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The increasing adoption of deep learning in medical image analysis has enabled significant 

improvements in disease detection and classification. This paper presents a multiple disease 

classification model that integrates spatial and channel feature extraction with a Convolutional 

Neural Network (CNN) enhanced by an attention mechanism. The model is trained on a chest 

X-ray images to classify four different diseases, and its performance is evaluated using key 

metrics. Experimental results demonstrate that the proposed model achieves an accuracy of 

94.0%, with an average precision of 94.4%, recall of 94.6%, and F1-score of 93.4%, 

outperforming conventional CNN architectures. An ablation study was conducted to show the 

effectiveness of the spatial and channel feature extraction components in improving 

classification performance.  
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INTRODUCTION 

The fast advancements in deep learning have significantly transformed medical image analysis, enabling automated 

and efficient disease diagnosis. Traditional machine learning methods uses handcrafted features, which may not 

capture the complex variations present in medical images. CNNs have emerged as a powerful tool for extracting 

meaningful spatial patterns from medical images, demonstrating superior performance in disease classification 

tasks. However, conventional CNN models may fail to effectively leverage both spatial and channel-wise 

information, which are crucial for accurate classification. To address this limitation, attention mechanisms have 

been integrated into CNN architectures [26] [27], to capture most complex patterns from medical image. 

Multi-disease classification remains a challenging problem due to inter-class similarities, variations in image 

acquisition, and imbalanced datasets. The ability to classify multiple diseases from medical images is essential for 

efficient and accurate diagnostics, reducing the workload on radiologists and improving patient outcomes. Various 

studies have explored deep learning-based techniques for disease classification, highlighting the importance of 

feature extraction and attention mechanisms in enhancing model performance. 

The effectiveness of attention-based deep learning models has been demonstrated in various domains, including 

natural language processing and computer vision. In medical image analysis, attention mechanisms will capture 

more complex features to focus on disease-specific patterns, improving interpretability and robustness. The 

integration of both spatial and channel attention mechanisms allows deep learning models to learn hierarchical 

representations, ensuring better discrimination between disease classes. Unlike conventional CNN [41] 

architectures that treat all features equally, attention-based approaches dynamically reweight feature maps, 

enhancing the model’s ability to differentiate between subtle variations in pathological conditions. 

Chest X-ray (CXR) [9] [11] [24] imaging is widely used in the diagnosis of pulmonary diseases due to its complex 

features and accessibility. However, distinguishing between different respiratory diseases using CXRs is challenging 

due to overlapping radiological features and subtle differences in disease manifestations. Diseases such as 

pneumonia, COVID-19 [7] [28] [30], tuberculosis, and lung opacity often exhibit similar patterns in X-ray images, 
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making accurate classification a difficult task. Deep learning models [29] incorporating spatial and channel-wise 

feature extraction have shown promising results in improving disease classification performance, enabling faster 

and more reliable diagnoses. 

Recent advancements in deep learning [14] [18] have demonstrated the potential of CNN-based models combined 

with attention mechanisms for multi-disease classification in medical imaging. These models enhance feature 

representation by selectively emphasizing critical regions in medical images, leading to improved classification 

performance. Furthermore, studies have highlighted the role of ablation experiments in assessing the impact of 

different model components, and the effectiveness of various feature extraction techniques.  

The integration of attention mechanisms [42] with CNNs has demonstrated significant improvements in multi-

disease classification, paving the way for more accurate and interpretable AI-driven medical diagnosis systems. To 

overcome these challenges we conduct extensive experiments on a multi-disease classification dataset, evaluating 

the impact of spatial and channel attention mechanisms on model performance. Additionally, we perform an 

ablation study to analyze the contribution of each component in our model. Our results indicate that the proposed 

CNN with attention outperforms traditional CNN architectures, demonstrating higher accuracy and robustness in 

multi-disease classification tasks. 

Contributions:  

a) We propose a novel deep learning model that integrates spatial and channel attention mechanisms to 

improve feature extraction for multi-disease classification. 

b) Our model effectively captures both spatial and channel-wise features, enabling better differentiation 

between multiple diseases. 

c) We conduct a detailed ablation study to assess the impact of different components, ensuring the 

effectiveness of our proposed approach. 

d) Extensive experiments are conducted on a medical image dataset, demonstrating the superiority of our 

model in terms of classification accuracy and generalization.  

RELATED WORK 

Alshmrani, G. M. M et al (2023) [1] worked on multiple disease detection like Pneumonia, Lung Cancer, 

tuberculosis (TB), Lung Opacity, and COVID-19 from chest X-ray, for this  they used 20,00 lung images, trained on 

VGG+CNN hybrid models and achieved an accuracy of 0.96. In their pre-processing each image is converted to 

224*224*3 a 3 dimensional matrix for training, and used many number of parameters, only extracted RGB based 

features. Yimer, F., et al (2021) also worked on multiple disease detection from X-ray of 11716 samples, for this fine 

tuned ImageNet  and got an accuracy of 0.97, but extracted one dimensional features. Kabiraj, A., et al (2022) in [3] 

fine tuned EfficientNet model to classify thirteen thoracic lung diseases, and got an average accuracy of 0.88. 

Banerjee, S., et al (2020) [4] implemented federated learning model to classify viral and bacterial pneumonia and 

used various optimization methods like SGD, and also used Grad-CAM to identify pneumonia affected regions.  

Kim, S., et al (2022) [5] used EfficientNet v2-M model to extract complex features from CXR samples to classify 3 

classes like normal, pneumonia, and pneumothorax and got an accuracy of 0.82.  But this model is getting over 

fitted due less number of samples. Allaouzi, I., and Ahmed, M. B. (2019) [6] extracted features with DenseNet 

model, on top this added classifier to detect the diseases. The data used in this approach is 134,327 CXRs samples, 

and also has different views level features. They detected 14 diseases from x-ray image, with an accuracy of 0.84. 

Baltruschat, I. M., et al (2019) [8] implemented multiple ResNet with different depths, used Chest X-ray 14 data 

set, and classified multiples disease. Average accuracy over all classes in 0.89, also used Grad-cam to find the 

disease affected regions.  

Ibrahim, D. M., et al (2021) [10] used 4 different model like VGG19-CNN, ResNet152V2, ResNet152V2 + and Gated 

Recurrent Unit (GRU) to classify disease COVID-19, pneumonia, and lung cancer chest diseases. And added a fully 

connected layer on top of all these models to classify the disease. The average accuracy they for with hybrid model is 

0.98 with ResNet152V2+Bi-GRU.  Chen, J. I. Z. (2021).  [12] Implemented customized CNN model trained on 
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COVID-19 thoracic x-rays, trained 10 fold cross validation method and achieved an accuracy of 0.82. Sanida, M. V., 

et al (2024) [13] worked multiple disease like opacity, tuberculosis, normal, viral pneumonia, and COVID-19 

pneumonia from chest X-ray images. Implemented customized CNN model, got an accuracy of 0.98. Hussain, E., et 

al (2021) [15] implemented customized CNN model with 22 layers, and classified multiple diseases like COVID-19, 

Pneumonia-viral, Pneumonia-bacterial with an accuracy of 0.912.  

Ozturk, T., et al (2020) [16] worked on binary and multiple disease detection, by training YOLO method, for binary 

class classification they got 0.98 and for multi class classification got an accuracy of 0.87. Pillai, A. S. (2022). [17] 

And [25] Worked on AI and ML method to detect 14 diseases, and the data set consist of x-ray views from different 

sides, and some statistical features like age, gender etc. Chen, K. C., et al (2020) [19] trained YOLOv3 model to 

detect bronchiolitis different types of pneumonia, the data set consist of children and adult digital samples. And got 

an average accuracy below 0.90.  Xu, J., et al (2021) [20] used Chest X-Ray14 and CheXpert datasets consist of 

100,000 and 200,000 front view and back view of samples. Implemented a neural network model with novel loss 

function and got an AUC of 0.85.   

Shelke, A., et al (2021) [21] used covid-19 and normal chest X-ray samples to classify pneumonia, TB, and normal 

with an accuracy of 0.95, with VGG16 model, and also trained DenseNET model to classify covid-19 with a test 

accuracy of 0.76. Gupta, A.,  et al (2021) [22] and [23] implemented InstaCovNet-19 model with a pre trained 

model like ResNet101, Xception, InceptionV3, MobileNet, and used Covid-19 x-ray data, they did for 2 and 3 

disease detection. And got an accuracy of 0.99 and 0.99 for 2 and 3 classes. Many of the researcher have used either 

Covid-19 samples or Chest-14 data sets for classification of multiple diseases like [31] [32] [36] [37] [39] [40]  have 

used Covid data by using the pre trained models like ResNet, DenseNet, VGG, YOLO and ResNet models and the 

researchers like [33] [34] and [35] have used X-ray data set, but 90% if the model approaches completely used pre 

trained models, but all these models are block box model will not provide what features they extracted from which 

part of the image is affected with disease is not clear.   

METHODOLOGY 

The proposed model integrates a Convolutional Block Attention Module (CBAM) within a deep learning framework 

to enhance feature extraction by incorporating both channel-wise and spatial attention mechanisms. CBAM 

includes two approaches like Channel Attention (CA) and Spatial Attention (SA), will captures different 

angled features, to improve the network’s discriminative power. Given an input feature map X ∈ IC∗H∗W, where C 

represents the number of channels, and H, W denote the spatial dimensions, the Channel Attention 

Mechanism computes attention weights across channels using both average pooling and max pooling 

operations with equation (1). This ensures the model effectively captures inter-channel dependencies, thereby 

emphasizing the most informative feature maps.  

Mc(X) = σ (fc(Avg_pool(X)) + Fc(Max_pool(X)))                 (1) 

where fc represents a two-layer convolutional network with a reduction ratio r, and σ is the sigmoid activation 

function.  

First the input vector is passed through Channel Attention module that assigns different importance levels to 

each channel through a two-layer fully connected network with a reduction factor to reduce computational 

complexity. It first applies global average pooling to aggregate feature representations, followed by two FC 

layers with ReLU activation and a sigmoid function will generate non linear data. These weights are 

multiplied with the original feature maps, selectively enhancing relevant channels while passing less informative 

ones. The input feature map is refined by element-wise multiplication with the channel attention mask with 

equation (2). 

 

    X′ = Mc(X). X                        (2) 

Subsequently, the Spatial Attention module complements Channel Attention fc by focusing on significant 

spatial patterns in the feature maps. It computes spatial attention using channel-wise average pooling, 
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followed by a 7×7 convolutional layer to learn spatial dependencies. The output is then passed through a 

sigmoid activation function with equation (3) to generate attention weights, which are multiplied with the 

input feature maps to enhance critical spatial features while reducing background noise. 

Mc(X′) = σ (fs(concat[Avg_pool(X′)), (Max_pool(X′)))                  (3) 

Where fs is a 7×7 convolutional layer applied to the concatenated pooled features. The final attention-enhanced 

feature map is obtained with equation (4). 

   X′′ = Mc(X′). X′                                       (4) 

To fully leverage these attention mechanisms, the proposed model incorporates a deeper fully connected 

classification network, CBAM. This component consists of four sequential linear hidden layers as equation 

(5) and (6), progressively reducing the feature dimensionality from 512 to 10. Each layer utilizes sigmoid 

activation to facilitate hierarchical feature learning while mitigating vanishing gradient issues. The final layer 

maps extracted feature embeddings to class predictions, making the model highly effective for multi-class 

classification tasks with equation (7). 

𝐻1 = 𝜎(𝑊1𝑋′′ + 𝑏1)                     (5) 

H2 = σ(W2H1 + b2)                     (6) 

yp = softmax(W3H2 + b3)          (7) 

Where H1, H2  are hidden layers with sizes 128 and 64, respectively, and Wi, bi represent weight matrices and biases. 

By integrating CBAM with a deeper classification network, the proposed model significantly improves 

feature selection and classification performance.   

DATASET AND PREPROCESSING 

The dataset used in this study comprises chest X-ray (CXR) images categorized into five distinct classes: COVID-

19, Tuberculosis, Lung Opacity, Normal, and Viral Pneumonia. These classes represent a diverse range of 

pulmonary conditions, allowing the model to generalize well across different respiratory diseases. The images were 

sourced from multiple datasets available on Kaggle, each containing varying numbers of samples per class. 

Specifically, the dataset consists of 704 COVID-19, 700 Tuberculosis, 1125 Lung Opacity, 1250 Normal, 

and 1100 Viral Pneumonia images as shown in Figure 1. Given the inherent challenges in medical image 

classification, such as imbalanced class distributions and variations in image quality, appropriate preprocessing 

techniques were applied to ensure optimal model performance.  

Table 1 sample image from Tuberculosis and corresponding Image vector after normalization.  

 [0.19548959, 0.032374833, 0.8091909, 2.011572, 0.7416156, 0.9703078, 

0.021886688, 0.29910952, 0.3221549, 0.47343925, 0.59963065, 0.2573957, 

1.913524, 0.5280585, 2.5191782, 0.933251, 0.030268257, 2.0389175, 

0.8341835, 0.48514938, 0.4156689, 0.49167904, 1.6397014, 0.5832021, 

1.8869599, 1.9788432, 1.2028855, 0.17473242, 0.6688879, 0.16237481, 

0.73982537, 1.5041256, 0.8798962, 0.40174264, 0.7051053, 0.06426582, 

0.6714343, 0.8731386, 0.81580436, 0.22636929, 2.9304593, 0.4138742, 

1.2477546, 0.5506517, 2.8935385, 1.3012506, 0.124193214, 3.0198662, 

2.1468701, 0.051048316, 0.86909646, 0.050680228, 0.5549408, 

0.017481085, 0.3513011, 1.3187522, 1.16335, 4.310297, 1.0183234, 

3.028105, 0.10314953, 0.1580841, 0.2086794, 0.39904353, 0.058631927, 

0.44340855, 0.5203699, 0.10102598, 0.8773394, 0.1447529, 0.10900897, 

0.58900833, 0.4284491, 0.1427274, 1.3970008, 1.0086709, 0.1421501, 

2.3806024, 0.17476553, 1.0110075, 0.39966834, 0.5158894, 0.9014908, 

0.09578547, 0.021607142, 0.1526772, 0.93262655, 0.8762444, 1.7545271, 

0.48778483, 1.5623596, 0.34287184, 0.17646903, 0.14250919, 1.0557555, 

0.517391, 2.116281, 0.5693241, 0.80620086, 2.4996798, ...] 
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Rather than relying solely on raw pixel data, a feature extraction approach was implemented using Img2Vec, a 

deep learning-based vectorization method. Each image was converted into a 512-dimensional feature vector, 

capturing essential spatial and textural information necessary for classification. This transformation was performed 

using the PIL (Pillow) library, ensuring that all images were standardized into a three-channel RGB format 

before vectorization. By leveraging deep feature embeddings instead of raw pixel values, the model could focus on 

high-level patterns in the images, enhancing its robustness against variations in image resolution and contrast. 

Once the feature vectors were generated, the dataset is divided into training and testing sets at an 80-20 split 

ratio for training and testing at random state of 40. The labels were also preserved during the split to 

maintain a balanced distribution across different disease classes.   

 

               Figure 1 number of samples for each disease  

RESULT ANALYSIS 

The training process of the proposed model was conducted over ten epochs, with the objective of minimizing the 

classification loss and enhancing the model's ability to distinguish between multiple lung diseases. The loss values 

recorded at each epoch demonstrate a consistent downward trend, indicating that the model effectively learns 

discriminative features from the input images. In the initial epoch, the loss was relatively high 0.8149, reflecting 

the model’s initial state with randomly initialized parameters. However, with subsequent iterations, a sharp 

decline in loss was observed, dropping to 0.2628 by the second epoch. This suggests that the model rapidly 

adapted to key patterns in the data within the early training phase.  

From the third epoch onward, the rate of loss reduction became more gradual, signifying that the model was 

approaching a more refined representation of the features necessary for classification. By the fifth epoch, the loss 

had decreased to 0.1751, demonstrating significant learning progress. Interestingly, even though the initial plan 

was to train for five epochs, the training was extended to ten epochs. The loss values from the sixth to tenth 

epoch continued to fluctuate slightly but maintained an overall downward trend, with the final loss reaching 

0.1452.  
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         Figure 2 confusion matrix of proposed CBAM with attention model.  

 The proposed CNN-based model with attention mechanisms demonstrated high classification accuracy 

across five disease categories: Lung Opacity, Normal, Tuberculosis, Viral Pneumonia, and COVID-19. 

The results indicate that the model effectively differentiates between various lung diseases, showcasing its 

reliability for automated diagnosis.  

For Lung Opacity, the model correctly identified 88% of cases, with a slight margin of misclassification. 

Similarly, for Normal cases, the model achieved an accuracy of 88%, successfully distinguishing them from 

diseased samples, though some instances were incorrectly labeled.  

The model performed exceptionally well in detecting Tuberculosis, accurately identifying 99% of cases. A similar 

trend was observed for Viral Pneumonia, where the model achieved an accuracy of 98%, with minimal errors. 

For COVID-19, the model reached an accuracy of 100%, correctly identifying all cases with no false negatives. 

This high accuracy is crucial in clinical applications, ensuring reliable identification of COVID-19 cases and 

minimizing the risk of undetected infections as illustrated in Figure 3. 

 

Figure 3 class wise performance of CBAM with attention model   

 

Figure 4 ROC and precision, recall curves of proposed model 
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 From the figure 4 ROC curve and the Precision-Recall (PR) curve for different disease classes, including Lung 

Opacity, Normal, Tuberculosis, Viral Pneumonia, and COVID-19. The ROC curve on the left demonstrates the 

difference between positive and negative instances across different threshold values. The AUC values indicate 

strong classification performance, with Tuberculosis and COVID-19 achieving near-perfect scores AUC = 1.00, 

while other classes also maintain high discrimination capabilities. The PR curve on the right illustrates the trade-off 

between precision and recall, highlighting the model’s robustness in correctly identifying positive cases. The curves 

suggest that the classifier performs exceptionally well across all classes, particularly for Tuberculosis and COVID-

19, which maintain high precision across various recall levels. 

The figure 5 presents Grad-CAM visualization, which provides interpretability for the deep learning model’s 

decision-making process. The left side displays the original chest X-ray image, while the right side overlays the 

Grad-CAM heatmap, revealing the most influential regions contributing to the model's classification. The 

highlighted areas illustrate the regions the model focuses on while predicting a specific disease. The visualization 

confirms that the model effectively localizes disease-relevant regions, such as lung opacities and abnormalities, 

further validating its clinical applicability.  

 

          Figure 5 features extracted from X-ray samples for training  

Ablation Study 

To evaluate the impact of different architectural modifications on classification performance, an ablation study 

was conducted by systematically training and evaluating multiple model variations, including the Spatial 

Attention, channel attention CBAM, Deeper Layers, and Reduced Hidden Layers as illustrated in 

table 2. The results provide insights into how attention mechanisms and architectural depth influence learning 

efficiency and generalization.  

Table 2 ablation model with the parameters 

Model Name 

Number 

of 

Layers 

Number of 

Parameters 
Attention Mechanism 

Notable 

Modifications 

Channel 

Attention 
3 ~74K Channel Attention 

Feature 

recalibration using 

global average 

pooling 

Spatial 

Attention 
3 ~72K Spatial Attention 

Convolution-based 

spatial features 

CBAM 3 ~76K Channel + Spatial 

Combination of 

channel and 

spatial attention 
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Deeper Layers 4 ~100K None 

Increased hidden 

layers for deeper 

to increase 

complexity 

Reduced 

Hidden Layers 
3 ~50K None 

Fewer neurons per 

layer to reduce 

model complexity 

compare to base 

model 

  

The Base Model training showed a steady decrease in loss, starting from 0.78 in the first epoch to 0.15 by the 

tenth epoch, demonstrating effective convergence. Introducing Spatial Attention initially resulted in a higher loss 

but improved learning dynamics, with the final loss reaching 0.15, indicating enhanced feature representation 

through spatial attention mechanisms.  

 

Further refinement using CBAM exhibited an initial loss of 0.90, which was slightly higher than other models, but 

it progressively reduced to 0.15, suggesting that incorporating both spatial and channel attention optimizes feature 

selection. 

  

Increasing the model depth further improved learning stability as shown in Figure 6, with the Deeper Layers 

model reaching a lower final loss of 0.14, signifying better hierarchical feature extraction. Conversely, reducing the 

number of hidden layers led to slower convergence, with the Reduced Hidden Layers model having the 

highest initial loss (0.98) and a relatively higher final loss of 0.16, indicating suboptimal learning due to 

insufficient feature abstraction. 

 

              Figure 6 Ablation models training loss comparison  

Base Model demonstrated strong classification ability, achieving an overall performance of 0.94 across all 

disease classes as shown in figure 9. Among individual categories, Tuberculosis and COVID-19 exhibited the 

highest recognition, both exceeding 0.99, indicating that the model effectively differentiates these conditions. 

Lung Opacity and Normal cases showed slightly lower recognition, around 0.89 and 0.87, respectively. 

Integrating Deeper Layers resulted in marginally reduced overall performance, reaching 0.93. Tuberculosis 

and COVID-19 maintained near-perfect identification, both above 0.99. However, Lung Opacity showed a drop, 

reaching 0.88, while Normal cases increased slightly to 0.86. 

From Figure 7 the Channel Attention model performed similarly, with an overall value of 0.93. The 

identification of Lung Opacity and Normal was slightly lower than the Base Model, registering 0.88 and 0.85, 

respectively. Meanwhile, Viral Pneumonia, Tuberculosis, and COVID-19 maintained high recognition, 

exceeding 0.98. 
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The Spatial Attention model showed a slight decrease, achieving 0.92 overall. Lung Opacity and Normal 

cases had the most noticeable impact, dropping to 0.87 and 0.84, respectively. The performance in identifying 

Viral Pneumonia, however, remained stable at 0.97, with Tuberculosis and COVID-19 continuing to be well-

recognized.   

The CBAM model achieved a comparable 0.92, with Lung Opacity improving to 0.88, while Normal cases 

showed a slight decline to 0.84. The recognition of Tuberculosis, Viral Pneumonia, and COVID-19 remained 

consistently high. 

The Reduced Hidden Layers model exhibited similar overall performance to Deeper Layers as illustrated 

in Figure 8, with a value of 0.93. Lung Opacity recognition dropped slightly to 0.87, while Normal cases 

improved to 0.86. Tuberculosis, Viral Pneumonia, and COVID-19 remained at strong levels, surpassing 

0.98.  

 

Figure 7 confusion matrix of spatial and channel attention models  

 

            Figure 8 confusion matrixes of deeper and reduced layers models 

 

Figure 9 comparison of ablation models performance 
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      Figure 10 comparison of ablation models performance on precision recall and F1 score  

The figure 10 presents a comparative analysis of different model variations based on precision, recall, and F1-score 

across five disease classes: Lung Opacity, Normal, Tuberculosis, Viral Pneumonia, and COVID-19. The models 

compared include the base model, channel attention, spatial attention, CBAM, deeper layers, and additional hidden 

layers; each represented using distinct hatch patterns. The precision plot indicates that while most models perform 

consistently well for Tuberculosis, Viral Pneumonia, and COVID-19, there are notable variations for Lung Opacity 

and Normal classes, with deeper layers and hidden layers showing improvements. The recall plot demonstrates that 

all models achieve near-perfect recall for Tuberculosis, Viral Pneumonia, and COVID-19, while some variations 

show differences in the Lung Opacity and Normal classes. The F1-score plot consolidates these findings, reinforcing 

those models incorporating attention mechanisms and deeper architectures generally enhance classification 

performance. The results suggest that architectural modifications, particularly attention-based enhancements, 

contribute to improved disease classification, particularly in challenging cases like Lung Opacity and Normal 

conditions.  

CONCLUSION 

This study introduces a deep learning-based multiple disease classification model that utilizes spatial and channel 

feature extraction along with an attention appraoch to enhance performance. The proposed model demonstrates 

94.0% accuracy, 94.4%, precision, 94.6% recall and F1-score of 93.4%,, outperforming traditional CNN-based 

models. The ablation study confirms the contribution of each feature extraction component in refining the 

classification capability of the model. While the results are promising, challenges such as dataset imbalance and 

model generalization require further investigation. Future work will focus on expanding the dataset, incorporating 

transformer-based architectures, and optimizing the attention mechanism to improve robustness and clinical 

applicability.  And also includes multiple disease detection with explainable AI, to interpret the disease affected 

regions in the image.   
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