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This paper discusses a novel approach by examining the failure patterns in the recorded survival 

data. Following the use of the suggested strategy, survival data are recorded. It is examined to be 

based on a constant failure rate (null hypothesis) or the new class called new better than used in 

the Laplace transform of convex order (NBULC) class of life distribution (alternative hypothesis); 

then the data in use provided a better or higher total present value than an older component in 

convex (positive or negative effects). The proposed class of life distribution NBULC included 

many classes, like NBU (new better than used) and NBUL (new better than in Laplace transform) 

classes of life distributions. The suggested test statistics for our class of life distribution is based 

on the goodness-of-fit method for non-censored and censored samples. The distribution of this 

test statistic is investigated via a simulation study. Scientific data is considered an application 

that utilizes real test data. 

Keywords:  NBULC class, Goodness-of-fit methodology, Pitman’s asymptotic efficiency, 

Monte- Carlo null distribution critical points, non-censored and censored data. 
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1. MOTIVATION AND INTRODUCTION 

The survival data set's failure behavior includes figuring out whether the failure rate is constant (null hypothesis 𝐻0) 

or decreasing or increasing (alternative hypothesis 𝐻1). The exponential test is crucial and has been used to depict 

events that are not constrained by the statute of limitations in a variety of classes of life distributions. It guarantees 

that the longevity of the phenomenon is unaffected by its prior duration. The exponential distribution is compared 

to multiple classes of life distributions. For instance, Gadallah et al. (2022), Bakr et al. (2024), EL-Sagheer et al. 

(2022) and Mansour (2020). 

Bakr et al. (2022), El-Morshedy et al. (2022), and others have provided an exponential test for various classes of life 

distributions and their applications in different fields of science, including medical, industrial, economic, and life 

sciences. 

The methodology for testing exponentiality, which is based on the goodness of fit, is discussed by Abu-Youssef and 

Silvana (2022), Quaid et al. (2024), and others. 

The new class NBULC of life distribution is defined by the Laplace transforms approach; the Laplace transform order 

is a mathematical tool that has been extensively examined in the wider context of reliability analysis. This can be 

done in Denuit (2001), Stoyan and Muller (2002), and Ahmed and Kayid (2004). Also, the NBULC class includes the 

well-known classes NBU and NBUL of life distributions. 

The NBU class of life distribution is expressed through stochastic comparisons between the remaining life of an old 

item and a new one, resulting in the creation of different classes of life distribution. Among these is the increasing 

failure rate (IFR). NBU is explored by Bryson and Siddiqui (1969), and Barlow and Proschan (1981).   

 In this study, the NBULC class of life distribution is given. And then, the novel test statistic using the goodness-of-

fit method is proposed for testing exponentiality versus our class NBULC. The proposed test statistics are evaluated 
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for efficiency and comparison to other tests. The power of this test is estimated by computed and tabulated critical 

values. Finally, our test statistic is applied to censored and complete data in medical science. 

Definition (1): 

(i) x ∈ NBU if 

𝐹̅(𝑡 + 𝑥) ≤ 𝐹̅(𝑡)𝐹̅(𝑥),            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑡 > 0.                                                (1) 

(ii)  x ∈ NBUL if 

∫ 𝑒−𝑠𝑥𝐹̅(𝑥 + 𝑡)𝑑𝑥
∞

0

≤ 𝐹̅(𝑡) ∫ 𝑒−𝑠𝑥𝐹̅(𝑥)𝑑𝑥
∞

0

                                   (2) 

Yue and Cao (2001), Gao et al. (2003), Diab (2010) and Bakr et al. (2024) have studied the class NBUL of life 

distribution. A new class, NBULC of life distributions, is defined as the following: 

Definition (2): New better than used in the Laplace transform of convex ordering (x ∈ NBULC) if 

∫ 𝑒−𝑠𝑦𝐹̅(𝑦 + 𝑡)𝑑𝑦
∞

𝑥

≤ 𝐹̅(𝑡) ∫ 𝑒−𝑠𝑦𝐹̅(𝑦)𝑑𝑦
∞

𝑥

,                𝑠 ≥ 0                   (3) 

It is cleared that from Eq. (1), (2) and (3) that: 

NBU ⊂ NBUL ⊂ NBULC. 

Eq. (3) becomes as follows: 

∫ 𝑒−𝑠𝑦𝛾(𝑦)𝑑𝑦
∞

𝑥

≤ 𝜇 ∫ 𝑒−𝑠𝑦𝐹̅(𝑦)𝑑𝑦
∞

𝑥

,                                                         (4) 

The rest of the paper is arranged as follows: Pitman's asymptotic efficiency is demonstrated in Section (2) along with 

a novel test statistic by using the goodness-of-fit technique. In Section (3), the power of the new test statistics is 

computed, and the critical points for the lower and higher percentile values of the suggested test statistics are 

tabulated. The treatment of censored data is discussed in Section 4. Section 5 presents applications in medical science 

to assess the effectiveness of our proposed test.  

2. TESTING EXPONENTIALITY VERSUS NBULC CLASS OF NON-CENSORED DATA 

The suggested test statistic is constructed as a U-statistic in this section, along with a discussion of its asymptotic 

normality. To assess the method's quality, we compare the asymptotic efficiency of two alternatives in the class 

NBULC of life distributions. 

2.1. Statistical Test Measures 

A goodness of fit approach is employed to test the null hypothesis, 𝐻₀: F is exponential, against the alternative 

hypothesis  𝐻1: F belongs to the NBULC class but is not exponential." 

Based on the sample 𝑋1, 𝑋1, . . . , 𝑋𝑛   from a population with the distribution F, according to Eq. (3), the measure of 

departure from H0 : F is 

𝛿𝑆 = ∫ [𝜇 ∫ 𝑒−𝑠𝑢𝐹̅(𝑢)𝑑𝑢
∞

𝑥

− ∫ 𝑒−𝑠𝑢𝛾(𝑢)𝑑𝑢
∞

𝑥

] 𝑒−𝑥𝑑𝑥,
∞

0

                             (5) 

The following theorem is fundamental for the evolution of our test statistics. 

 

Theorem 1.  Let X be an NBULC random variable with distribution F, then 

𝛿𝑠 =
1

1 + 𝑠
(𝜇 +

1

1 + 𝑠
) ∫ 𝑒−𝑥(1+𝑠)𝑑𝐹(𝑥)

∞

0

−
1

𝑠
(𝜇 +

1

𝑠
) ∫ 𝑒−𝑠𝑥𝑑𝐹(𝑥)

∞

0

+
1 + 2𝑠

𝑠2(1 + 𝑠)2
,                 (6) 
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Where,           𝜇 = ∫ 𝐹̅(𝑡)𝑑𝑡
∞

0
. 

Proof: From Eq. (5), we have 

δS = μ ∫ e−x
∞

0

∫ e−suF̅(u)dudx
∞

x

− ∫ e−x
∞

0

∫ e−suγ(u)dudx.
∞

x

                                                        (7) 

The first term of Eq. (7) is given by 

𝜇 ∫ 𝑒−𝑥
∞

0

∫ 𝑒−𝑠𝑢𝐹̅(𝑢)𝑑𝑢𝑑𝑥
∞

𝑥

= 𝜇 ∫ 𝑒−𝑥 [
1

𝑠
𝑒−𝑠𝑥 − ∫ 𝑒−𝑠𝑢𝐹(𝑢)𝑑𝑢

∞

𝑥

] 𝑑𝑥
∞

0

 

= 𝜇 ∫ 𝑒−𝑥
1

𝑠
[𝑒−𝑠𝑥𝐹̅(𝑥) − ∫ 𝑒−𝑠𝑢𝑑𝐹(𝑢)

∞

𝑥

] 𝑑𝑥
∞

0

                                       

                          =
𝜇

𝑠
[

1

1 + 𝑠
+ (1 −

1

1 + 𝑠
) ∫ 𝑒−𝑥(1+𝑠)𝑑𝐹(𝑥)

∞

0

− ∫ 𝑒−𝑠𝑥𝑑𝐹(𝑥)
∞

0

].                           (8) 

The second term of Eq. (7) is given by 

∫ 𝑒−𝑥
∞

0

∫ 𝑒−𝑠𝑢𝛾(𝑢)𝑑𝑢𝑑𝑥
∞

𝑥

= ∫ 𝑒−𝑠𝑢𝛾(𝑢)𝑑𝑢
∞

0

− ∫ 𝑒−𝑢(1+𝑠)𝛾(𝑢)𝑑𝑢
∞

0

 

                         = −
1

𝑠
[−𝜇 +

1

𝑠
−

1

𝑠
∫ 𝑒−𝑠𝑢𝑑𝐹(𝑢)

∞

0

] +
1

1 + 𝑠
[−𝜇 +

1

1 + 𝑠
−

1

1 + 𝑠
∫ 𝑒−𝑢(1+𝑠)𝑑𝐹(𝑢)

∞

0

] 

=
𝜇

𝑠(1 + 𝑠)
−

1 + 2𝑠

𝑠2(1 + 𝑠)2
+

1

𝑠2
∫ 𝑒−𝑠𝑥𝑑𝐹(𝑥)

∞

0

−
1

(1 + 𝑠)2
∫ 𝑒−𝑥(1+𝑠)𝑑𝐹(𝑥)

∞

0

.                    (9)            

From Eq. (8) and Eq. (9), the result is obtained. 

 

Note That: 

(1) It is clear to see that if F is exponential, then  𝛿𝑠 = 0. 

(2) Under H1,   𝛿𝑠 >  0. 

To estimate δs, we use a random sample 𝑋₁, 𝑋₂, … , 𝑋𝑛 from distribution F. An empirical form of 𝛿𝑠  in Eq. (6) is given 

by the following: 

𝛿̂𝑠 =
1

𝑛2𝑥̅
∑ ∑ [(

𝑥𝑖

1 + 𝑠
+

1

(1 + 𝑠)2
) 𝑒−𝑥𝑗(1+𝑠) − (

𝑥𝑖

𝑠
+

1

𝑠2
) 𝑒−𝑠𝑥𝑗 +

1 + 2𝑠

𝑠2(1 + 𝑠)2
] .

𝑗𝑖

                             (10) 

Let 

𝜙𝑠(𝑥1, 𝑥2) = (
𝑥1

1 + 𝑠
+

1

(1 + 𝑠)2
) 𝑒−𝑥2(1+𝑠) − (

𝑥1

𝑠
+

1

𝑠2
) 𝑒−𝑠𝑥2 +

1 + 2𝑠

𝑠2(1 + 𝑠)2
. 

Then it is clear to obtain the following 

                    𝜙1,𝑠(𝑥1) = 𝐸[𝜙𝑠(𝑥1, 𝑥2)|𝑥1]                       

                                    = ∫ 𝜙1(𝑥1, 𝑥2)𝑒−𝑥2𝑑𝑥2

∞

0

 

= (
𝑥1

1 + 𝑠
+

1

(1 + 𝑠)2
)

1

2 + 𝑠
− (

𝑥1

𝑠
+

1

𝑠2
)

1

1 + 𝑠
+

1 + 2𝑠

𝑠2(1 + 𝑠)2
,                                (11) 

and 

                    𝜙2,𝑠(𝑥1) = 𝐸[𝜙𝑠(𝑥2, 𝑥1)|𝑥1]                       



Journal of Information Systems Engineering and Management 
2025, 10(54s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 655 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

                                    = ∫ 𝜙2(𝑥2, 𝑥1)𝑒−𝑥2𝑑𝑥2

∞

0

 

= 𝑒−𝑥1(1+𝑠) (
1

1 + 𝑠
+

1

(1 + 𝑠)2
) − 𝑒−𝑠𝑥1 (

1

𝑠
+

1

𝑠2
) +

1 + 2𝑠

𝑠2(1 + 𝑠)2
.                          (12) 

Hence, 

𝜓𝑠(𝑥1) = 𝜙1,𝑠(𝑥1) + 𝜙2,𝑠(𝑥1) 

      = 𝑥1 (
−2

𝑠(1 + 𝑠)(2 + 𝑠)
) + 𝑒−𝑥1(1+𝑠) (

2 + 𝑠

(1 + 𝑠)2
) − 𝑒−𝑠𝑥1 (

1 + 𝑠

𝑠2
) +

4𝑠2 + 7𝑠 + 2

𝑠2(1 + 𝑠)2(2 + 𝑠)
,       𝑠 ≠ −1, −2,0.          (13) 

The expected value and the variance of the test statistic 𝛿̂𝑠 are as follows: 

𝐸(𝜓𝑠(𝑥1)) = 0,  and, 

𝜎𝑠
2 = 𝑉𝑎𝑟(𝜓𝑠(𝑥1)) = [𝐸(𝜓𝑠(𝑥1))]

2
.                                                                 (14) 

Now 𝛿̂𝑠  is defined as being equivalent to the formula represented by Lee (1990) as follows: 

𝑈𝑛 =
1

(𝑛
2

)
∑ 𝜙(𝑋𝑖 , 𝑋𝑗)

𝑖<𝑗

.                                                                                        (15) 

Theorem 2. 

(1) As n → ∞, the √𝑛(𝛿̂𝑠 − 𝛿𝑠), is asymptotically normal with mean 0, and variance 𝜎𝑠
2 , which is as in Eq. (14). 

(2) Under 𝐻0, the variance of 𝛿̂𝑠 is 

𝜎0,𝑠
2 =

7 + 5𝑠

(1 + 𝑠)2(2 + 𝑠)2(3 + 4𝑠(2 + 𝑠))
.                              (16) 

Proof: 

 (1) and (2) are derived based on the standard theorem of U-statistics (Lee, 1990) and direct calculations, 

respectively. 

Remark :- 

At special values of s, like as 𝑠 = 0.1 and 0.5, then variance in Eq. (16) is calculated as 

𝜎0,𝑠
2 (0.1) = 0.366,           𝜎0,𝑠

2 (0.5) = 0.084.  

 

2.2. Pitman Asymptotic Efficiency (PAE) 

PAE is defined as follows: 

𝑃𝐴𝐸(𝛿𝑠) =

|
𝑑

𝑑𝜃
𝛿𝜃|

𝜃→𝜃0

𝜎0.𝑠

. 

Using Eq. (5), we have 

𝑃𝐴𝐸(𝛿𝑠) =
1

𝜎0.𝑠

|
1

1 + 𝑠
(𝜇𝜃 +

1

1 + 𝑠
) ∫ 𝑒−𝑥(1+𝑠)𝑓𝜃

\(𝑥)𝑑𝑥
∞

0

+ ∫ 𝑒−𝑥(1+𝑠)𝑓𝜃(𝑥)𝑑𝑥
∞

0

(
1

1 + 𝑠

𝑑

𝑑𝜃
𝜇𝜃)

−
1

𝑠
(𝜇𝜃 +

1

𝑠
) ∫ 𝑒−𝑠𝑥𝑓𝜃

\(𝑥)𝑑𝑥
∞

0

+ ∫ 𝑒−𝑠𝑥𝑓𝜃(𝑥)𝑑𝑥
∞

0

(−
1

𝑠

𝑑

𝑑𝜃
𝜇𝜃)|

𝜃→𝜃0

                           (17) 

We compute PAE for the following three alternatives of our class of life distributions. 

(i) Linear failure rate family:    
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𝐹̅1(𝑦) = exp (−𝑦 −
𝜃𝑦2

2
) ,       𝑦 > 0, 𝜃 ≥ 0, 

(ii) Makeham family:       

 𝐹̅2(𝑦) = exp(−𝑦 − 𝜃(𝑦 + 𝑒−𝑦 − 1)),     𝑦 > 0, 𝜃 ≥ 0, 

(iii) Weibull family:          

𝐹̅3(𝑦) = exp(−𝑦𝜃),                             𝑦 > 0, 𝜃 ≥ 0, 

       So, the null hypothesis 𝐻0  is obtained at 𝜃 = 0 in (i), (ii) and 𝜃 = 1 in (iii) 

(i) PAE(𝛿𝑠) for linear failure rate family: 

𝑃𝐴𝐸(𝛿𝑠) =
1

𝜎0.𝑠

|
2𝑠 + 3

(2 + 𝑠)2(1 + 𝑠)2
| ,                𝑠 ≠ −2, −1 

(ii) PAE(𝛿𝑠) for Makeham family: 

𝑃𝐴𝐸(𝛿𝑠) =
1

𝜎0.𝑠

|
1

(1 + 𝑠)(2 + 𝑠)(3 + 𝑠)
| ,                𝑠 ≠ −3, −2, −1 

 

(iii) At 𝑠 = 0.1, 𝑃𝐴𝐸(𝛿𝑠) for Weibull family: 

𝑃𝐴𝐸(𝛿𝑠) =
1

𝜎0.𝑠

|
1

1 + 𝑠
[

1

2 + 𝑠
− 0.628168] −

1

𝑠
[

1

1 + 𝑠
− 0.611387] + [1 − 0.577216]

2

𝑠(1 + 𝑠)(2 + 𝑠)
|, 

𝑠 ≠ 0, −2, −1. 

Then,                      𝑃𝐴𝐸(𝛿𝑠) =
1

𝜎0.𝑠
(0.54527)  

At 𝑠 = 0.5, 𝑃𝐴𝐸(𝛿𝑠) for Weibull family: 

𝑃𝐴𝐸(𝛿𝑠) =
1

𝜎0.𝑠

|
1

1 + 𝑠
[

1

2 + 𝑠
− 0.597403] −

1

𝑠
[

1

1 + 𝑠
− 0.655121] + [1 − 0.577216]

2

𝑠(1 + 𝑠)(2 + 𝑠)
|, 

𝑠 ≠ 0, −2, −1. 

And then,                     𝑃𝐴𝐸(𝛿𝑠) =
1

𝜎0.𝑠
(0.29638) 

In Table 1, the Pittman asymptotic efficiencies (PAE) of our test statistics δˆs at s=0.1, 0.5 against   previous test 

statistics are derived. 

Table 1. PAE for LFR, Makeham and Weibull families 

Test LFR Makeham Weibull 

Bakr et al. (2024) 0.815 0.153 ... 

Mahmoud and Alim (2008) 0.217 0.144 0.050 

Mahmoud et al. (2019) 1.010 0.250 0.999 

our test 𝜹𝒔(𝟎. 𝟏)  1.638 0.381 1.489 

our test 𝜹𝒔(𝟎. 𝟓) 3.386 0.907 3.527 

 

It is clear from the above table that the efficiency of our new class 𝛿𝑠 of NBULC increases as s increases. 

 

Table 2 presents the Pittman asymptotic relative efficiency (PARE) of our test 𝛿𝑠 compared with other test 

statistics.  Note that 

𝑃𝐴𝑅𝐸(𝑇1, 𝑇2) =
𝑃𝐴𝐸(𝑇1)

𝑃𝐴𝐸(𝑇2)
. 
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Table 2. PARE’s of 𝛿𝑠 with respect to Bakr et al., Mahmoud and Alim and Mahmoud et al. 

Test  LFR Makeham Weibull 

𝜹𝒔(𝟎. 𝟏) 

Bakr et al. (2024) 2.009 2.492 ... 

Mahmoud and Alim 

(2008) 
7.550 2.649 29.796 

Mahmoud et al. 

(2019) 
1.621 1.523 1.489 

𝜹𝒔(𝟎. 𝟓) 

Bakr et al. (2024) 4.153 5.932 ... 

Mahmoud and Alim 

(2008) 
15.604 6.298 70.542 

Mahmoud et al. 

(2019) 
3.351 3.622 3.527 

 

From Table 2, it is shown that the test statistic of our new class (NBULC) 𝜹𝒔 performs well for Bakr et al. (2024) 

NBUL, Mahmoud and Alim (2008) NBUFR (new better than used failure rate), and Mahmoud et al. (2019) NBUCL 

and it is more efficient than (2024), (2008) and (2019) for these families: linear failure rate, Makeham and Weibull. 

3. POINTS OF CRITICAL VALUE, MONTE CARLO NULL DISTRIBUTION 

In Tables 3 and 4, we have simulated lower and upper percentile values for 98%, and 99% of 𝛿̂𝑠(0.1) and 𝛿̂𝑠(0.5) 

obtained using the Mathematica (12) program. These values are based on 10000 simulated samples of size 𝑛 =

5(5)50. 

Table 3. The Lower and Upper Percentile of 𝛿̂𝑠(0.1) 

n 1% 5% 10% 90% 95% 98% 99% 

5 -0.031432 -0.114593 -0.385767 0.260868 0.321991 0.420988 0.484287 

10 -0.087235 -0.177114 -0.433382 0.188956 0.229294 0.278298 0.309475 

11 -0.096744 -0.190446 -0.434854 0.180658 0.216796 0.260177 0.298972 

15 -0.099859 -0.181683 -0.423768 0.156097 0.187197 0.224673 0.251661 

16 -0.105669 -0.185536 -0.416104 0.154110 0.183023 0.217597 0.242522 

20 -0.105222 -0.178390 -0.376710 0.137838 0.162334 0.196029 0.218455 

23 -0.102886 -0.172986 -0.351050 0.131584 0.156147 0.183407 0.204895 

25 -0.103292 -0.167527 -0.339916 0.126671 0.149070 0.177677 0.195570 

27 -0.105999 -0.171716 -0.329869 0.122815 0.146327 0.171432 0.189440 

29 -0.104227 -0.168248 -0.321391 0.119388 0.141754 0.169709 0.186451 

30 -0.102470 -0.161297 -0.312873 0.118726 0.140409 0.164797 0.182228 

35 -0.095742 -0.151484 -0.302994 0.109790 0.129887 0.151397 0.169442 

40 -0.097113 -0.149618 -0.273822 0.104276 0.121886 0.145837 0.158182 

43 -0.091834 -0.141740 -0.268037 0.102548 0.120508 0.138775 0.154202 

45 -0.092933 -0.143269 -0.262407 0.099419 0.118084 0.139972 0.153077 

50 -0.091379 -0.139650 -0.258287 0.094922 0.112114 0.133015 0.143435 
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Figure 1: The relationship between sample size and critical values of 𝛿̂𝑠  at s=0.1 
 

As shown in Table 3 and Figure 1, it is clear that the critical values increase gradually with the confidence level, 

while they decrease as the sample size increases. 

Table 4: The Lower and Upper Percentile of 𝛿̂𝑠(0.5) 

n 1% 5% 10% 90% 95% 99% 99% 

5 -0.043796 -0.097914 -0.227378 0.144045 0.174927 0.213068 0.239625 

10 -0.066326 -0.113996 -0.230157 0.105479 0.126185 0.150701 0.163913 

11 -0.070533 -0.113915 -0.213487 0.100887 0.12198 0.146970 0.161291 

15 -0.063888 -0.101214 -0.186705 0.089559 0.10635 0.124370 0.138089 

16 -0.064795 -0.102068 -0.183793 0.085587 0.103341 0.122349 0.133525 

20 -0.060273 -0.093435 -0.171797 0.079013 0.094726 0.107679 0.120223 

23 -0.061279 -0.090741 -0.161192 0.073073 0.087981 0.104441 0.116267 

25 -0.059105 -0.0885367 -0.151282 0.070449 0.083928 0.100229 0.110816 

27 -0.059744 -0.085822 -0.148729 0.0690259 0.0826776 0.0983598 0.104884 

29 -0.054665 -0.080537 -0.130614 0.066944 0.080022 0.092928 0.102880 

30 -0.054136 -0.081119 -0.134489 0.065578 0.078025 0.091454 0.101156 

35 -0.052314 -0.076661 -0.127114 0.061055 0.073181 0.087271 0.096652 

40 -0.051891 -0.073724 -0.122608 0.056759 0.068342 0.080241 0.089458 

43 -0.048067 -0.068064 -0.110174 0.056746 0.067320 0.080149 0.087127 

45 -0.047693 -0.068359 -0.113313 0.054566 0.065541 0.076858 0.086171 

50 -0.046613 -0.064645 -0.106286 0.051798 0.061972 0.073770 0.080925 
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Figure 2: The relation between sample size and critical values of 𝛿̂𝑠 at s=0.5 

Also, from the above Table 4 and Figure 2, it is shown that the critical values are increasing as the confidence 

level increases and decreasing as the sample size increases. 
 

3.1. The Power Estimation of the Proposed Test Statistic 

The power estimate of our test statistic 𝛿̂𝑠 is estimated here for significance level α = 0.05, which is based on three 

of the most widely used alternative distributions, which include: 

(i) Linear failure rate:    𝐹̅1(𝑥) = 𝑒−𝑥−
𝜃𝑥2

2 ,                     𝑥 > 0, 𝜃 ≥ 0 

(ii)     Makeham:                  𝐹̅2(𝑥) = 𝑒−𝑥−𝜃(𝑥+𝑒−𝑥−1),          𝑥 > 0, 𝜃 ≥ 0 

(iii) Weibull:        𝐹̅3(𝑥) = 𝑒−𝑥𝜃
,                      𝑥 > 0, 𝜃 ≥ 0 

Tables 5 and 6 derive the power estimate with parameter θ = 1,2,3 and 4 at n=10,20 and 30. 

Table 5. The power estimate of 𝛿̂𝑠(0.1) 
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n θ LFR Gamma Weibull 

 2 1.0000 0.9915 1.0000 

10 3 1.0000 0.9993 1.0000 

 4 1.0000 1.0000 1.0000 

 2 1.0000 0.9977 1.0000 

20 3 1.0000 1.0000 1.0000 

 4 1.0000 1.0000 1.0000 

 2 1.0000 0.9988 1.0000 

30 3 1.0000 1.0000 1.0000 

 4 1.0000 1.0000 1.0000 
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Table 6. The power estimate of 𝛿̂𝑠(0.5) 

n θ LFR Gamma Weibull 

 2 1.0000 0.9983 1.0000 

10 3 1.0000 0.9999 1.0000 

 4 1.0000 1.0000 1.0000 

 2 1.0000 0.9997 1.0000 

20 3 1.0000 1.0000 1.0000 

 4 1.0000 1.0000 1.0000 

 2 1.0000 1.0000 1.0000 

30 3 1.0000 1.0000 1.0000 

 4 1.0000 1.0000 1.0000 
 

It is shown from the above Tables 5 and 6 the power estimates of the test statistic increases when the parameter θ 

and the sample size n increase, so we note that our test plays a good power. 

 

4. TESTING FOR CENSORED DATA 

The objective of this section is to conduct a test, in the case of randomly right-censoring data, comparing two 

hypotheses. Specifically, the null hypothesis H0 assumes that survival distribution follows a constant failure rate.  

In contrast, the alternative hypothesis H1: the survival distribution follows the NBULC model of life distribution.  

The observations available in the life model of testing or clinical study are the censored data, where the 

observations may be lost or censored before completing the study. The experiment is described as the following: Let  

𝑋₁, 𝑋₂, . . . , 𝑋𝑛 be independent and identically distributed (i.i.d) to the continuous life distribution F, and  

𝑌₁, 𝑌₂, … , 𝑌𝑛 be independent identically distributed (i.i.d) to the continuous life distribution G. Suppose that the Xs 

and Ys are independent. In a randomly right-censored model, we note that the pairs (Zj,δj), j=1,2,...,n, where 𝑍𝑗 =

𝑚𝑖𝑛(𝑋𝑗 , 𝑌𝑗) and  

𝛿𝑗 = {
1, if  𝑍𝑗 =  𝑋𝑗 (jth observed is uncensored)    

0, if    𝑍𝑗 =  𝑌𝑗   (jth observed is censored)    
 

Let Z(0) = 0 < Z(1) < Z(2) < ... < Z(n) denote the order Z’s and δ(j) is δj corresponding to Z(j). Kaplan(1958) Proposed a 

product limit estimator based on the censored data Zj,δj, j= 1,2,...,n, as the following 

𝐹̅𝑛(𝑋) = ∏ (𝑛 − 𝑗)/(𝑛 − 𝑗 + 1)𝛿(𝑗)

[𝑗;𝑍𝑗≤𝑋]

, 𝑋 ∈ [0, 𝑍(𝑛)]. 

Using Eq. (6) we obtain the following test statistic 

𝛿̂𝑠
𝑐 =

1

1 + 𝑠
[𝜑 +

1

1 + 𝑠
] 𝜗 −

1

𝑠
[𝜑 +

1

𝑠
] Ω,                             (18) 

where, 

𝜑 = ∑ ∏ 𝐶𝑚
𝛿(𝑚) 

𝑘−1

𝑚=1

𝑛

𝑘=1

[𝑍𝑘 − 𝑍𝑘−1], 

𝜗 = ∑ 𝑒−(1+𝑠)𝑍𝑗

𝑛

𝑗=1

[∏ 𝐶𝑝
𝛿(𝑝)

𝑗−2

𝑝=1

− ∏ 𝐶𝑝
𝛿(𝑝)

𝑗−1

𝑝=1

], 
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Ω = ∑ 𝑒−𝑠𝑍𝑖

𝑛

𝑖=1

[∏ 𝐶𝑣
𝛿(𝑣)

𝑖−2

𝑣=1

− ∏ 𝐶𝑣
𝛿(𝑣)

𝑖−1

𝑣=1

], 

and, 

𝑑𝐹𝑛(𝑍𝑗) = 𝐹̅𝑛(𝑍𝑗−1) − 𝐹̅𝑛(𝑍𝑗),                   𝐶𝑘 =
𝑛 − 𝑘

𝑛 − 𝑘 + 1

Now, we perform a Monte Carlo simulation to estimate the critical points of the null distribution for the test 

statistic δˆ
 as defined in Eq. (18).  The simulation is carried out by generating 10000 data set from a standard 

exponential distribution.  Specifically, the simulated datasets are based on the following samples:  10(5), 30 (10),  

81, and 86.    

By using the Mathematica program (12). Tables 7 and 8 give the upper and the lower percentile points for 1%, 5%, 

10%, 90%, 95%, 99% of the statistic 𝛿̂𝑠
𝑐. 

Table 7. The critical values of 𝛿̂𝑠
𝑐(0.1) with 10000 replications. 

 

 

 

 

 

 

 

 

 

 

 
 

 

From Table 7, it is evident that the critical points for the test statistic exhibit a gradual decrease as the sample sizes 

increase. This observation suggests that larger sample sizes lead to more stable estimates of the test statistic, 

resulting in lower critical values at the same significance levels. And this is shown in the following figure.  

 

Figure 3: The Relation between Sample Size and Critical Values of 𝛿̂𝑠
𝑐

 at s=0.1 
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n 1% 5% 10% 90% 95% 98% 99% 

10 -0.062349 -0.031897 0.054316 0.493805 0.583887 0.669347 0.739960 

15 -0.031341 -0.023025 0.007383 0.186262 0.218850 0.259220 0.284908 

20 -0.018766 -0.015897 -0.008059 0.092754 0.108723 0.127443 0.138493 

25 -0.012372 -0.010794 -0.007709 0.052355 0.061748 0.072415 0.079583 

30 -0.008752 -0.007894 -0.006498 0.033257 0.038932 0.046407 0.051554 

40 -0.004999 -0.004580 -0.003809 0.016338 0.019167 0.022749 0.025487 

50 -0.003247 -0.003024 -0.002665 0.009138 0.010777 0.012719 0.013833 

60 -0.002258 -0.002140 -0.001939 0.005867 0.006947 0.008093 0.008969 

70 -0.001677 -0.001595 -0.001477 0.003954 0.004728 0.005639 0.006208 

81 -0.001257 -0.001195 -0.001109 0.002735 0.003243 0.003814 0.004204 

86 -0.001121 -0.001069 -0.000999 0.002346 0.002789 0.003303 0.003695 
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Figure 3 offers a clear visual representation of two fundamental trends in hypothesis testing: 

1. Critical Values Increase as the Confidence Level Increases. 

2. Critical Values Decrease as Sample Size Increases.   
 

Also, this is shown in the following table and figure. 

Table 8. The critical values of 𝛿̂𝑠
𝑐(0.5) with 10000 replications. 

n 1% 5% 10% 90% 95% 98% 99% 

10 -0.008207 -0.005446 -0.002053 0.015535 0.018868 0.022837 0.025602 

15 -0.004156 -0.003374 -0.001955 0.005824 0.006935 0.008295 0.009238 

20 -0.002425 -0.002069 -0.001495 0.002789 0.003356 0.004058 0.004508 

25 -0.001603 -0.001400 -0.001109 0.001612 0.001936 0.002364 0.002647 

30 -0.001131 -0.001013 -0.000860 0.000982 0.001185 0.001402 0.001544 

40 -0.000646 -0.000589 -0.000513 0.000473 0.000568 0.000666 0.000734 

50 -0.000417 -0.000386 -0.000344 0.000264 0.000323 0.000389 0.000431 

60 -0.000292 -0.000271 -0.000246 0.000165 0.000199 0.000240 0.000268 

70 -0.000216 -0.000202 -0.000187 0.000109 0.000131 0.000159 0.000176 

81 -0.000161 -0.000153 -0.000143 0.000074 0.000089 0.000109 0.000123 

86 -0.000144 -0.000135 -0.000127 0.000064 0.000077 0.000094 0.000105 

 

 

Figure 4: The Relation between Sample Size and Critical Values of 𝛿̂𝑠
𝑐

 at s=0.5 
 

Above the table and figure lead to the critical points decreasing slowly as the sample sizes increase, and also they 

increase as the confidence levels increase, and it is shown in the following figure. 
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The power of a hypothesis test is defined as the probability that the test will correctly reject the null hypothesis 

when it is false.   

At significance level α = 0.05, the power of the proposed test 𝛿̂𝑠
𝑐(0.5) is calculated with respect to three alternative 

distributions (linear failure rate (LFR), gamma, and Weibull ). Using the Mathematica (12) program, that is based 

on 10000 samples.  

Table 9 presents the power estimates for various parameter values θ = 1,2,3 and 4 at n=10,20 and 30. 

Table 9. The power estimate of 𝛿̂𝑠
𝑐(0.5) of censored. 

n θ LFR Gamma Weibull 

 2 0.9997 0.9484 0.9999 

10 3 0.9995 0.9888 1.0000 

 4 0.9996 0.9997 1.0000 

 2 0.9999 0.9964 0.9997 

20 3 1.0000 1.0000 1.0000 

 4 1.0000 1.0000 1.0000 

 2 0.9999 0.9999 1.0000 

30 3 1.0000 1.0000 1.0000 

 4 1.0000 1.0000 1.0000 
 

The results in Table 9 demonstrate that the estimated power of our test increases as both the sample size n and the 

parameter θ increase. 

5. SCIENTIFIC DATA APPLICATIONS 

We give several real-medical examples to illustrate the applications of our test at the 95% confidence level. 

5.1. Case of complete data 

Application 1. 

Consider the data presented in Abouammoh (1994), which consists of a set of 40 patients diagnosed with blood 

cancer (leukemia) at a Ministry of Health hospital in Saudi Arabia. The following are the ordered values of their 

survival times, measured in years: 

0.315 0.496 0.616 1.145 1.208 1.263 1.414 2.025 2.036 2.162 

2.211 2.370 2.532 2.693 2.805 2.910 2.912 3.192 3.263    3.348 

3.348 3.427 3.499 3.534 3.767 3.751 3.858 3.986 4.049    4.244 

4.323           4.381      4.392 4.397 4.647       4.753     4.929 4.973 5.074 4.381 

                         

We get, at s=0.1,   𝜹̂𝒔= 0.845732 and at s=0.5,  𝜹̂𝒔= 0.320997, which are greater than the critical values in 

Tables 3 and 4  in both cases, we reject the null hypothesis, which asserts that the dataset follows the NBULC 

distribution and not the exponential distribution.  

Application 2. 

Using the dataset provided in Grubbs (1971), the data represents the time intervals between the arrivals of 25 

customers at a facility. 

1.80 2.89 2.93 3.03 3.15 3.43 3.48 3.57 3.85 3.92 

3.98 4.06 4.11 4.13 4.16 4.23 4.34 4.73 4.53 4.62 

4.65 4.84 4.91 4.99 5.17      
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We get that 𝜹̂𝒔 = 1.27018, at s=0.1, 𝜹̂𝒔 = 0.451456, at s=0.5, which are exceed the critical value in Tables 3 and 

4 in two cases. Then we reject the null hypothesis, which asserts that the dataset follows the NBULC distribution 

rather than the exponential distribution. 

Application 3. 

Consider the following data, which represent the failure times in hours for a particular type of electrical insulation 

in an experiment where the insulation was exposed to a continuously increasing voltage stress see Lawless (1982). 

 0.205 0.363 0.407 0.770 0.720 0.782 1.178 1.255 1.592 1.635     2.310 

It is easy to show that 𝜹̂𝒔=0.165757, at s=0.1, 𝜹̂𝒔 = 0.106036, at s=0.5, which are less the critical value in 

Tables 3 and 4 in two cases. Then we accept  𝐻0 , which asserts that the dataset follows an exponential 

distribution. 

5.2. Case of Censored Data  

Application 4. 

Consider the dataset from Mahmoud et al. (2005), which includes 51 liver cancer patients admitted to the El Minia 

Cancer Center, Ministry of Health Egypt, in 1999. The following are the ordered lifetimes (in days) for the non-

censored observations. 

10 14 14 14 14 14 15 17 

18 20 20 20 20 20 23 23 

24 26 30 30 31 40 49 51 

52 60 61 67 71 74 75 87 

96 105 107 107 107 116 150  

The ordered censored data: 

30 30 30 30 30 60 150 150 

150 150 150 185     
 

In this case 𝜹̂𝒔
𝒄=-0.000230831, at s=0.1, 𝜹̂𝒔

𝒄= −8.58783∗10−8, at s=0.5, which are less than the critical value of 

Tables 7 and 8. Hence, the null hypothesis asserting that the data set does not exhibit the NBULC (New Better than 

Used in the Laplace convex order) property is rejected. 
 

6. CONCLUSION   

A new class of life distributions, known as NBULC (New Better than Used in the Laplace-Convex), is introduced. 

Using a goodness offit framework, novel test statistic is developed to test exponentiality against the NBULC class for 

both non-censored and censored data.  Our class NBULC of life distribution is the largest, and the proposed test 

statistic is found to be more efficient than other tests and has good power for other alternative classes of life 

distributions; our test’s critical values are given. Finally, real data sets are applied to show the usefulness of our test 

statistics. 
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