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The efficient allocation and prediction of cloud resources are pivotal challenges in the cloud 

computing domain, necessitating advanced approaches to ensure cost-effectiveness and service 

quality. This paper introduces a novel hybrid deep learning model that integrates Gated 

Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) layers, augmented with dropout 

layers for regularization and dense layers for feature extraction, to predict cloud resource usage 

accurately. the hybrid model leverages the complementary strengths of GRU and LSTM networks 

to effectively model sequential data and capture both short-term and long-term dependencies, 

addressing key issues such as the vanishing gradient problem and overfitting. experimental 

results demonstrate the model's superior performance in predicting resource usage, offering 

significant improvements over traditional methods. the proposed approach not only enhances 

prediction accuracy but also contributes to the optimization of resource allocation in cloud 

environments, thereby supporting sustainable and efficient cloud computing operations. 

Keywords: Hybrid Deep Learning Model, Cloud Resource Prediction, Gated Recurrent Unit 
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INTRODUCTION 

Cloud computing has seen remarkable expansion in recent years, leading to the advancement of technologies that 

need effective and efficient management of cloud resources [1]. In this context, the efficient allocation of resources 

has become a crucial concern, leading researchers to investigate new methods to improve the accuracy of predictions 

and the efficiency of resource consumption [2-3]. An important concern is the ever-changing and uncertain nature 

of cloud workloads, which makes it difficult to estimate and allocate resources. The inherent unpredictability 

frequently causes either excessive allocation of resources, leading to wastage and higher expenses, or insufficient 

allocation, which can compromise service quality and customer satisfaction. 

Tackling this difficulty is essential not only for upholding excellent service performance but also for guaranteeing 

cost-efficiency and long-term viability in cloud operations [4]. Deep learning models offer a viable approach to 

address the challenges associated with predicting cloud resource usage. These models excel at capturing the complex 

patterns and time-based relationships that are naturally present in cloud usage data, thus having the potential to 

greatly enhance prediction accuracy compared to conventional statistical methods [5]. 

In this context, the research suggests a new hybrid deep learning model that combines the advantages of Gated 

Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) layers. The model also includes dropout and dense 

layers to improve its robustness and ability to generalize. The hybrid model seeks to merge the GRU's efficacy in 

catching transient connections with the LSTM's expertise in comprehending enduring associations within sequential 

data. This combination is specifically designed to alleviate the vanishing gradient problem, which is a frequently 

encountered challenge in training deep neural networks. As a result, it enables more efficient learning of temporal 

patterns in cloud resource utilization [6]. 
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The suggested architecture begins with a Gated Recurrent Unit (GRU) layer, which is proficient at modeling 

sequential data and addressing the problem of vanishing gradients. This is followed by a dropout layer, which helps 

minimize overfitting by randomly excluding neurons during the training process. Afterwards, an LSTM layer is 

incorporated to capture extended connections in the data, improving the model's capacity to understand temporal 

patterns and connections. An additional GRU layer is incorporated to enhance the model's ability to recognize 

sequential patterns [7]. This is followed by thick layers that extract complicated characteristics and construct complex 

correlations between the inputs and the target predictions of resource usage. Inserting additional dropout layers 

throughout the architecture improves the model's capacity to generalize new and unknown data 

LITERATURE SURVEY 

Peng Yang et al [8] addressed the increasing need in financial services to reduce the number of idle servers with few 

active user connections, while maintaining user connectivity to the server side. This task is presented as a bi-objective 

online load balancing challenge. A scalable strategy using neural networks is created to allocate user requests among 

different quantities of servers in order to fulfill elasticity needs. 

Asma Bellili et al [9] put forward a selector model created to identify the best suitable prediction technique for a 

certain workload situation from a range of choices. The suggested model, called MT-MLS, uses a meta-learning 

mechanism to analyze similarities in multidimensional resource use across virtual network functions (VNFs) in a 

service function chain (SFC). An attention method is used to allocate weights to each Virtual Network Function (VNF) 

according to the results of the similarity analysis. 

Javad Dogani et al [10] introduced a hybrid method for predicting the multivariate time series workload of host 

computers in cloud data centers, with the goal of projecting workload for future steps. A statistical study is first used 

to create the training set. A convolutional neural network (CNN) is used to capture the spatial properties among all 

linked variables. 

P. Neelakantan et al [11] demonstrated the effectiveness of the Whale-based Convolution Neural Framework 

(WbCNF) technique in improving the task allocation system and reducing job execution time. The technique created 

inside the Python framework demonstrates decreased computing time and the number of tasks needed for 

experimentation. The suggested strategy is compared to established techniques using performance measurements to 

confirm significant improvements in the cloud computing system. 

Bowen Bao et al [12] put forward a resource allocation strategy called Traffic Prediction with Edge-Cloud 

Collaboration (TP-ECC) in the context of integrated radio and optical networks. This method integrates an efficient 

resource allocation system (ERAS) created based on prediction results from the gated recurrent unit model. The main 

goal is to maximize the use of limited resources to improve knowledge of network condition. Three assessment 

measures are presented to evaluate the efficiency of the suggested resource allocation strategy, coupled with the 

introduction of a network design. 

Javad Dogani et al [13] integrated Bidirectional Gated-Recurrent Unit (BiGRU), Discrete Wavelet Transformation 

(DWT), and an attention mechanism to improve the precision of host load prediction. The Discrete Wavelet 

Transform (DWT) is essential for breaking down input data into sub-bands with different frequencies, which helps 

in extracting patterns from nonlinear and nonstationary data to improve prediction accuracy. 

Sardar Khaliq uz Zaman et al [14] proposed a multi-objective genetic algorithm to improve latency, energy 

consumption, and resource usage of Mobile Edge Computing (MEC) servers. They assess the efficiency of their 

framework compared to two other methods: task-assignment with optimum mobility and dynamic mobility-aware 

offloading algorithm for edge computing. Simulation results show that LiMPO outperforms other methods in 

reducing latency, increasing energy efficiency, and enhancing resource use. 

PROPOSED METHOD 

This section outlines the proposed approach for forecasting cloud resource use, presenting an advanced hybrid 

deep learning model that combines the advantages of Gated Recurrent Unit (GRU) and Long Short-Term Memory 
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(LSTM) layers. This section serves as a basis, establishing the context for a thorough examination of the structure, 

methods, and reasoning behind the combination of these two crucial neural network elements. 

 

Figure 1: Proposed model Architecture 
 

The study seeks to explain how the model's structure, which includes GRU and LSTM layers, together with dropout 

layers for regularization and dense layers for feature extraction, makes it well-suited to address the complex issue of 

cloud resource prediction. The model's ability to capture both short-term and long-term dependencies within 

sequential data is emphasized, effectively resolving the significant issues of vanishing gradients and overfitting that 

commonly affect deep learning models. This section aims to demonstrate the potential of the proposed strategy in 

improving prediction accuracy and efficiency in cloud computing environments by providing a comprehensive 

explanation of the model architecture and its components 

3.1 GRU 

The Gated Recurrent Unit (GRU) layer is a specific sort of recurrent neural network (RNN) layer that is very effective 

at modelling sequential data, such as time series or natural language processing tasks. GRU is a modified version of 

conventional RNNs, such as basic RNN or Long Short-Term Memory (LSTM) networks. 

A GRU layer's design comprises a collection of gates that regulate the information flow inside the network. The gates 

in question consist of an update gate and a reset gate, which are responsible for controlling the flow of information 

inside the layer. For the sake of this discussion, use the following notation: 

• ht as the hidden state at time step t. 

• xt as the input at time step t. 

• zt as the update gate. 

• rt as the reset gate. 

Update Gate: The update gate, denoted as zt, controls the proportion of previous information that should be sent to 

the future. The function receives the prior hidden state ht-1 and the current input xt, and produces an output value 

ranging from 0 to 1, which indicates the fraction of information to preserve from the past. The computation of the 

update gate is as follows: 

𝑧𝑡 = 𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡]) 

Where 𝑊𝑧 is the weight matrix associated with the update gate and σ is the sigmoid activation function. 
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Reset Gate: The reset gate 𝑟𝑡 decides which part of the past information should be forgotten. Similar to the update 

gate, it takes the previous hidden stateℎ𝑡−1 and the current input 𝑥𝑡, and outputs a value between 0 and 1. The reset 

gate is calculated as follows: 

𝑟𝑡 = 𝜎(𝑊𝑟 . [ℎ𝑡−1 , 𝑥𝑡]) 
Where 𝑊𝑟 is the weight matrix associated with the reset gate. 

Next, the candidate activation ℎ̃𝑡 is computed, which is the new candidate value for the hidden state. It blends the 

new input 𝑥𝑡 with the previous hidden state ℎ𝑡−1 based on the reset gate 𝑟𝑡. It is calculated as: 

ℎ̃𝑡 = tanh(𝑊ℎ . [𝑟𝑡 . ℎ𝑡−1, 𝑥𝑡]) 

Where 𝑊ℎ is the weight matrix associated with the candidate activation and tanh is the hyperbolic tangent activation 

function. 

Finally, the new hidden state ℎ𝑡 is computed by combining the previous hidden state ℎ𝑡−1 with the candidate 

activation ℎ̃ , weighted by the update gate 𝑧𝑡 

ℎ𝑡 = (1 − 𝑧𝑡) . ℎ𝑡−1 + 𝑧𝑡 . ℎ̃𝑡 
These equations mix the old hidden state with the new possible activation based on what the update gate decides. 

3.2 Dropout Layer 

The Dropout Layer is a regularization method often used in deep learning neural networks to mitigate overfitting and 

enhance generalization performance. Overfitting is the phenomenon   when a model becomes too focused on 

memorizing the training data instead of being able to effectively apply what it has learned to new, unknown data. 

Dropout mitigates this problem by randomly deactivating a portion of neurons throughout the training process. This 

technique effectively compels the network to acquire superfluous representations of the data, making it more resilient 

and less susceptible to overfitting. 

The Dropout Layer functions by stochastically assigning a value of zero to the outputs of neurons during every 

training cycle. The dropout rate, expressed as a decimal between 0 and 1, indicates the likelihood that a certain neuron 

would be excluded. During each round of training, distinct groups of neurons are randomly excluded, resulting in the 

formation of several smaller networks within the overall network structure. 

3.3 Long Short-Term Memory (LSTM) 

Like RNN, LSTM is made up of chains, but the way its repeated units are put together is different from RNN. They 

both use repeated modules, but the RNN has only one layer in its neural network while the LSTM has many. There 

are two layers in an LSTM repeated cell. LSTM's neural network, on the other hand, is made up of four layers that 

are all linked to each other. The LSTM is made up of the following parts: Figure 2 shows that it has four layers.  

 
 

Figure 2: The repeating module of an LSTM is composed of four layers that interact with one another. 

The primary and essential characteristic of LSTMs is the cell state, shown by the horizontal line that extends across 

the top of figure 1. The cellular state is analogous to that of a conveyor belt. There are just a few small linear exchanges 

along the path, and it follows a direct course all the way down the chain. Information may effortlessly bypass it 
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without undergoing any alteration. 

Structure of LSTM: The LSTM architecture is composed of four neural networks that include distinct memory units 

known as cells. Gate circuits regulate the flow of data in a computer's memory, while cells are responsible for storing 

and retaining information. There are three entrances: 

Forget Gate: By using the forget gate, unnecessary information that is no longer needed in the present state of the 

cell may be discarded. Prior to the application of bias, the gate's two inputs, xt (representing the current time input) 

and ht-1 (representing the output from the preceding cell), undergo multiplication with weight matrices. An 

activation function is used to produce and transmit a binary output. If the conclusion of a cell state is 0, the data is 

discarded, but if it is 1, it is retained for future use. 

 
 

Figure 3: Forget Gate 

Input gate: The input gate is responsible for incorporating crucial data into the current state of the cell. The inputs 

ht-1 and xt are used to selectively retain information after the sigmoid function filters the data, analogous to the forget 

gate. The tanh function is used to build a vector that encompasses all conceivable values for ht-1 and xt, with an 

output range spanning from -1 to +1. The vector's values are ultimately multiplied by the regulated values to get the 

actionable data.  

 
 

Figure 4: Input gate 

Output gate: The output gate is responsible for collecting crucial information from the present state of the cell in 

order to display it as output. A vector is originally generated on the cell using the hyperbolic tangent function. After 

being filtered by the necessary values for memory storage, the data is then regulated by the sigmoid function using 

the inputs ht-1 and xt. This occurs subsequent to the data being refined based on historical data. The vector values 

are multiplied with the controlled values, and the resulting product is sent to the next cell as both an input and an 

output. 
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Figure 5: Output gate 

3.4 Dense Layer 

A Dense layer, often referred to as a fully connected layer, is a crucial component in neural networks, particularly in 

deep learning structures such as feedforward neural networks and convolutional neural networks (CNNs). The core 

processing unit is responsible for learning patterns and connections within the incoming data. 

A Dense layer is fundamentally composed of a collection of neurons, also known as units or nodes, arranged in one 

or more dimensions. Every neuron in a Dense layer is linked to every neuron in the previous layer, creating a dense 

matrix of connections. This connection design allows the layer to successfully capture intricate correlations between 

input characteristics and represent them. 

A Dense layer primarily conducts a linear transformation, which is then followed by a non- linear activation function. 

During the forward pass, the layer receives input data, usually in the form of a vector, and performs a linear 

transformation by calculating the dot product between the input and a set of weights. The weights symbolize the 

intensity of the connections between neurons and are modified throughout the training procedure to reduce the loss 

function. 

RESULTS 

This part provides a thorough examination of the outcomes obtained from the simulations conducted in accordance 

with the suggested approach. The dataset spans a range of timestamps, starting from "2017-01-01 00:00:00", and 

records the CPU usage at 5-minute intervals. Each entry provides insight into the variability and average of CPU 

usage during these intervals, offering a comprehensive view of CPU performance and workload patterns over time. 

The dataset is important for analyzing temporal patterns of CPU usage, understanding peak load times, and 

optimizing resource allocation based on minimum, maximum, and average usage statistics. It could serve as a basis 

for performance monitoring, capacity planning, and identifying potential issues in system resource management. 

• Timestamp: The specific date and time for each entry, indicating when the CPU usage data was recorded. It 

is formatted as a string. 

• min cpu: The minimum CPU usage recorded during the given time interval, expressed as a floating-point 

number. 

• max cpu: The maximum CPU usage recorded during the same interval, also expressed as a floating-point 

number. 

• avg cpu: The average CPU usage over the interval, presented as a floating-point number.  
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Figure 6: Max CPU usage 

 

 
 

Figure 7: Min CPU usage 
 

 
 

Figure 8: Average CPU usage 
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Table 1: Performance Analysis 

 
Table 1 shows the performance analysis metrics for a model. The RMSE (Root Mean Square Error) is used to gauge 

the average size of the errors between the predicted and observed values. In this case, the RMSE value is 21359.49. The 

MAE (Mean Absolute Error) measures the average absolute deviation between the anticipated and observed values, 

with a specific value of 117.47. Furthermore, the MAPE (Mean Absolute Percentage Error) quantifies the percentage 

discrepancy between predicted and actual values, resulting in a value of 0.9212.  The results indicate that the hybrid 

GRU-LSTM model significantly enhances prediction accuracy, reducing errors and improving cloud resource 

management. 

CONCLUSION 

The proposed hybrid deep learning model for predicting cloud resource usage signifies a notable advancement in the 

field of cloud computing. By intricately combining Gated Recurrent Unit (GRU) and Long Short-Term Memory 

(LSTM) layers, supplemented with dropout and dense layers, the model showcases exceptional capability in capturing 

the complex dynamics of cloud resource consumption. Experimental evaluation of the model on a dataset spanning 

various timestamps reveals its robustness and accuracy. Specifically, the model achieved a Root Mean Square Error 

(RMSE) of 21359.49, a Mean Absolute Error (MAE) of 117.47, and a Mean Absolute Percentage Error (MAPE) of 

0.9212, outperforming conventional prediction methods. 
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