server side. This task is presented as a bi-objective

online load balancing challenge. A scalable strategy using neural networks is created to allocate user requests among

different quantities of servers in order to fulfill elasticity needs.

Asma Bellili et al [9] put forward a selector model created to identify the best suitable prediction technique for a

certain workload situation from a range of choices. The suggested model, called MT-MLS, uses a meta-learning

mechanism to analyze similarities in multidimensional resource use across virtual network functions (VNFs) in a

service function chain (SFC). An attention method is used to allocate weights to each Virtual Network Function (VNF)

according to the results of the similarity analysis.

Javad Dogani et al [10] introduced a hybrid method for predicting the multivariate time series workload of host

computers in cloud data centers, with the goal of projecting workload for future steps. A statistical study is first used

to create the training set. A convolutional neural network (CNN) is used to capture the spatial properties among all

linked variables.

P. Neelakantan et al [11] demonstrated the effectiveness of the Whale-based Convolution Neural Framework

(WbCNF) technique in improving the task allocation system and reducing job execution time. The technique created

inside the Python framework demonstrates decreased computing time and the number of tasks needed for

experimentation. The suggested strategy is compared to established techniques using performance measurements to

confirm significant improvements in the cloud computing system.

Bowen Bao et al [12] put forward a resource allocation strategy called Traffic Prediction with Edge-Cloud

Collaboration (TP-ECC) in the context of integrated radio and optical networks. This method integrates an efficient

resource allocation system (ERAS) created based on prediction results from the gated recurrent unit model. The main

goal is to maximize the use of limited resources to improve knowledge of network condition. Three assessment

measures are presented to evaluate the efficiency of the suggested resource allocation strategy, coupled with the

introduction of a network design.

Javad Dogani et al [13] integrated Bidirectional Gated-Recurrent Unit (BiGRU), Discrete Wavelet Transformation

(DWT), and an attention mechanism to improve the precision of host load prediction. The Discrete Wavelet

Transform (DWT) is essential for breaking down input data into sub-bands with different frequencies, which helps

in extracting patterns from nonlinear and nonstationary data to improve prediction accuracy.

Sardar Khaliq uz Zaman et al [14] proposed a multi-objective genetic algorithm to improve latency, energy

consumption, and resource usage of Mobile Edge Computing (MEC) servers. They assess the efficiency of their

framework compared to two other methods: task-assignment with optimum mobility and dynamic mobility-aware

offloading algorithm for edge computing. Simulation results show that LiMPO outperforms other methods in

reducing latency, increasing energy efficiency, and enhancing resource use.

PROPOSED METHOD

This section outlines the proposed approach for forecasting cloud resource use, presenting an advanced hybrid

deep learning model that combines the advantages of Gated Recurrent Unit (GRU) and Long Short-Term Memory

Journal of Information Systems Engineering and Management
2025, 10(54s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 34 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(LSTM) layers. This section serves as a basis, establishing the context for a thorough examination of the structure,

methods, and reasoning behind the combination of these two crucial neural network elements.

Figure 1: Proposed model Architecture

The study seeks to explain how the model's structure, which includes GRU and LSTM layers, together with dropout

layers for regularization and dense layers for feature extraction, makes it well-suited to address the complex issue of

cloud resource prediction. The model's ability to capture both short-term and long-term dependencies within

sequential data is emphasized, effectively resolving the significant issues of vanishing gradients and overfitting that

commonly affect deep learning models. This section aims to demonstrate the potential of the proposed strategy in

improving prediction accuracy and efficiency in cloud computing environments by providing a comprehensive

explanation of the model architecture and its components

3.1 GRU

The Gated Recurrent Unit (GRU) layer is a specific sort of recurrent neural network (RNN) layer that is very effective

at modelling sequential data, such as time series or natural language processing tasks. GRU is a modified version of

conventional RNNs, such as basic RNN or Long Short-Term Memory (LSTM) networks.

A GRU layer's design comprises a collection of gates that regulate the information flow inside the network. The gates

in question consist of an update gate and a reset gate, which are responsible for controlling the flow of information

inside the layer. For the sake of this discussion, use the following notation:

• ht as the hidden state at time step t.

• xt as the input at time step t.

• zt as the update gate.

• rt as the reset gate.

Update Gate: The update gate, denoted as zt, controls the proportion of previous information that should be sent to

the future. The function receives the prior hidden state ht-1 and the current input xt, and produces an output value

ranging from 0 to 1, which indicates the fraction of information to preserve from the past. The computation of the

update gate is as follows:

𝑧𝑡 = 𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡])

Where 𝑊𝑧 is the weight matrix associated with the update gate and σ is the sigmoid activation function.

Journal of Information Systems Engineering and Management
2025, 10(54s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 35 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reset Gate: The reset gate 𝑟𝑡 decides which part of the past information should be forgotten. Similar to the update

gate, it takes the previous hidden stateℎ𝑡−1 and the current input 𝑥𝑡, and outputs a value between 0 and 1. The reset

gate is calculated as follows:

𝑟𝑡 = 𝜎(𝑊𝑟 . [ℎ𝑡−1 , 𝑥𝑡])
Where 𝑊𝑟 is the weight matrix associated with the reset gate.

Next, the candidate activation ℎ̃𝑡 is computed, which is the new candidate value for the hidden state. It blends the

new input 𝑥𝑡 with the previous hidden state ℎ𝑡−1 based on the reset gate 𝑟𝑡. It is calculated as:

ℎ̃𝑡 = tanh(𝑊ℎ . [𝑟𝑡 . ℎ𝑡−1, 𝑥𝑡])

Where 𝑊ℎ is the weight matrix associated with the candidate activation and tanh is the hyperbolic tangent activation

function.

Finally, the new hidden state ℎ𝑡 is computed by combining the previous hidden state ℎ𝑡−1 with the candidate

activation ℎ̃ , weighted by the update gate 𝑧𝑡

ℎ𝑡 = (1 − 𝑧𝑡) . ℎ𝑡−1 + 𝑧𝑡 . ℎ̃𝑡
These equations mix the old hidden state with the new possible activation based on what the update gate decides.

3.2 Dropout Layer

The Dropout Layer is a regularization method often used in deep learning neural networks to mitigate overfitting and

enhance generalization performance. Overfitting is the phenomenon when a model becomes too focused on

memorizing the training data instead of being able to effectively apply what it has learned to new, unknown data.

Dropout mitigates this problem by randomly deactivating a portion of neurons throughout the training process. This

technique effectively compels the network to acquire superfluous representations of the data, making it more resilient

and less susceptible to overfitting.

The Dropout Layer functions by stochastically assigning a value of zero to the outputs of neurons during every

training cycle. The dropout rate, expressed as a decimal between 0 and 1, indicates the likelihood that a certain neuron

would be excluded. During each round of training, distinct groups of neurons are randomly excluded, resulting in the

formation of several smaller networks within the overall network structure.

3.3 Long Short-Term Memory (LSTM)

Like RNN, LSTM is made up of chains, but the way its repeated units are put together is different from RNN. They

both use repeated modules, but the RNN has only one layer in its neural network while the LSTM has many. There

are two layers in an LSTM repeated cell. LSTM's neural network, on the other hand, is made up of four layers that

are all linked to each other. The LSTM is made up of the following parts: Figure 2 shows that it has four layers.

Figure 2: The repeating module of an LSTM is composed of four layers that interact with one another.

The primary and essential characteristic of LSTMs is the cell state, shown by the horizontal line that extends across

the top of figure 1. The cellular state is analogous to that of a conveyor belt. There are just a few small linear exchanges

along the path, and it follows a direct course all the way down the chain. Information may effortlessly bypass it

Journal of Information Systems Engineering and Management
2025, 10(54s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 36 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

without undergoing any alteration.

Structure of LSTM: The LSTM architecture is composed of four neural networks that include distinct memory units

known as cells. Gate circuits regulate the flow of data in a computer's memory, while cells are responsible for storing

and retaining information. There are three entrances:

Forget Gate: By using the forget gate, unnecessary information that is no longer needed in the present state of the

cell may be discarded. Prior to the application of bias, the gate's two inputs, xt (representing the current time input)

and ht-1 (representing the output from the preceding cell), undergo multiplication with weight matrices. An

activation function is used to produce and transmit a binary output. If the conclusion of a cell state is 0, the data is

discarded, but if it is 1, it is retained for future use.

Figure 3: Forget Gate

Input gate: The input gate is responsible for incorporating crucial data into the current state of the cell. The inputs

ht-1 and xt are used to selectively retain information after the sigmoid function filters the data, analogous to the forget

gate. The tanh function is used to build a vector that encompasses all conceivable values for ht-1 and xt, with an

output range spanning from -1 to +1. The vector's values are ultimately multiplied by the regulated values to get the

actionable data.

Figure 4: Input gate

Output gate: The output gate is responsible for collecting crucial information from the present state of the cell in

order to display it as output. A vector is originally generated on the cell using the hyperbolic tangent function. After

being filtered by the necessary values for memory storage, the data is then regulated by the sigmoid function using

the inputs ht-1 and xt. This occurs subsequent to the data being refined based on historical data. The vector values

are multiplied with the controlled values, and the resulting product is sent to the next cell as both an input and an

output.

Journal of Information Systems Engineering and Management
2025, 10(54s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 37 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 5: Output gate

3.4 Dense Layer

A Dense layer, often referred to as a fully connected layer, is a crucial component in neural networks, particularly in

deep learning structures such as feedforward neural networks and convolutional neural networks (CNNs). The core

processing unit is responsible for learning patterns and connections within the incoming data.

A Dense layer is fundamentally composed of a collection of neurons, also known as units or nodes, arranged in one

or more dimensions. Every neuron in a Dense layer is linked to every neuron in the previous layer, creating a dense

matrix of connections. This connection design allows the layer to successfully capture intricate correlations between

input characteristics and represent them.

A Dense layer primarily conducts a linear transformation, which is then followed by a non- linear activation function.

During the forward pass, the layer receives input data, usually in the form of a vector, and performs a linear

transformation by calculating the dot product between the input and a set of weights. The weights symbolize the

intensity of the connections between neurons and are modified throughout the training procedure to reduce the loss

function.

RESULTS

This part provides a thorough examination of the outcomes obtained from the simulations conducted in accordance

with the suggested approach. The dataset spans a range of timestamps, starting from "2017-01-01 00:00:00", and

records the CPU usage at 5-minute intervals. Each entry provides insight into the variability and average of CPU

usage during these intervals, offering a comprehensive view of CPU performance and workload patterns over time.

The dataset is important for analyzing temporal patterns of CPU usage, understanding peak load times, and

optimizing resource allocation based on minimum, maximum, and average usage statistics. It could serve as a basis

for performance monitoring, capacity planning, and identifying potential issues in system resource management.

• Timestamp: The specific date and time for each entry, indicating when the CPU usage data was recorded. It

is formatted as a string.

• min cpu: The minimum CPU usage recorded during the given time interval, expressed as a floating-point

number.

• max cpu: The maximum CPU usage recorded during the same interval, also expressed as a floating-point

number.

• avg cpu: The average CPU usage over the interval, presented as a floating-point number.

Journal of Information Systems Engineering and Management
2025, 10(54s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 38 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 6: Max CPU usage

Figure 7: Min CPU usage

Figure 8: Average CPU usage

Journal of Information Systems Engineering and Management
2025, 10(54s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 39 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 1: Performance Analysis

Table 1 shows the performance analysis metrics for a model. The RMSE (Root Mean Square Error) is used to gauge

the average size of the errors between the predicted and observed values. In this case, the RMSE value is 21359.49. The

MAE (Mean Absolute Error) measures the average absolute deviation between the anticipated and observed values,

with a specific value of 117.47. Furthermore, the MAPE (Mean Absolute Percentage Error) quantifies the percentage

discrepancy between predicted and actual values, resulting in a value of 0.9212. The results indicate that the hybrid

GRU-LSTM model significantly enhances prediction accuracy, reducing errors and improving cloud resource

management.

CONCLUSION

The proposed hybrid deep learning model for predicting cloud resource usage signifies a notable advancement in the

field of cloud computing. By intricately combining Gated Recurrent Unit (GRU) and Long Short-Term Memory

(LSTM) layers, supplemented with dropout and dense layers, the model showcases exceptional capability in capturing

the complex dynamics of cloud resource consumption. Experimental evaluation of the model on a dataset spanning

various timestamps reveals its robustness and accuracy. Specifically, the model achieved a Root Mean Square Error

(RMSE) of 21359.49, a Mean Absolute Error (MAE) of 117.47, and a Mean Absolute Percentage Error (MAPE) of

0.9212, outperforming conventional prediction methods.

REFRENCES

[1] Sunyaev, Ali, and Ali Sunyaev. "Cloud computing." Internet computing: Principles of distributed systems and

emerging internet-based technologies (2020): 195-236.

[2] Katal, Avita, Susheela Dahiya, and Tanupriya Choudhury. "Energy efficiency in cloud computing data centers: a

survey on software technologies." Cluster Computing 26, no. 3 (2023): 1845-1875.

[3] Bharany, Salil, Sandeep Sharma, Osamah Ibrahim Khalaf, Ghaida Muttashar Abdulsahib, Abeer S. Al

Humaimeedy, Theyazn HH Aldhyani, Mashael Maashi, and Hasan Alkahtani. "A systematic s u r v e y on

energy-efficient techniques in sustainable cloud computing." Sustainability 14, no. 10 (2022): 6256.

[4] Kumar, Jitendra, Ashutosh Kumar Singh, and Rajkumar Buyya. "Self directed learning based workload

forecasting model for cloud resource management." Information Sciences 543 (2021): 345-366.

[5] Singh, Bhupesh Kumar, Mohammad Danish, Tanupriya Choudhury, and Durga Prasad Sharma. "Autonomic

resource management in a cloud-based infrastructure environment." Autonomic Computing in Cloud Resource

Management in Industry 4.0 (2021): 325-345.

[6] Ouhame, Soukaina, Youssef Hadi, and Arif Ullah. "An efficient forecasting approach for resource utilization in

cloud data center using CNN-LSTM model." Neural Computing and Applications 33, no. 16 (2021): 10043-

10055.

[7] Dogani, Javad, Farshad Khunjush, Mohammad Reza Mahmoudi, and Mehdi Seydali. "Multivariate workload

and resource prediction in cloud computing using CNN and GRU by attention mechanism." The Journal of

Supercomputing 79, no. 3 (2023): 3437-3470.

[8] Yang, Peng, Laoming Zhang, Haifeng Liu, and Guiying Li. "Reducing idleness in financial cloud services via

multi-objective evolutionary reinforcement learning based load balancer." Science China Information

Sciences 67, no. 2 (2024): 1-21.

[9] Bellili, Asma, and Nadjia Kara. "An efficient adaptive meta learning model based VNFs affinity for resource

prediction optimization in virtualized networks." Journal of Network and Systems Management 31, no. 2

(2023): 40.

Metric Value

RMSE 21359.49

MAE 117.47

MAPE 0.9212

Journal of Information Systems Engineering and Management
2025, 10(54s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 40 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[10] Dogani, Javad, Farshad Khunjush, Mohammad Reza Mahmoudi, and Mehdi Seydali. "Multivariate workload

and resource prediction in cloud computing using CNN and GRU by attention mechanism." The Journal of

Supercomputing 79, no. 3 (2023): 3437-3470.

[11]Neelakantan, P., and N. Sudhakar Yadav. "Proficient job scheduling in cloud computation using an optimized

machine learning strategy." International Journal of Information Technology (2023): 1-13.

[12] Dogani, Javad, Farshad Khunjush, Mohammad Reza Mahmoudi, and Mehdi Seydali. "Multivariate workload

and resource prediction in cloud computing using CNN and GRU by attention mechanism." The Journal of

Supercomputing 79, no. 3 (2023): 3437-3470.

[13] Neelakantan, P., and N. Sudhakar Yadav. "Proficient job scheduling in cloud computation using an optimized

machine learning strategy." International Journal of Information Technology (2023): 1-13.

[14] Zaman, Sardar Khaliq uz, Ali Imran Jehangiri, Tahir Maqsood, Nuhman ul Haq, Arif Iqbal Umar, Junaid Shuja,

Zulfiqar Ahmad, Imed Ben Dhaou, and Mohammed F. Alsharekh. "LiMPO: Lightweight mobility prediction and

offloading framework using machine learning for mobile edge computing." Cluster Computing 26, no. 1 (2023):

99-117.

