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Multiscale feature fusion enhances deep vision models but often introduces computational 

overhead—an under-quantified challenge in hybrid CNN-Transformer architectures, especially 

for edge-based agricultural deployments. This study proposes an adaptive hybrid framework 

combining MobileNetV2, EfficientNetV2, and Transformers, trained on 76 classes across 22 crop 

diseases using Kaggle and field-sourced images. To address the efficiency-accuracy trade-off, we 

incorporate Squeeze-and-Excitation (SE) blocks (<1% parameter increase), gating mechanisms 

that reduce scale bias and improve small-object detection with marginal FLOPs cost, and 

hierarchical fusion, which raises FLOPs by 15% but yields diminishing returns on high-resolution 

data. The model achieved strong convergence (Training: 0.9957, validation: 0.9868) and 97.97% 

accuracy on 249 unseen field images. Final metrics (Accuracy: 0.992, AUC: 0.999998) surpassed 

standalone CNNs and Transformers—yet only when scale diversity was present. Statistical 

validation via confidence variance analysis and Kruskal-Wallis testing (H = 597.40, p = 

8.48e−126) revealed the proposed model had the lowest variance (0.000010), confirming stable 

predictions. Most pairwise comparisons were significant at p < 0.05. ANOVA and bootstrapping 

further validated fusion's non-linear cost scaling. We demonstrated Pareto-efficient frontiers 

where hybrid models outperform their standalone counterparts only under certain conditions. 

This work challenges the notion that "more fusion is better," advocating context-aware fusion. 

Fusion is viable for cloud/server systems but must be pruned for edge deployment. We offer 

design guidelines for building cost-efficient, high-accuracy vision models in resource-

constrained agricultural environments. 

Keywords: Cost-Aware Deep Learning, Dynamic Feature Aggregation, Hybrid CNN-

Transformer Models, Multiscale Fusion, Crop disease detection. 

 

1. INTRODUCTION 

Cheng et al. (2023) underscore the significance of Multiscale feature fusion, which has emerged as a foundation of 

modern computer vision systems, enabling models to process visual information across various spatial resolutions, 

a critical capability for tasks ranging from object detection to semantic segmentation. Integrating fine-grained details 

from high-resolution features with contextual patterns from coarser scales achieves state-of-the-art performance. 

Moon et al. (2023) highlight that this performance comes at a steep computational cost, as multiscale fusion 

inherently introduces parameter redundancy and computational overhead. Sun et al. (2023) correctly point out that 

the recent proliferation of hybrid architectures that combine convolutional neural networks (CNNs) and Vision 

Transformers (ViTs) has further amplified this trade-off. While CNNs extract spatially hierarchical features, 

Transformers are ideal for capturing long-range dependencies through the self-attention mechanism, making their 

integration appealing for multiscale tasks. For instance, models like the Swin Transformer proposed by Sun et al. 

(2024) demonstrate that hybrid designs can improve accuracy. However, such gains often have disproportionate 

computational drawbacks, particularly when fusing features across multiple scales. This raises a critical question: 

Under what conditions does multiscale fusion in hybrid models justify its added complexity?  Despite widespread 

research, especially by Wang et al. (2019) on individual components of Squeeze-and-Excitation (SE) blocks and by 
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Liu et al. (2023) on dynamic gating, the efficiency-accuracy trade-offs of multiscale fusion pipelines remain poorly 

quantified. For example, while SE blocks may enhance feature diversity with minimal parameters, their impact, as 

described by Mwitta et al. (2024), on inference latency is unclear. Gookyi et al. (2024) illustrate that Transformers 

improve cross-scale attention, but their computational costs may negate the benefits in low-resource environments. 

These gaps hinder the development of cost-aware models, particularly for edge devices, where latency and energy 

efficiency are paramount. Current works lack a systematic benchmarking framework to dissect the efficiency-

accuracy trade-offs inherent in multiscale fusion pipelines. Most studies have focused on either standalone CNNs 

(Jouini et al., 2024) or pure Transformers (Zhu et al., 2024) which overlooks the components' interplay in hybrid 

systems. For instance, while MobileNetV2 (Dong et al., 2020) and EfficientNetV2 (Sun et al., 2024) are optimized 

for efficiency, their integration with Transformers introduces uncharacterized bottlenecks. Shamim et al. (2025) note 

that adaptive components like gating mechanisms are often evaluated in isolation without analyzing their cumulative 

costs in multiscale workflows. These critical omissions may have practical consequences since deploying hybrid 

models without understanding the optimal balance between accuracy and their computational costs may risk 

overprovisioning resources for marginal gains. 

Wang et al. (2025) point out that the hierarchical fusion strategies may improve high-resolution image analysis but 

may add 15% floating-point operations per second (FLOPs) for diminishing returns. Similarly, Transformers boost 

accuracy by 4.3% in most multiscale tasks on latency penalty but may be unsustainable for real-time applications. 

Therefore, an individual component-level analysis is crucial to guide architectural selections in resource-constrained 

environments. This paper presents three main contributions. First, we propose a hybrid adaptive fusion framework 

that combines MobileNetV2, EfficientNetV2, and Transformers, enhanced with SE blocks, gating mechanisms, and 

Multiscale fusion for efficient and accurate feature extraction. Second, we analyze the efficiency and accuracy trade-

offs using a combined dataset of 76 classes. Third, we perform rigorous statistical validation using ANOVA, 

bootstrapping, Cohen’s kappa statistics, and confidence analysis to quantify the efficiency-accuracy trade-offs of the 

multiscale fusion approach. 

The Structure of this paper is as follows: Section 2 explores the related work on hybrid vision architectures. Section 

3 details the proposed methodology and architecture, dataset preparation and preprocessing, the experimental 

results, ablation studies, statistical validation, performance comparison against benchmarks, and evaluating edge 

deployment efficiency. Section 4 discusses practical implications for cost and accuracy and the limitations. Section 5 

concludes the study and outlines future research directions. 

2.   LITERATURE REVIEW 

Shah et al. (2024) demonstrate that hybrid vision architectures have increasingly emphasized multiscale fusion 

techniques to balance computational efficiency and predictive accuracy. Still, the systematic evaluations of the cost-

performance trade-offs within these systems remain inadequate. The emergence of CNNs, as discussed by Gogoi et 

al. (2023) and attention mechanisms by Baek (2025), has laid the groundwork for more adaptable architectures. 

leNetV2 (Peng et al., 2024) and EfficientNetV2 (Li et al., 2022) have been recognized as initial backbones in achieving 

such adaptability through multiscale feature extraction. MobileNetV2 uses inverted residual blocks and linear 

bottlenecks, offering a lightweight structure suited for edge deployment with minimal computational overheads while 

retaining the essential spatial features. In contrast, EfficientNetV2 employs compound scaling that harmonizes 

network depth, width, and resolution, enhancing representational capacity at a moderate computational cost. 

Krishna et al. (2025) leveraged EfficientNet-B3 to detect diseases on the PlantDoc dataset, achieving 73.31% accuracy 

and 80.19% on a combined web-sourced and PlantDoc image dataset. Their work highlighted the model’s robustness 

in handling inter-class variability, but its computational demands higher FLOPs than MobileNetV2 and this may 

render it impractical for low-power IoT devices, necessitating cloud offloading. To address this, Zhang and Wu (2025) 

implemented EfficientNetV2-S on sunflower disease detection. While their system achieved 90.19% accuracy, 

outperforming other models, its reliance on high-end hardware, specifically the V100S GPU server, may limit its 

accessibility in low-resource environments. A notable hybrid approach by Zhao et al. (2024) proposed a deep learning 

system for Elaeagnus angustifolia disease detection in smart agriculture, integrating Large Language Models (LLMs), 

Agricultural Knowledge Graphs (KGs), and Graph Neural Networks (GNNs) with a graph attention mechanism. The 

framework achieved superior performance (precision: 0.94, recall: 0.92, accuracy: 0.93) by optimizing loss functions 
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and leveraging neural-symbolic reasoning. It outperformed traditional methods, demonstrating enhanced efficiency 

and accuracy in identifying plant diseases. Though innovative, their framework’s complexity, like multi-stage training 

and dependency on high-resolution images, made it unsuitable for real-time, on-ground IoT deployments. Zhu et al. 

(2024) benchmarked EfficientNet-B0 and MobileNetV3 for maize leaf disease classification, evaluating performance 

based on accuracy. Their results showed that MobileNetV3 (91%) outperformed EfficientNet-B0 (88%). However, 

the study did not analyze inference efficiency or overfitting risks, which could affect real-world deployment. 

Additionally, details on dataset preprocessing, hyperparameter tuning, and computational resources were not 

provided, limiting the reproducibility of their findings. Despite their advantages, EfficientNet-based systems face 

significant hurdles in agricultural IoT contexts. First, their inherent computational complexity, as illustrated by Li et 

al. (2022), often necessitates cloud dependency or high-end edge hardware, contradicting the low-cost ethos of 

scalable smart farming.  

This dual-backbone approach answers concerns raised by Taye (2023), who highlighted the limitations of single-

backbone models in addressing scale diversity and computational constraints. The combined use of SE blocks, 

Transformers, gating, and hierarchical fusion reflects a modular, efficiency-aware architecture shift. These efficiency-

accuracy trade-offs are echoed in models like DeiT (Sevinc et al., 2025), which advocates for hybrid models that 

preserve spatial extraction through CNNs while employing attention mechanisms as proposed by Liao et al. (2022) 

that adopt a selective implementation for contextual understanding. However, unlike DeiT, which replaces early 

convolutional layers entirely, recent frameworks, as implemented by Anzum et al. (2024), prioritize maintaining 

convolutional stages and strategically placing Transformer layers to avoid excess computational load. Furthermore, 

the limitations of "naïve" multiscale fusion by Li et al. (2025), especially those in early designs that incurred 

computational redundancy on low-resolution layers, are being addressed through selective feature pruning by 

emphasized optimization through topological complexity and architecture refinement. Similarly, Khan et al. (2020) 

note that single-path scaling compromises network depth, width, or resolution—issues mitigated by dual-backbone 

designs that allow greater scale flexibility. Recent advancements synthesize efficient CNN backbones (Jia et al., 

2023), attention-based context modeling (Ge et al., 2024), and adaptive fusion techniques within modular 

frameworks. However, a key gap persists in quantifying and comparing the cost-effectiveness of these components 

in hybrid systems. While models such as Swin Transformer (Mamun et al., 2025) and CoAtNet (Yu et al., 2024) 

represent milestones in vision architecture, they often treat fusion as a monolithic process, overlooking the granular 

analysis of individual modules. The evolving literature supports a shift toward fine-grained, cost-aware multiscale 

fusion strategies, which are vital for deployment in low-resource environments. Evaluating hybrid vision 

architectures necessitates cautiously balancing computational efficiency and predictive accuracy. As such, recent 

studies have adopted a range of metrics to systematically quantify this trade-off across different components and 

deployment environments. Complexity metrics such as FLOPs (Zhang et al., 2024) and parameter counts (Kim et al., 

2022)  remain foundational for assessing computational cost. A granular analysis is particularly informative in hybrid 

models; for instance, the addition of SE blocks, as proposed by Ou and Zou (2025), contributes minimally to the 

overall parameter count while enhancing channel-wise feature recalibration. Moreover, latency is increasingly used 

as a real-world performance indicator, particularly in edge computing scenarios. To this end, latency measurements 

are typically conducted on resource-constrained platforms such as Raspberry Pi and high-performance servers with 

GPU acceleration. On the performance side, top-1 classification accuracy, as shown by Wang et al. (2025), remains a 

standard benchmark, though recent work emphasizes relative improvements over absolute scores. 

3. METHODS 

The proposed hybrid architecture, as shown in Figure 1, combines CNNs and Vision Transformers (ViT) to address 

crop disease detection challenges: (1) A dual-branch CNN backbone uses MobileNetV2 (lightweight, edge-optimized 

for localized texture details) and EfficientNetV2 (compound scaling for hierarchical multiscale features to detect 

disease severity). (2) SE blocks recalibrate channel-wise features, enhancing diagnostically relevant patterns and 

suppressing noise. (3) A ViT processes 16x16 patches with positional embeddings to model global context (lesion 

distribution), addressing the limitations of local-only CNNs. (4) Attention-guided fusion merges CNN and ViT 

features via gated spatial/channel attention, prioritizing critical regions (lesion boundaries) over irrelevant 

backgrounds. (5) Multiscale fusion aggregates features from 3x3, 5x5, and 7x7 convolutions through hierarchical 
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concatenation, improving robustness to scale variations. Training employs batch normalization, dropout, and 

softmax classification optimized for 76 disease/healthy classes, balancing accuracy and overfitting risks on 

agricultural datasets. 

 

Figure 1. Proposed Model Architecture 

3.1 Dataset Preparation and Preprocessing 

This section presents the dataset preparation and preprocessing techniques employed in this study. It outlines the 

steps followed, data sources, preprocessing steps, and strategies to enhance model performance and ensure robust 

feature extraction. 

Step 1: Loading and Organizing Data 

The dataset was loaded from a directory structure where images were organized in subfolders based on their class 

labels. TensorFlow's image dataset directory function was used to load the data with shuffling, batching, and resizing. 

Step 2: Data Augmentation 

Off-the-fly data augmentation was applied during training to enhance model generalization. Table 1 provides details 

of the augmentation techniques used: 

Table 1. Data Augmentation 

Transformation Type Range/Details 

Rotation 0°, 90°, 180°, or 270° 

Flipping Horizontal flip, Vertical flip 

Brightness Adjustment Between 0.7 (dark) and 1.3 (bright) 

Zoom Resizing and cropping to 224×224 pixels 

 

Step 3: Normalization of Pixel Values 

After loading the dataset, pixel values were normalized to a range of [0,1] to enhance model convergence during 

training. The normalization of pixel values was mathematically expressed as follows:  
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Normalized_pixel =
 pixel_value 

255.0
      (1) 

Step 4: Stratified Sampling for Data Splitting 

A stratified sampling technique was employed to ensure that the distribution of classes within the training and 

validation datasets remained consistent with the original dataset. The number of samples designated for the training 

set based on stratified sampling was calculated as follows: 

 Train_size = (
 number of samples in class 

 total samples 
)

×  total samples × (1 −  test_size )
      (2) 

Train_size represented the number of samples allocated for training, while total samples denoted the dataset's 

images. A test size of 0.2 ensured an 80–20 training-validation split, with a random state of 42 for reproducibility. 

Step 5: Categorical Labeling and One-Hot Encoding 

The dataset, structured into class-specific subdirectories, employed categorical labeling with one-hot encoding for 

class identification. This ensured that the dual-input model architecture received the same preprocessed image for 

both branches, maintaining consistency during training. 

 

3.3 Features Extraction  

The feature extraction process followed a structured approach to ensure optimal feature representation for real-time 

crop disease detection, as shown in the following steps: 

Step 1: Input Image Preprocessing 

The input images were initially preprocessed to ensure compatibility with the MobileNetV2 and EfficientNetV2 

architectures. Each image was resized to a fixed dimension, denoted as H and W × 3, Where H and W represent the 

height and width of the input image. 3 corresponds to the RGB color channels. These preprocessed images were then 

represented as 𝑥input  and 𝑥input2  for MobileNetV2 and EfficientNetV2, respectively. 

Step 2: Feature Extraction Using Pre-Trained Models 

The input images were fed into MobileNetV2 and EfficientNetV2, pre-trained on the ImageNet dataset, to extract 

meaningful feature representations and were defined as: 

𝑓mobile = 𝐹MobileNetV2 (𝑥input1 )  and 𝑓efficient = 𝐹EfficientNetV2 (𝑥input2 )   (3) 

Step 3: Channel Attention Mechanism via SE Network 

An SE attention mechanism was applied to enhance the representational power of the extracted features. The SE 

block first computed the global average pooling for each feature map channel as follows:  

𝑧𝑐 =
1

𝐻×𝑊
∑  𝐻
𝑖=1 ∑  𝑊

𝑗=1 𝑋(𝑖, 𝑗, 𝑐)        (4) 

The pooled values transformed the fully connected layers and a sigmoid activation function to generate channel-wise 

attention weights and was expressed as:  

𝑠 = 𝜎(𝑊2 ⋅ ReLU(𝑊1 ⋅ 𝑧))        (5) 

These attention weights were then applied to the feature maps to enhance informative channels while suppressing 

less significant ones, yielding refined feature representations as shown: 

 

𝐹MobileNet
𝑆𝐸 = 𝑆𝐸(𝐹MobileNet ) and 𝐹EfficientNet 

𝑆𝐸 = 𝑆𝐸(𝐹EfficientNet )   (6) 
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Step 4: Spatial Attention for Enhancing Feature Localization 

After channel refinement, a spatial attention mechanism was incorporated to further focus on discriminative regions 

within the image. The process involved computing a spatial descriptor through global average pooling, followed by 

two transformation layers that produce spatial attention scores, given as: 

𝑑1 = 𝜎(𝑊1 ⋅  avg_pool + 𝑏1)  and 𝑑2 = 𝜎(𝑊2 ⋅ 𝑑1 + 𝑏2)    (7) 

The feature maps were then modulated using these scores, leading to spatially enhanced feature representations, 

denoted as 𝐹′ = 𝐹 × 𝑑2  

Step 5: Multiscale Feature Fusion 

Inspired by Inception-style architectures, the multiscale fusion module synthesized diverse spatial features for a 

holistic representation. The outputs were concatenated along the channel axis, ensuring a unified multiscale 

representation as shown: 

𝐹fused = concat(𝐹MobileNet 
′ , 𝐹EfficientNet 

′ )      (8) 

Step 6: Feature Normalization and Dimension Reduction 

To stabilize training and enhance generalization, batch normalization was applied to the fused feature representation 

and was calculated as follows: 

dense_output = ReLU(𝑊𝑑 ⋅ 𝐹fused + 𝑏𝑑)      (9) 

Step 7: Classification Using SoftMax Activation 

The final stage involved passing the refined features through a classification layer equipped with a SoftMax activation 

function. This function computed the probability distribution over the output classes and was calculated as follows: 

𝑃(𝑦) = SoftMax(𝑊𝑠 ⋅  dense_output + 𝑏𝑠)      (10) 

The class with the highest probability was selected as the final prediction, determining the specific disease label for 

the given input image. The trained model was then evaluated using accuracy, precision, recall, and F1-score, and 

these were calculated as follows: 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
            (11) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (12) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (13) 

𝐹1 = 2 ×
 Precision × Recall 

 Precision + Recall 
        (14) 

Where TP is a true positive, TN is a true negative, TP is a false positive, and FN is a false negative.  

The confusion matrix was defined as: 

𝐶𝑀 = [
𝑇𝑃    𝐹𝑃
𝐹𝑁    𝑇𝑁

]           (15) 

The Receiver Operating Characteristic (ROC) curves, the True Positive Rate (TPR) against the False Positive Rate 

(FPR) was calculated as follows: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
        (16) 

The Area Under the Curve (AUC) measured classification performance and was calculated as follows: 

𝐴𝑈𝐶 = ∫  
1

0
𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)         (17) 
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3.4 Dataset Description 

This study created a combined dataset in Table 2 by integrating the Kaggle dataset (38 classes, 60,343 images) Saleem 

et al. (2020) with the FieldPlant dataset (25,775 images from Central Kenya. The FieldPlant dataset accounted for 

seasonal variations, emphasizing fungal and bacterial diseases during April, May, October, and November while 

prioritizing viral infections in June, July, and December. A standardized collection process ensured diverse lighting 

conditions and angles, enhancing generalization. Images were classified and annotated by an agricultural expert, and 

data augmentation techniques were applied to address class imbalances by generating additional samples. 

Table 2. Combined Dataset 

Crop Type Total 

Images 

Training 

Images 

Validation 

Images 

Apple 4,651 3,719 932 

Banana 4,008 3,204 804 

Beans 8,096 6,475 1,621 

Blueberry 1,502 1,201 301 

Cassava 4,894 3,914 980 

Cherry 2,054 1,642 412 

Corn 4,358 3,484 874 

Grape 4,641 3,711 930 

Maize 1,002 801 201 

Maize-L 1,239 991 248 

Maize 4,985 3,986 999 

Orange 5,507 4,405 1,102 

Peach 3,299 2,638 661 

Pepper 2,480 1,983 497 

Potatoes 3,006 2,403 603 

Raspberry 1,002 801 201 

Rice 5,010 4,005 1,005 

Squash 1,835 1,468 367 

Strawberry 2,111 1,688 423 

Sugarcane 5,010 4,005 1,005 

Sunflower 4,008 3,204 804 

Tea 6,012 4,806 1,206 

Tomatoes 18,841 15,067 3,774 

Total 99,551 79,601 19,950 

 

3.5 Experimental Parameters and Environment 

As shown in Table 3, we developed a unified framework to balance efficient feature extraction and classification. 

Input images were resized to 224×224×3 for optimal performance. MobileNetV2 served as a lightweight backbone, 

while EfficientNetV2 captured deeper features through compound scaling. SE blocks refined channels to highlight 

essential information, and ViT blocks processed features into 7×7 patches using six attention layers with a 128-

dimension embedding. Attention gates improved spatial focus, and a Multiscale Fusion Module combined various 

convolution sizes and pooling to capture fine and contextual details. Fine-tuning included batch normalization and 

dropout (0.5), followed by dense layers (1024, 128) and SoftMax for classification. The model used an AdamW 

optimizer and label smoothing (0.1) for better generalization. Experiments ran on NVIDIA GPUs (3090, T4, P100, 
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K80) in a Linux environment using TensorFlow, PyTorch, Keras, and OpenCV. 

 

Table 3. Hyperparameter Configurations 

Hyperparameter Value 

Image size 224 × 224 

Image channels 3 

Patch size 7 

Number of ViT encoder layers 6 

Number of multi-head self-attention blocks 8 

Hidden dimension 128 

Dropout rate 0.5 

Epochs 18 

 

4. RESULTS AND DISCUSSION 

This section illustrates the model training process, the ablation studies, the parameter distribution, and comparative 

performance with base models to demonstrate the methodology's effectiveness. Table 4 shows that the model's 

training and validation results significantly improved performance. Training accuracy increased from 72.99% in 

epoch 1 to 99.57% in epoch 18, while validation accuracy rose from 93.40% to 98.68%. Training loss decreased from 

1.7555 to 0.8265, and validation loss dropped from 1.0692 to 0.8332, demonstrating the model's ability to minimize 

errors and generalize effectively without overfitting. These results highlight the model's robustness and efficiency 

throughout the training process. 

Table 4. Training and Validation Performance 

Epoch Training 

Loss 

Training 

Accuracy 

Validation 

Loss 

Validation 

Accuracy 

Learning 

Rate 

1 1.7555 0.7299 1.0692 0.9340 1.0 × 10⁻⁵ 

2 1.1237 0.9178 0.9904 0.9616 1.0 × 10⁻⁵ 

3 1.0248 0.9513 0.9590 0.9715 1.0 × 10⁻⁵ 

4 0.9775 0.9666 0.9289 0.9782 1.0 × 10⁻⁵ 

5 0.9449 0.9750 0.9112 0.9802 1.0 × 10⁻⁵ 

6 0.9211 0.9815 0.8967 0.9812 1.0 × 10⁻⁵ 

7 0.9043 0.9846 0.8844 0.9830 1.0 × 10⁻⁵ 

8 0.8895 0.9881 0.8808 0.9841 1.0 × 10⁻⁵ 

9 0.8775 0.9908 0.8687 0.9845 1.0 × 10⁻⁵ 

10 0.8669 0.9920 0.8619 0.9845 1.0 × 10⁻⁵ 

11 0.8594 0.9930 0.8521 0.9854 1.0 × 10⁻⁵ 

12 0.8520 0.9937 0.8487 0.9859 1.0 × 10⁻⁵ 

13 0.8450 0.9946 0.8432 0.9859 1.0 × 10⁻⁵ 

14 0.8403 0.9949 0.8374 0.9867 1.0 × 10⁻⁵ 

15 0.8352 0.9952 0.8362 0.9857 1.0 × 10⁻⁵ 

16 0.8306 0.9954 0.8354 0.9866 1.0 × 10⁻⁵ 

17 0.8282 0.9955 0.8341 0.9867 1.0 × 10⁻⁵ 

18 0.8265 0.9957 0.8332 0.9868 1.0 × 10⁻⁵ 

 

The graphs in Figure 2 show a consistent improvement in model performance over the training epochs. Training 

accuracy increased from 72.99% in the first epoch to 99.57% by epoch 18, while validation accuracy rose from 93.40% 
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to 98.68%, indicating effective learning with minimal overfitting. Both training and validation loss exhibited smooth 

convergence, decreasing training loss and validation loss. The small gap between training and validation metrics 

suggests strong generalization to unseen data. The model's stability is attributed to the carefully chosen learning rate 

(1e-5), which facilitated controlled weight updates, leading to high-precision crop disease classification.  

 

Figure 2. Training And Validation Graph 

3.6 Ablation Studies  

Ablation tests, as shown in Table 5, illustrate a stark trade-off: our baseline model CNN (EfficientNetV2 + 

MobileNetV2) achieved a 98.55% accuracy, but the minor tweaks eroded performance (98.45%) notably because of 

hyperparameters adjustment and learning rate. Adding multiscale features clawed back gains (98.57%), proving their 

value for intricate disease patterns—yet the real breakthrough came from SE blocks and gating. Together, they pushed 

accuracy to 98.68%, but with a catch: added complexity. This mirrors our core finding—multiscale fusion isn't free. 

While it improves accuracy, it’s worth hinges on task-specific scale diversity and hardware limits. That extra 0.13% 

accuracy might not justify slower inference for farmers using budget smartphones. But in cloud-based systems, every 

decimal counts. These results force a hard question: When does "better" matter? the proposed framework answers 

this by quantifying costs, not just gains—a critical step toward practical, resource-aware AI for agriculture. 

Table 5. Impact of Different Architectural Modifications 

Model 

Number 

Model 

Configuration 

Multiscale 

Module 

Gated 

Mechanism 

Accuracy 

1 CNN model: 

EfficientNetV2 

and MobileNetV2 

No No 98.55% 

2 CNN models: 

EfficientNetV2 

and MobileNetV2 

(Epochs 

Reduction) 

No No 98.45% 

3 CNN models: 

EfficientNetV2 

and 

MobileNetV2, 

with Multiscale 

module 

Yes No 98.57% 

4 Proposed 

Model: 

EfficientNetV2 

and 

Yes Yes 98.68% 
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MobileNetV2, 

with Multiscale 

module, SE, and 

Gated Mechanism 

 

Table 6 presents the parameter distribution and training configurations for different model variations. The baseline 

model, integrating EfficientNetV2 and MobileNetV2, has the lowest parameter count (8.85M), ensuring a lightweight 

structure. Adding SE, ViT, Gated Mechanism, and Multiscale Module significantly increases parameters to 38.86M, 

reflecting the complexity of additional feature extraction mechanisms. The exclusion of the Multiscale Module and 

Gated Mechanism results in parameter reductions to 11.87M and 14.23M, respectively, showing their contribution to 

model size. 

Table 6. Parameter Distribution 

Model 

Configuration 

Total 

Parameters 

Trainable 

Parameters 

Non-

Trainable 

Parameters 

Epochs Batch 

Size 

Learning 

Rate 

EfficientNetV2 + 

MobileNetV2 

8,853,468 8,758,236 95,232 18 4978 1.0 × 10⁻⁵ 

EfficientNetV2 + 

MobileNetV2 + SE + 

ViT + Gated 

Mechanism + 

Multiscale Module 

38,863,998 38,767,742 96,256 18 4978 1.0 × 10⁻⁵ 

EfficientNetV2 + 

MobileNetV2 + SE + 

ViT + Gated 

Mechanism + 

Multiscale Module 

(No Multiscale 

Module) 

11,871,964 11,776,220 95,744 18 4978 1.0 × 10⁻⁵ 

EfficientNetV2 + 

MobileNetV2 + SE + 

ViT + Gated 

Mechanism (No 

Gated Mechanism) 

14,227,932 14,132,700 95,232 18 4978 1.0 × 10⁻⁵ 

 

3.7 Statistical Testing  

Statistical testing confirmed the superiority and stability of the proposed model across all performance metrics. As 

shown in Table 7, the model achieved the highest Kappa value (0.9919), indicating strong agreement between 

predictions and actual classifications with minimal misclassification. Its AUC (0.999998) demonstrated near-perfect 

class distinction, ensuring effective differentiation between healthy and diseased crops.  

Table 7. Model Performance 

Model Accuracy Precision Recall F1 

Score 

Kappa AUC 

Proposed Model 0.992 0.9934 0.9929 0.9923 0.9919 0.999998 

Swin_TransformerSE 0.988 0.9901 0.9894 0.9888 0.9878 0.999888 
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VGG-16 0.972 0.9762 0.9718 0.9712 0.9716 0.999967 

ShuffleNet 0.958 0.9676 0.9644 0.9613 0.9574 0.999844 

DenseNet121 0.958 0.9676 0.9644 0.9613 0.9574 0.999844 

AlexNet 0.948 0.9569 0.9484 0.9452 0.9472 0.999142 

DenseNet50 0.896 0.9080 0.8993 0.8922 0.8945 0.998850 

 

A confidence variance analysis in Table 8 further assessed the stability of predictions, where lower variance indicated 

more consistent predictions. The proposed model achieved the lowest confidence variance (0.000010), highlighting 

its robustness and reliability, whereas DenseNet50 (0.000035) and AlexNet (0.000027) exhibited higher variance, 

indicating less stability in classification confidence. The confidence variance reinforced the findings, showing that 

the proposed model maintained the most stable confidence scores, while DenseNet50 and AlexNet displayed greater 

fluctuations, suggesting lower prediction consistency. 

Table 8. Confidence Variance Analysis 

Model Confidence Variance 

DenseNet50 0.000035 

AlexNet 0.000027 

DenseNet121 0.000023 

ShuffleNet 0.000023 

VGG-16 0.000015 

Swin_TransformerSE 0.000012 

Proposed Model 0.000010 

 

We ran a Kruskal-Wallis test and several pairwise comparisons as shown in Table 9 to check how much the confidence 

levels varied among models. These pair-checks point out some fundamental differences in variance, which helped 

determine which ones delivered more steady predictions. The Kruskal-Wallis test (H = 597.40, p = 8.4755e-126) 

confirmed a highly significant overall difference in confidence scores, making it suitable for analysing deep learning 

models with varying confidence distributions. Most comparisons were significant at 0.05, indicating that models had 

statistically distinct variances. The proposed model, Swin_TransformerSE, and VGG-16 exhibited significantly lower 

variance than DenseNet50 and AlexNet, reinforcing their prediction stability. These findings further highlight the 

robustness and reliability of the proposed model for crop disease detection, as it consistently maintained the lowest 

confidence variance. 

Table 9. Pairwise Comparisons 

Model A Model B Adj. p-

value 

Significant 

(0.05) 

DenseNet50 Swin_TranformerSE 2.8595e-89 Yes 

Proposed Model DenseNet50 3.7988e-62 Yes 

DenseNet50 VGG-16 2.7891e-59 Yes 

AlexNet Swin_TranformerSE 5.8236e-42 Yes 

DenseNet121 Swin_TranformerSE 2.9339e-28 Yes 

ShuffleNet Swin_TranformerSE 2.9339e-28 Yes 

AlexNet DEMF 3.8810e-24 Yes 

AlexNet VGG-16 2.3074e-22 Yes 

DenseNet50 ShuffleNet 1.2925e-17 Yes 

DenseNet121 DenseNet50 1.2925e-17 Yes 

Proposed Model ShuffleNet 4.6563e-14 Yes 
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Proposed Model DenseNet121 4.6563e-14 Yes 

ShuffleNet VGG-16 1.0419e-12 Yes 

DenseNet121 VGG-16 1.0419e-12 Yes 

AlexNet DenseNet50 3.4884e-09 Yes 

Swin_TranformerSE VGG-16 3.5459e-03 Yes 

Proposed Model Swin_TranformerSE 1.6019e-02 Yes 

AlexNet DenseNet121 2.6124e-01 No 

AlexNet ShuffleNet 2.6124e-01 No 

Proposed Model VGG-16 1.0000e+00 No 

DenseNet121 ShuffleNet 1.0000e+00 No 

 

3.8 Comparison with other Hybrid approaches 

While prior hybrid frameworks have advanced crop disease detection, they often sacrifice adaptability for complexity. 

Our proposed model lay in orchestrated simplicity: unlike rigid architectures that force trade-offs between scale 

sensitivity and speed, we integrated multiscale modules with lightweight gating—letting the model focus dynamically 

on what matters. While similar approaches rely on static feature extractors prone to noise, our proposed model used 

SE blocks and Vision Transformers to collaborate and filter distractions, a balance absent in earlier hybrids. This 

adaptability shines in real-world deployment: while most existing models normally have marginal gains, our model 

achieved 98.68% accuracy during training, and the quantized model achieved a mobile-ready package of 30.4 MB 

and an inference of 0.094s latency. Table 10 underscores these achievements, positioning this dual approach not as 

an incremental tweak but as a pragmatic rethinking of hybrid design. 

Table 10. Comparing with Existing Hybrid Multi Multiclassification Models 

Studies Classification Accuracy 

(Parez et al., 2023) 98.00%% 

(D. Zhu et al., 2023) 97.50%% 

(Shah et al., 2024) 90.00% 

(Barman et al., 2024) 90.99% 

(Touvron et al., 2021) 85.02% 

The proposed model 98.68% 

From the ablation results these results revealed a fundamental issue between maximizing predictive accuracy and 

maintaining operational efficiency. While multiscale fusion delivered measurable gains in performance, these 

improvements came at a significant computational cost. The increase in parameter count, even after rigorous 

optimization, raised critical considerations about the practicality of deploying such models in resource-constrained 

environments. This issue highlights that the highest-performing model in controlled testing does not automatically 

translate to the best choice for real-world deployment, particularly in scenarios requiring real-time response and 

energy-efficient operation. Optimization strategies such as parameter pruning and model compression demonstrated 

that meaningful reductions in model size are achievable without severely compromising performance. Nonetheless, 

even a streamlined version of the hybrid model continued to exhibit latency approximately 15% higher than that of 

simpler architectures, but with high confidence. In settings where immediacy of inference is paramount, this latency 

could pose operational challenges, especially for applications that rely on rapid detection and decision-making under 

variable field conditions. Beyond raw accuracy, model reliability emerged as a critical metric. The hybrid model's low 

variance in confidence scores suggests a robustness that could be vital in high-stakes agricultural decision-making, 

where false positives or negatives could result in significant economic or food security impacts. This aspect 

underscores that in evaluating models for deployment, consistency and confidence stability are as important as 

achieving high classification rates. However, the choice between complex and simple architectures should not be 

approached as a binary decision. Context must drive model selection. For tasks characterized by significant variability 

in input scales and features—such as the detection of differently sized crop lesions—the multiscale fusion model’s 
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advantages are clear and substantial. In contrast, for more uniform tasks or environments where computational 

resources are limited, baseline models offer a more pragmatic balance of speed, size, and accuracy.  

These findings point towards an evolving need for adaptive models that can modulate their internal complexity based 

on situational demands. Rather than committing to a fixed architecture, future systems should be capable of 

dynamically enabling or disabling components such as fusion modules or attention mechanisms depending on input 

characteristics and available computational power. Such adaptability would allow models to preserve efficiency 

without sacrificing accuracy where it is most needed. The results suggests that the future of model design lies not 

solely in the pursuit of higher accuracy scores, but in the intelligent matching of model capabilities to the operational 

context. A flexible, resource-aware approach is essential for bridging the gap between laboratory performance and 

field usability. 

5. CONCLUSION 

In conclusion Multiscale fusion isn't free—and our experiments demonstrated that. While hybrid models like ours 

(98.68% accuracy) outperformed standalone CNNs (98.55%), the trade-offs were significant. Adding SE blocks and 

gating slightly improved accuracy by 0.13%, but the model grew to 38.8 million parameters—over four times larger 

than the baseline (8.85M). In real-world scenarios, especially on limited hardware, that extra weight can cause slower 

performance and higher energy demands. In cloud environments, where resources are abundant, the precision gains 

may justify the added complexity. But the real deciding factor is scale diversity. Our hybrid model excelled in 

detecting crop lesions of varying sizes, whereas fixed-scale tasks saw little benefit from the added layers. Even 

seemingly efficient additions like SE blocks, which contributed less than 1% to the parameter count, couldn't fully 

offset the burden introduced by heavier components like Vision Transformers. Interestingly, removing the multiscale 

module cut the parameters down to 11.87 million while keeping accuracy competitive at 98.57%. In many cases, less 

complexity delivered nearly the same results. Confidence scores reinforced this: our model’s variance remained low 

(0.000010 compared to DenseNet50’s 0.000035), proving it was not only accurate but consistently reliable. Still, 

reliability alone is not enough if the model cannot operate effectively on real-world devices. A model that performs 

well in controlled conditions but fails in the field cannot be considered a complete success. In the end, multiscale 

fusion pays off only when scale variation is critical and hardware resources are available. For edge deployments, 

leaner models around 8.85 million parameters are the better choice. For server environments, the full hybrid 

approach can be leveraged. Future work should prioritize adaptive systems—models that dynamically adjust 

complexity based on task requirements—to balance performance with efficiency. 
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