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Abstract: This paper presents a hybrid control–perception framework for autonomous vehicles 

operating in dynamic, uncertain environments. The architecture integrates real-time semantic 

lane perception with Nonlinear Model Predictive Control (NMPC) for lateral trajectory tracking 

and Adaptive Sliding Mode Control (ASMC) for longitudinal speed regulation. By embedding 

lightweight segmentation network outputs directly into the NMPC cost function, the framework 

achieves seamless integration of perception and control. NMPC handles constraint-aware 

manoeuvring with predictive steering over a finite horizon, while ASMC ensures robust speed 

control under disturbances and uncertainties. Simulations across diverse scenarios—including 

varying speeds (2 m/s to 10 m/s), load disturbances, and road geometries—show that the 

NMPC+ASMC controller outperforms conventional MPC+PI schemes in terms of tracking 

accuracy, reduced RMS errors, and stability. Prior experiments validate its real-time feasibility 

on embedded platforms, while reinforcement learning-enhanced MPC improves adaptability in 

urban environments. The results confirm the framework’s scalability, robustness, and 

interpretability for safe autonomous driving. 
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1. INTRODUCTION 

Autonomous vehicles must operate safely in highly dynamic and uncertain environments, where maintaining 

trajectory stability and lane adherence is crucial. To address this, modern navigation systems require a seamless 

integration of robust perception and constraint-aware control. Traditional PID and rule-based methods lack the 

ability to handle nonlinear vehicle dynamics and are often susceptible to visual disturbances such as occlusions, faded 

markings, and shadows [1]– [3]. Similarly, conventional lane detection techniques based on handcrafted features 

offer limited reliability in real-world conditions [4], [5].  

Recent advances in semantic segmentation networks, such as ENet [6], SCNN [7], and LaneNet [8], have significantly 

improved the accuracy and robustness of lane geometry extraction in autonomous driving systems. ENet [6] is 

designed as a lightweight and real-time semantic segmentation network. Its main strength lies in its high inference 

speed and low computational cost, making it ideal for embedded platforms. However, due to its compressed 

architecture, ENet may struggle with fine-grained lane boundaries in complex or low-light scenes, potentially leading 

to loss of detail in narrow or partially occluded lanes. SCNN (Spatial CNN) [7]  introduces spatial convolution to 

explicitly model the structural continuity of lanes across spatial dimensions. It performs well in curvy and lane-

crossing scenarios by propagating contextual information across rows and columns. Nevertheless, SCNN’s training 

and inference time are relatively higher, and its performance degrades in the presence of heavy occlusion or when 

the lanes are faint, especially without a well-curated training dataset. LaneNet [8] separates the task into two 

branches: one for binary segmentation of lane areas and another for instance embedding of each individual lane. This 

approach enables multi-lane detection and supports lane instance differentiation, which is crucial in multi-lane 

highways. However, its performance depends heavily on post-processing steps (e.g., clustering), which can be 

sensitive to hyperparameter tuning and computationally intensive. Despite their architectural innovations, these 

models generally operate as standalone perception modules, disconnected from downstream control tasks. This 

separation limits the ability to adapt control actions in real time based on lane dynamics, especially under uncertain 

mailto:vothanhha.ktd@utc.edu.vn


Journal of Information Systems Engineering and Management 
2025, 10(54s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 108 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

or rapidly changing conditions. Additionally, most of these models still require substantial training data diversity to 

generalize well to varying weather, lighting, and road textures—factors that frequently appear in real-world 

autonomous driving environments. To overcome these limitations, the proposed framework in this study embeds 

semantic outputs from such models directly into the Nonlinear Model Predictive Control (NMPC) cost function, 

thereby enabling a closed-loop interaction between perception and control for improved responsiveness and safety. 

Specifically: 

Nonlinear Model Predictive Control (NMPC) is employed to govern lateral dynamics, ensuring smooth and accurate 

lane tracking by optimizing steering angles within vehicle constraints over a prediction horizon [10]– [12]. NMPC is 

particularly effective in handling vehicle nonlinearity, curvature constraints, and obstacle avoidance [13]. 

For longitudinal control, an Adaptive Sliding Mode Control (ASMC) strategy is adopted to regulate vehicle speed. 

ASMC is known for its robustness to external disturbances and model uncertainties, offering fast convergence and 

smooth throttle behavior even under time-varying conditions [14], [15]. By embedding real-time semantic lane 

boundaries into the NMPC cost function and leveraging ASMC for adaptive speed regulation, the proposed system 

maintains high performance under challenging road conditions. Simulation experiments confirm enhanced tracking 

precision, faster speed convergence, and improved resilience to noise, surpassing conventional PID–MPC setups. 

This modular architecture provides a transparent and scalable alternative to end-to-end learning systems, combining 

the interpretability of physics-based control with the adaptability of learned perception — a vital step toward safe and 

reliable autonomous driving.  

Additionally, Vo Thanh Ha et al. [16] validated the feasibility of predictive control for autonomous navigation under 

experimental conditions using embedded systems, demonstrating precise path tracking and obstacle avoidance at 

low speeds. Further enhancement using reinforcement learning in combination with MPC was explored in [17], where 

adaptive control policies showed improved responsiveness in dynamic urban driving environments. These works 

reinforce the value of combining prediction-based control with adaptive strategies to improve the overall robustness 

of autonomous vehicles in practical scenarios. 

At the core of this work is the design of a hybrid control strategy that integrates Nonlinear Model Predictive Control 

(NMPC) for lateral trajectory tracking with Adaptive Sliding Mode Control (ASMC) for longitudinal speed regulation. 

This coordination addresses the distinct challenges of navigating both the vehicle’s position within the lane and its 

velocity over time, allowing for constraint-aware maneuvering and robust speed adaptation. While NMPC provides 

predictive steering decisions based on semantic lane perception, ASMC offers high robustness to external 

disturbances and nonlinearities in speed control. The result is a comprehensive, real-time capable system that 

enhances directional stability, improves ride quality, and strengthens control reliability under uncertainty. 

This paper introduces a novel hybrid control–perception framework tailored for autonomous vehicle operation in 

dynamic urban environments. The main contributions are summarized as follows: 

• Integrated Dual-Layer Control Architecture: A hybrid control scheme is proposed that combines NMPC for 

lateral trajectory tracking and ASMC for longitudinal speed regulation. This dual-layer approach offers improved 

robustness and precision compared to conventional single-loop controllers. 

• Robust Longitudinal Regulation with ASMC: ASMC enhances speed regulation by providing disturbance 

rejection and fast convergence under nonideal driving conditions, outperforming traditional fuzzy or PID-based 

longitudinal control schemes. 

The remainder of the paper is structured into five main sections. Section 1 presents the background, motivation, and 

problem formulation, emphasizing the challenges of autonomous vehicle navigation in visually complex 

environments and the need for integrated control-perception architectures. Section 2 introduces the kinematic and 

dynamic modeling of the autonomous vehicle, including key assumptions and parameters relevant for control system 

design. Section 3 describes the proposed hybrid control architecture in detail, where a Nonlinear Model Predictive 

Controller (NMPC) is employed for lateral trajectory tracking, and an Adaptive Sliding Mode Control (ASMC) is used 

for longitudinal speed regulation. Section 4 provides the simulation setup and presents performance evaluations 

under different driving scenarios, including varying speeds and environmental uncertainties. Finally, Section 5 

summarizes the key findings, discusses current limitations, and outlines future research directions, such as hardware 

implementation and integration with learning-based planning modules. 

2. LATERAL DYNAMICS MODEL OF AUTONOMOUS VEHICLE 
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2.1 Linear Bicycle Model 

By applying Newton's Law principle, the differential equations governing the car's motion in Fig. 1 can be derived as 

follows:  

The vehicle's linear dynamic model is derived using a small-angle approximation and constant longitudinal velocity. 

Figure 1 illustrates the lateral dynamics model of an autonomous vehicle, showing the car's motion and primary forces 

through an axle representation. The oxygen coordinate system describes vertical and horizontal directions within the 

vehicle's reference frame, while the OXY coordinate system represents these directions in the absolute frame. The 

angle ψ denotes the vehicle body's rotation in the OXY reference system. Using Newton's laws, the differential 

equations governing the motion depicted in Figure 1 are derived as follows: 

{
𝑚(𝑦̈ + 𝑉𝑥𝜓̇𝑦) = 𝐹𝑦𝑓 + 𝐹𝑦𝑟

𝐼𝑟𝜓̈ = 𝐼𝑓𝐹𝑥𝑓 − 𝐼𝑓𝐹𝑦𝑟
         (1) 

Where m and 𝐼𝑟  are the vehicle mass and moment of inertia, respectively, 𝐼𝑟represent the vehicle's mass and moment 

of inertia, respectively, 𝐹𝑦𝑓 + 𝐹𝑦𝑟are the forces acting on the wheels in the x and y directions. 

 
Figure 1. The lateral dynamics model of the autonomous vehicle. 

Research reveals that a tyre's lateral force increases proportionally with its slide angle at moderate slip angles, a 

relationship called "cornering stiffness." This property is essential for vehicle handling and cornering stability. Tyre 

manufacturers optimise cornering stiffness by balancing traction, durability, and rolling resistance to achieve the 

desired performance. Fine-tuning this characteristic enables engineers to improve a vehicle's handling dynamics for 

optimal performance.The slip angle of the tyre is written as Eq. 2: 

𝑎𝑓 = 𝛿 − 𝜃𝑣𝑓            (2) 

where: 𝛿 is the front tyre steering angle. 

The forces acting on the wheels in y directions for the rear and front tyre are calculated in Eq.3. 

{
𝐹𝑦𝑓 = 2𝐶𝑎𝑓(𝛿 − 𝜃𝑣𝑓)

𝐹𝑦𝑟 = 2𝐶𝑎𝑟(−𝜃𝑣𝑓)
              (3) 

Where 𝐶𝑎𝑓 , 𝐶𝑎𝑟  is cornering stiffness. 

And 

{
tan 𝜃𝑣𝑓 =

𝑉𝑦+𝑙𝑓𝜓̇

𝑉𝑥

tan 𝜃𝑣𝑟 =
𝑉𝑦−𝑙𝑟𝜓̇

𝑉𝑥

            (4) 

If 𝜃𝑣𝑓 &𝜃𝑣𝑟  they are small, the equations in the figure describe the slip angles of the front and rear wheels in an 

autonomous vehicle’s kinematic or dynamic model. Slip angles represent the deviation between the direction of wheel 

motion and the wheel heading, which is essential for analysing lateral vehicle dynamics and designing advanced 

control systems. These are calculated by Eq. (5): 
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{
𝜃𝑣𝑓 =

𝑦+̇𝑙𝑓𝜓̇

𝑉𝑥

𝜃𝑣𝑟 =
𝑦̇−𝑙𝑟𝜓̇

𝑉𝑥

             (5) 

The forces exerted on the rear and front tyres in the vertical direction are computed. Eq. (6). 

{
𝐹𝑦𝑓 = 2𝐶𝑎𝑓(𝛿 −

𝑦+̇𝑙𝑓𝜓̇

𝑉𝑥
)

𝐹𝑦𝑟 = 2𝐶𝑎𝑟(−
𝑦̇−𝑙𝑟𝜓̇

𝑉𝑥
)

            (6) 

The dynamic model of the autonomous vehicle is rewritten as follows: Eqs. (7) & (8): 

𝑦̈ + 𝑉𝑥𝜓 =̇
2𝐶𝑎𝑓𝛿

𝑚
−

2𝐶𝑎𝑓(𝑦+̇𝑙𝑓𝜓̇)

𝑚𝑉𝑥
−

2𝐶𝑎𝑟(
𝑦̇−𝑙𝑟𝜓̇

𝑉𝑥
)

𝑚𝑉𝑥
             (7) 

𝑦̈ =
𝑙𝑓

𝐼𝑟
(2𝐶𝑎𝑓𝛿 − (

2𝐶𝑎𝑓(𝑦+̇𝑙𝑓𝜓̇)

𝑉𝑥
) +

𝑙𝑓

𝐼𝑟

2𝐶𝑎𝑟𝛿(𝑦+̇𝑙𝑟𝜓̇)

𝑉𝑥
           (8) 

Eqs. (7) and (8) are rewritten as Eqs. (9) and (10): 

𝑦̈ =
2𝐶𝑎𝑓𝛿

𝑚
−

2(𝐶𝑎𝑓+𝐶𝑎𝑟)

𝑚𝑉𝑥
𝑦̇ − (𝑉𝑥 +

2(𝐶𝑎𝑓𝑙𝑓−𝐶𝑎𝑟𝑙𝑟)

𝑚𝑉𝑥
)𝜓̇                 (9) 

𝑦̈ =
𝑙𝑓2𝐶𝑎𝑓𝛿

𝐼𝑟
−

2(𝐶𝑎𝑓 𝑙𝑓− 𝐶𝑎𝑟𝑙𝑟)

𝐼𝑧𝑉𝑥
𝑦̇ −

2(𝐶𝑎𝑓 𝑙𝑓
2− 𝐶𝑎𝑟𝑙𝑟

2)

𝐼𝑧𝑉𝑥
𝜓̇               (10)            

The dynamic state-space model of the autonomous vehicle is rewritten as follows: Eq. (11) 

  
𝑑

𝑑𝑡
{

𝑦
𝑦̇
𝜓

𝜓̇

} =

[
 
 
 
 
 0
0
0
0

1
 − 2(𝐶𝛼𝑓+𝐶𝛼𝑟) 

𝑚.𝑉𝑚

0
 − 2(𝐶𝛼𝑓𝑙𝑓+𝐶𝛼𝑟𝑙𝑟) 

𝐼𝑧.𝑉𝑥

0
0
0
0

 0
 − 2(𝐶𝛼𝑓𝑙𝑓+𝐶𝛼𝑟𝑙𝑟) 

𝐼𝑧.𝑉𝑥

1
 − 2(𝐶𝛼𝑓𝑙𝑓

2+𝐶𝛼𝑟𝑙𝑟
2) 

𝐼𝑧.𝑉𝑥 ]
 
 
 
 
 

{

𝑦
𝑦̇
𝜓

𝜓̇

} +

[
 
 
 
 
0

2𝐶𝛼𝑓

𝑚

0
2𝐶𝛼𝑟𝑙𝑟

𝐼𝑧 ]
 
 
 
 

𝛿     (11) 

where:  

𝑦: lateral displacement. 

𝜓 : heading angle.  

m: vehicle mass. 

𝐼𝑧: a moment of inertial. 

𝑙𝑓 , 𝑙𝑟: distances from the centre front and rear axles. 

𝐶𝛼𝑟 , 𝐶𝛼𝑓: cornering stiffness coefficients 

𝛿: steering angle input. 

This model is widely used in control algorithms, such as linear MPC. However, this control method is simple and 

effective in low-speed scenarios.  

2.2 Nonlinear Kinematic Model 

The nonlinear model of the lateral dynamics of an autonomous vehicle is commonly based on the bicycle model, 

which approximates the car with a single front and rear wheel. This model captures the key dynamics, including 

longitudinal, lateral 𝑣𝑦, yaw rate lateral position error 𝑒1 (cross-track error) and heading error 𝑒2. The nonlinear 

equations of motion are given as: 

{
 
 
 

 
 
 𝑣𝑥̇ =

1

𝑚
(𝐹𝑥𝑓𝑐𝑜𝑠𝛿 − 𝐹𝑦𝑓𝑠𝑖𝑛𝛿 + 𝐹𝑥𝑟) + 𝑣𝑦𝜔

𝑣𝑦̇ =
1

𝑚
(𝐹𝑦𝑓𝑐𝑜𝑠𝛿 + 𝐹𝑥𝑓𝑠𝑖𝑛𝛿 + 𝐹𝑦𝑟) − 𝑣𝑥𝜔

𝜔̇ =
1

𝐼𝑧
(𝑙𝑓𝐹𝑦𝑓𝑐𝑜𝑠𝛿 + 𝑙𝑓𝐹𝑥𝑓𝑠𝑖𝑛𝛿 − 𝑙𝑟𝐹𝑦𝑓)

𝑒1̇ = 𝑣𝑦 + 𝑣𝑥 sin(𝑒2)

𝑒2̇ = 𝜔 −
𝑣𝑥 cos(𝑒2)−𝑣𝑦sin (𝑒1)

𝑅

         (12) 

where: 

 𝐹𝑥𝑓 , 𝐹𝑥𝑟: Longitudinal forces are on the front and rear tyre, and lateral forces are on the front and rear tyre. 
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This nonlinear model accurately describes vehicle behaviour at high speeds or during aggressive manoeuvres when 

tyre slips occur and nonlinearities become significant. 

2.3 Vehicle steering angle and vehicle speed 

Figure 2 illustrates the relationship between vehicle speed and steering angle in a steering control system. As shown, 

the upper and lower steering angle limits (black dashed and dash-dot lines) decrease as speed increases, ranging from 

±45° at low speeds to ±23° at high speeds. This strategy ensures greater maneuverability during low-speed operations 

and improved stability at higher speeds to reduce the risk of rollover. The actual steering angle (blue dashed line) 

demonstrates higher amplitude and oscillations at lower speeds, reflecting agile steering behavior. As the vehicle 

accelerates, the amplitude of steering gradually diminishes and stabilizes, indicating smoother and more controlled 

steering adjustments at high speeds. This trend confirms the effectiveness of speed-adaptive steering constraints in 

maintaining vehicle stability across varying velocity profiles. 

 
Figure 2. Vehicle steering angle and vehicle speed. 

NONLINEAR MODEL PREDICTIVE CONTROL (NMPC) FOR  LATERAL TRAJECTORY TRACKING 

A hierarchical control architecture combining NMPC and ASTSMC for robust trajectory tracking and speed 

regulation in autonomous vehicles is illustrated in Fig. 5. As the high-level planner, NMPC generates the optimal 

speed reference, vref, based on trajectory constraints and environmental inputs. ASTSMC, the low-level controller, 

receives the real-time reference speed 𝑣𝑟𝑒𝑓(𝑡) from NMPC and adjusts throttle or brake commands to minimise 

tracking error using a sliding mode approach. This modular design integrates NMPC's optimality with ASTSMC's 

robustness, thereby enhancing performance in the presence of disturbances and dynamic uncertainties. 

 

Figure 3. Control layers structure  for Autonomous Vehicle. 

The structure is organized into two primary layers: the trajectory generation layer and the control layers. At the upper 

level, the the trajectory generation layer is responsible for planning the desired path based on environmental inputs 

such as road geometry, obstacle positioning, and navigation goals. Within this layer, a NMPC module computes 

optimal trajectories by predicting future vehicle states over a finite horizon, minimizing lateral deviation and heading 

errors while considering vehicle constraints. These reference trajectories are then passed to the lower control level. 

The trajectory generation layer are tasked with executing these planned trajectories through direct actuation of the 
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vehicle. In this layer, an ASTSMC strategy is deployed to regulate longitudinal dynamics such as speed and load 

compensation. ASMC offers strong robustness against external disturbances (e.g., wind, slope, load variations) and 

ensures stable tracking by dynamically adjusting control gains. This layered structure effectively decouples high-level 

planning from low-level execution, thereby improving the system’s robustness, adaptability, and overall control 

performance in dynamic environments. 

The NMPC controller is designed to handle lateral motion by predicting the future trajectory of the vehicle over a 

finite time horizon and minimizing a defined cost function under dynamic constraints (Fig 4).  This diagram 

illustrates the core architecture of a Nonlinear Model Predictive Control (NMPC) strategy applied to lateral trajectory 

tracking. The controller continuously predicts the vehicle’s future states 𝑥̂𝑘+1|𝑘 based on the current state and 

optimizes the control inputs 𝑢𝑘 to follow a predefined reference trajectory 𝑟𝑘. 

 

Figure 4. An NMPC controller for lateral trajectory tracking. 

The prediction model is based on the kinematic bicycle model of the Ackermann-steering vehicle, considering state 

variables such as lateral position, yaw angle, and steering angle. The NMPC optimizes control inputs (i.e., steering 

commands) by minimizing lateral deviation, heading error, and rate of change of steering angle to ensure stability 

and smoothness. 

The cost function J is formulated as: 

𝐽 = ∑ 𝑄𝑦  (𝑦𝑟𝑒𝑓,𝑘 − 𝑦𝑘)
2 + 𝑄Ψ(Ψ𝑟𝑒𝑓𝑘 −Ψ𝑘)

2 + 𝑅𝛿(∆𝛿𝑘)
2𝑁

𝑘=0       (13) 

Where: 

𝑦𝑟𝑒𝑓,𝑘: Desired lateral position (e.g., lane center) at prediction step k. 

𝑦𝑘: Actual lateral position at prediction step k. 

Ψ𝑟𝑒𝑓𝑘 , Ψ𝑘: Desired and actual yaw angles at step k. 

∆𝛿𝑘: Change in steering angle (steering rate) at step k. 

𝑄𝑦, 𝑄Ψ: Weighting coefficients penalizing lateral and yaw angle errors. 

𝑅𝛿: Weighting coefficient penalizing steering angle variation (to ensure smoothness). 

N: Prediction horizon length (number of future steps considered). 

These control inputs are subject to several constraints, including the vehicle kinematic equations, steering angle and 

rate limitations (±δₘₐₓ, ±Δδₘₐₓ), as well as road boundary conditions and curvature constraints, which ensure feasible 

and safe trajectory tracking within the operational limits of the vehicle. 

The optimization problem is solved at each sampling step using sequential quadratic programming (SQP) or interior 

point methods, and only the first control input is applied in a receding horizon manner. 

AN ADAPTIVE SLIDING MODE CONTROL (ASMC) FOR LONGITUDINAL SPEED REGULATION 

To regulate the longitudinal speed, an Adaptive Sliding Mode Control (ASMC) scheme is employed, offering robust 

performance under model uncertainties and external disturbances (Fig 4). The diagram illustrates the control flow 

of an Adaptive Sliding Mode Control (ASMC) scheme designed to regulate vehicle speed with high robustness and 

adaptability. The control loop begins by measuring the vehicle’s current speed v and computing the tracking error e 

= 𝑣𝑟𝑒𝑓  − 𝑣, where 𝑣𝑟𝑒𝑓   is the reference speed. 

The control objective is to track the desired velocity profile 𝑣𝑟𝑒𝑓  by adjusting the throttle or brake command u. 

Define the tracking error as: 
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 e = 𝑣𝑟𝑒𝑓  − 𝑣          (14) 

The sliding surface s is defined as: 

 s = e + λ * ∫e dt          (15) 

The ASMC control law is: 

  u = 𝑢𝑒𝑞 − 𝑘𝑎𝑑𝑎𝑝𝑠𝑖𝑔𝑛 (𝑠)          (16) 

Where 𝑢𝑒𝑞  is the equivalent control term ensuring nominal dynamics, and 𝑘𝑎𝑑𝑎𝑝 is an adaptive gain that adjusts based 

on the magnitude of the tracking error: 

   𝑘𝑎𝑑𝑎𝑝= 𝑘0 + 𝑘1 * |s|          (17) 

 
Figure 5. An ASMC controller for longitudinal speed regulation. 

This adaptive formulation reduces chattering while maintaining robustness to disturbances such as slope changes, 

road friction, or aerodynamic drag. The ASMC ensures fast convergence, stable tracking, and improved comfort over 

conventional PID approaches in longitudinal control. 

SIMULATION RESULTS 

This paper investigates the effectiveness of two hybrid control schemes NMPC+PI and NMPC+ASMC—for 

autonomous vehicle motion control, focusing on two fundamental tasks: lateral trajectory tracking and longitudinal 

speed regulation. Simulation scenarios were designed using a kinematic bicycle model for lateral control and a 

longitudinal dynamic model accounting for drag and road slope. The reference trajectory followed an S-shaped path, 

while longitudinal speed targets were set under varying terrain conditions and sudden load changes. Disturbances 

such as lateral wind and model mismatch in cornering stiffness were introduced to assess robustness. 

4.1 S-shaped trajectory 

An S-shaped trajectory is commonly used in autonomous vehicle simulations to evaluate the tracking performance 

of control algorithms under smooth but dynamically varying curvature. This type of trajectory is typically generated 

using a sinusoidal function, where the lateral position varies periodically with respect to the longitudinal distance. 

Mathematically, it can be expressed as Eq. (18): 

𝑥(𝑡) = 𝑣. 𝑡, 𝑦(𝑡) = 𝐴. sin (𝜔𝑡)          (18) 

where v is the forward velocity, A is the amplitude of the lateral deviation, and 𝜔 controls the frequency of oscillation.  

The resulting path simulates a road with continuous curves, resembling a repeated “S” pattern. This trajectory is ideal 

for testing the lateral control accuracy, stability, and adaptability of autonomous driving systems, particularly in 

evaluating how well a controller can respond to changing heading angles and maintain path adherence at varying 

speeds. 

4.2 NMPC+ASMC controller  

This study, as depicted in Figs. 6 and 7, presents a simulation evaluating a hierarchical control framework for 

autonomous vehicles, which combines Nonlinear Model Predictive Control (NMPC) for lateral trajectory tracking 
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and Adaptive Sliding Mode Control (ASMC) for longitudinal speed regulation. The car follows an S-shaped trajectory 

while maintaining target speeds of 2.0 m/s and 10 m/s. NMPC ensures precise path following by minimising position 

and heading errors, while ASMC robustly manages speed control despite disturbances and uncertainties. This 

scenario highlights the real-time integration of trajectory planning and execution under nominal conditions, 

providing a performance baseline. 

 

Figure 6. The lateral trajectory tracking performance reveals for MPC+ASMC controller at 2 m/s. 

Figure 6 demonstrates the performance of the proposed NMPC + ASMC control architecture for an autonomous 

vehicle, focusing on both lateral trajectory tracking (left) and longitudinal speed regulation (right). In the lateral 

tracking plot, the red dashed line represents the reference trajectory, while the blue curve shows the actual vehicle 

path. It is observed that the vehicle closely follows the reference in the initial phase with minor oscillations, and the 

tracking performance gradually stabilizes along the curved segments. The maximum lateral deviation is within 

approximately 0.35 meters, and the steady-state tracking error reduces to less than 0.1 meters, indicating effective 

path adherence under the NMPC planner’s guidance. On the right subplot, the ASMC controller demonstrates 

excellent robustness in regulating speed under typical system uncertainties. The reference speed is 2.0 m/s, and 

although the actual speed initially oscillates due to high frequency switching behavior, it rapidly converges toward 

the desired value. The peak overshoot remains below 0.08 m/s, and the system settles within a margin of ±0.01 m/s 

after t = 10 s. This shows ASMC’s strength in rejecting disturbances and maintaining stable speed tracking with 

minimal steady-state error. 

 

Figure 7. The lateral trajectory tracking performance reveals for MPC+ASMC controller at 10 m/s. 

The simulation results in Fig 7 at a high speed of 10 m/s demonstrate the effectiveness of the hierarchical control 

architecture combining NMPC for lateral trajectory tracking and ASMC for longitudinal speed regulation. As 

observed in the left plot, the vehicle can follow the sinusoidal reference path with acceptable accuracy despite the 
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increased dynamic complexity. The initial lateral deviation peaks at approximately 0.28 m, but converges smoothly 

as the vehicle progresses, highlighting the predictive capability of NMPC in maintaining path adherence under fast 

motion. In the right plot, the ASMC controller exhibits strong robustness in regulating vehicle speed. Although an 

initial overshoot of about +0.29 m/s (~2.9%) is present, the controller quickly reduces oscillations and stabilizes the 

system within 10 seconds. The RMS speed error remains below 0.06 m/s, confirming the controller’s ability to handle 

high-speed dynamics with minimal steady-state error. These findings validate that the NMPC+ASMC framework 

maintains both stability and tracking precision, making it well-suited for high-performance autonomous driving 

scenarios. 

Overall, the results validate that NMPC provides anticipatory and constraint-aware trajectory planning, while ASMC 

ensures robust and adaptive execution at the actuation level. This combination effectively maintains stability and 

precision in both lateral and longitudinal dynamics of the autonomous vehicle. 

4.3 NMPC+PI controller  

To demonstrate the effectiveness of the NMPC controller combined with the SMC controller, this research work will 

verify that the Proportional–Integral (PI) controller used in the simulation for autonomous vehicle control is 

designed to regulate both longitudinal speed and lateral trajectory tracking. For longitudinal control, the PI controller 

operates on the vehicle’s speed error with a proportional gain of 𝐾𝑝 = 1.0 and an integral gain of 𝐾𝑖 = 0.2, using a 

sampling period of 0.1 seconds. This configuration ensures smooth throttle or brake actuation while minimizing 

steady-state error. In the lateral control loop, the PI controller is optionally applied to minimize lateral position error 

and heading deviation, with typical gains of 𝐾𝑝  = 1.2 and 𝐾𝑖 = 0.1. The lateral PI controller generates corrective 

steering inputs based on tracking errors. Both controllers aim to achieve stable and responsive vehicle behavior under 

nominal and disturbed conditions. 

 
Figure 8. The NMPC+PI controller structure for the autonomous car. 

The simulation scenarios presented in the two sets of figures are designed to evaluate and compare the performance 

of MPC+ASMC and MPC+PI hybrid control architectures for autonomous vehicles under varying operational 

conditions. The first scenario investigates the controllers’ response under moderate-speed operation (2 m/s) with 

injected disturbances. It includes both lateral trajectory tracking and longitudinal speed regulation (Fig. 8). The goal 

is to assess each controller’s ability to maintain precise path tracking while ensuring robust speed control despite 

dynamic perturbations (e.g., wind and model uncertainties). The second scenario examines longitudinal control 

performance at higher speeds of 5 m/s and 10 m/s (Fig 9.), which pose greater control challenges due to increased 

inertial effects and faster dynamics. The simulation isolates the speed regulation task under nominal conditions to 

test each controller’s convergence behavior, overshoot, and settling characteristics. These scenarios are critical for 

understanding how hybrid control schemes behave under scaling demands, and demonstrate the superior robustness 

and tracking performance of MPC+ASMC across both low- and high-speed applications. 
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Figure 8.  Comparison of ASMC and PI Controllers in Lateral and Longitudinal Performance under Disturbance. 

The figure illustrates a comparative performance evaluation between two hybrid control strategies: MPC+ASMC 

(blue) and MPC+PI (red), in both lateral trajectory tracking and longitudinal speed regulation under disturbances 

for autonomous vehicles. In the left subplot, both controllers follow the sinusoidal reference trajectory, but the 

MPC+ASMC path exhibits faster convergence and lower deviation. Quantitatively, the ASMC-based controller 

achieves about 22% lower RMS lateral error (0.07 m vs. 0.09 m for PI) and a smaller peak deviation, indicating better 

robustness to lateral dynamics. On the right, the speed tracking performance under disturbance shows that the PI 

controller suffers from larger oscillations, overshoot (up to +11.3%), and slower settling (11.8 s), while the ASMC 

controller stabilizes faster (~6.2 s) with less overshoot (+4.2%) and a lower RMS speed error (0.025 m/s vs. 

0.052 m/s). Overall, MPC+ASMC outperforms MPC+PI in accuracy, robustness, and stability, making it more 

suitable for real-world autonomous driving scenarios with dynamic environments and disturbances. 

 

Figure 9. Speed regulation performance comparison at 5.0 m/s and 10.0 m/s using PI and ASMC Controllers 

The Fig 9 presents the performance comparison between ASMC and PI controllers for longitudinal speed regulation 

at two higher reference speeds: 5 m/s and 10 m/s. At both speeds, the PI controller exhibits larger oscillations, 

significant overshoot, and a longer settling time. In contrast, the ASMC controller demonstrates faster convergence 

and better disturbance attenuation. Specifically, at 5 m/s, the PI controller shows an overshoot of approximately 

+12% and takes nearly 10.5 s to settle within ±1% of the reference, while the ASMC controller limits overshoot to 

~4.5% and settles in under 6.2 s. Similarly, at 10 m/s, the PI controller experiences overshoot beyond +6%, whereas 

ASMC keeps it below +2.5%, with noticeably reduced ripple amplitude during the transient phase. Quantitatively, 

the RMS error for PI at 10 m/s is nearly double that of ASMC, confirming that ASMC offers superior performance in 

stability, accuracy, and robustness, especially at high-speed operation. These results reinforce the suitability of 

ASMC-based control for autonomous vehicles operating in dynamic and high-demand scenarios. 

Figures 10 and 11 illustrate the speed regulation performance of two controllers, namely PI and ASMC, at reference 

speeds of 20 m/s and 30 m/s, respectively. 
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Figure 10. Speed regulation comparison at 20.0 m/s between ASMC and PI controllers. 

 

 
Figure 11. Speed regulation comparison at 20.0 m/s between ASMC and PI controllers. 

Both figures clearly demonstrate the performance gap between the two control strategies. At 20 m/s (Figure 1), the 

PI controller exhibits significant oscillations with an amplitude of approximately ±0.6 m/s and a settling time nearing 

15 seconds. In contrast, the ASMC controller shows considerably smaller oscillations (around ±0.2 m/s) and achieves 

convergence in approximately 6 seconds, highlighting its superior damping and adaptability.  

At the higher speed of 30 m/s (Figure 2), the same trend is observed. The PI controller continues to exhibit persistent 

oscillations, with a peak error of about ±0.55 m/s and no full convergence within 20 seconds. Meanwhile, the ASMC 

controller maintains strong performance with a reduced deviation of less than ±0.15 m/s and a significantly quicker 

convergence. These results indicate that ASMC not only enhances tracking accuracy but also improves system 

stability and responsiveness, particularly under high-speed conditions—an essential requirement in autonomous 

vehicles and traction control system 

               CONCLUSION 

In this study, a hybrid control architecture integrating NMPC for lateral trajectory tracking and ASMC for 

longitudinal speed regulation was developed to enhance the stability and robustness of autonomous vehicles in 

dynamic environments. By embedding semantic lane perception directly into the NMPC cost function, the framework 

enables closed-loop interaction between perception and control, ensuring constraint-aware and adaptive 

maneuvering. Simulation results under multiple operating conditions, including varying speeds and external 

disturbances, demonstrate that the proposed NMPC+ASMC approach significantly improves tracking accuracy, 

reduces RMS error, and achieves faster convergence compared to traditional NMPC+PI schemes. The modular nature 

of the framework allows for scalability and interpretability, making it suitable for real-world deployment. Future 
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research will focus on extending the framework to 3D trajectory planning, integrating multi-modal perception (e.g., 

LiDAR and vision fusion), and deploying the system on embedded hardware platforms with real-time constraints. 

Furthermore, the integration of reinforcement learning into the NMPC structure will be explored to enable adaptive 

control in unstructured and highly dynamic driving scenarios. 
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