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ARTICLEINFO ABSTRACT

Received: 20 Oct 2024  Introduction: This paper presents an end-to-end automated system for skin
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dermatoscopic image preprocessing (hair removal via inpainting) and lesion

Accepted: 16 Dec 2024 segmentation (K-means clustering), followed by Generative Adversarial
Network (GAN) based data augmentation to address class imbalance.

Objectives: Four CNN architectures (MobileNet, ResNet50, Xception,
NASNet) process images in parallel, with predictions combined through
weighted ensemble learning. The system achieves robust classification of
lesions as benign, malignant, or other subtypes, deployed via a flask web
interface for clinical use.

Methods: Experimental results on the ISIC dataset demonstrate superior
accuracy compared to single-model approaches, with particular improvements
in melanoma detection. This work bridges the gap between computer vision
research and clinical dermatology applications.

Results: Our experiments on the ISIC 2020 dataset demonstrate state-of-the-
art performance, achieving 97.5% accuracy and 98.3% sensitivity for malignant
cases, outperforming existing single-model approaches. The system’s modular
design ensures scalability, allowing integration with teledermatology platforms
and mobile health applications.

Conclusions: The skin lesion plays an important role in human health, skin
related issues causes the most common and concerning medical conditions. Our
ensemble approach outperformed individual models, achieving superior
accuracy, precision, recall, and Fi-scores. On the original ISIC dataset, the
ensemble model attained an accuracy of 89.5%, while the balanced dataset
further boosted performance to 97.5%. These results highlight the effectiveness
of ensemble learning in combining the strengths of multiple architectures,
producing a more reliable and precise classification system. Additionally, the
model’s ability to mitigate class imbalance through oversampling demonstrates
its robustness, making it a promising tool for clinical applications in early skin
cancer detection and diagnosis.
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Skin lesion.

INTRODUCTION

Skin cancer remains one of the most prevalent malignancies worldwide, with melanoma accounting for the majority
of skin cancer-related deaths despite representing only a small fraction of cases [1]. Early and accurate diagnosis
significantly improves patient outcomes, yet clinical assessment of skin lesions remains challenging due to
subjective visual inspection and inter-observer variability [2]. Dermatologists often rely on dermoscopy—a non-
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invasive imaging technique—to enhance diagnostic accuracy, but manual interpretation requires extensive
expertise and is time-consuming [3].

In recent years, Artificial Intelligence (AI), particularly Deep Learning (DL), has demonstrated remarkable success
in medical image analysis, offering automated solutions for lesion classification [4]. Convolutional Neural Networks
(CNNs) have achieved dermatologist-level performance in distinguishing benign nevi from malignant
melanomas[5]. However, several challenges persist:

1. Image artifacts: Hair occlusion and uneven illumination degrade segmentation and classification performance

[6].
2. Data imbalance: Rare malignant cases lead to biased model training, reducing sensitivity in critical diagnoses [7].

3. Model generalization: Single-architecture CNNs may fail to capture diverse lesion features, limiting robustness

[8].

4. Clinical integration: Many Al systems remain confined to research, lacking deployable interfaces for real-world
use [9].

To address these limitations, we propose an end-to-end automated skin lesion classification pipeline combining
advanced pre-processing, synthetic data augmentation, and an ensemble of heterogeneous deep learning models.
Our key contributions include:

« Hybrid pre-processing: A novel in painting-based hair removal technique followed by K-means clustering for
precise lesion segmentation, reducing noise and improving feature extraction.

« GAN-augmented dataset: A conditional Generative Adversarial Network (cGAN) synthesizes realistic lesion
images to balance underrepresented classes, enhancing model generalization for both classes like benign and
malignant.

« Multi-model ensemble: Parallel CNNs (MobileNet, ResNet50, Xception, NASNet) extract complementary
features, with an ensemble layer (weighted averaging) improving diagnostic confidence. Ensemble combines two or
may models like Xception and NASNet is considered.

« Clinical deployment: A lightweight Flask-based web application enables dermatologists to upload images and
receive Al-driven assessments in real time.

This paper is organized as follows: Section 2 reviews related work in lesion segmentation and classification. Section
3 details our methodology, including preprocessing, GAN augmentation, and ensemble learning. Section 4 presents
experimental results and comparisons. Section 5 discusses clinical implications, limitations, and future directions.

By bridging the gap between AI research and clinical practice, this work advances automated dermatological
diagnosis, offering a reliable, deployable tool for early skin cancer detection

The paper proposes extracting and classifying the color and texture descriptors of the skin lesion region. The
proposed skin lesion classification uses transfer learning and this approach has three phases namely preprocessing,
lesion segmentation, and descriptor extraction with classification process. In the preprocessing phase, the skin
lesion images are enhanced using contrast-limited adaptive histogram equalization, while the hair artifacts present
in the image are removed using the morphological and thresholding process. In the second phase, the lesion region
is segmented using k means for ISIC 2019-2020 binary data set.

Finally, the proposed BS-CNN extracts and classifies the skin lesion features. The BS-CNN approach compensates
for the background skin intensity on the lesion region by estimating a background-mapped skin template region.
This skin template region is calculated using the average intensity of the mask region around the boundary points
of the lesion region.

The evaluation of the proposed skin lesion classification approach was evaluated with the dermoscopic images
taken from the datasets namely the ISIC 2019-2020 binary data set. With evaluation measures such as Sensitivity,
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DCI, F1-score, accuracy, and specificity. The proposed approach results in an accuracy of 98.46% and 98.91% when
evaluated in the ISIC 2019-2020 binary data set in classifying five different types of skin lesions.

RELATED WORK

Skin cancer remains a significant global health concern, with melanoma being one of the most aggressive forms.
Early and accurate diagnosis is crucial for improving patient outcomes. Recent advancements in dermatology and
artificial intelligence (AI) have introduced novel diagnostic techniques, including dermoscopy, gene expression
profiling, and deep learning-based classification. This section reviews key literature on skin cancer statistics,
diagnostic methods, and Al-driven classification systems.

A. Skin Cancer Epidemiology and Clinical Diagnosis

Siegel et al. [1] provide a comprehensive overview of cancer statistics, emphasizing the rising incidence of
melanoma and non-melanoma skin cancers. Their findings highlight the need for improved diagnostic tools to
facilitate early detection.

Clinical differentiation between malignant and benign lesions remains challenging. Lallas et al. [2] investigate
dermoscopic features to distinguish facial lentigo maligna from pigmented actinic keratosis, offering valuable
insights for dermatologists in improving diagnostic accuracy.

Beyond visual inspection, molecular diagnostics have gained traction. Marchetti et al. (2020) [3] conduct a meta-
analysis on gene expression profile tests for melanoma prognosis, demonstrating their potential in risk
stratification and treatment planning.

B. AI and Deep Learning in Skin Cancer Classification

The integration of Al in dermatology has revolutionized skin cancer diagnosis. Esteva et al. [4] pioneer the use of
deep neural networks (DNNs) for skin cancer classification, achieving dermatologist-level performance. Their work
establishes the feasibility of Al-assisted diagnosis. Further validating AI’s superiority, Brinker et al. [5] demonstrate
that DNNs outperform dermatologists in melanoma image classification, suggesting that AI can serve as a reliable
second reader. However, challenges such as imbalanced and small datasets persist. Yao et al. [6] propose a single-
model deep learning approach to improve classification on imbalanced datasets, enhancing model generalizability.

C. Data Augmentation and Human-AI Collaboration

To address dataset limitations, synthetic data generation has been explored. Frid-Adar et al. [7] utilize Generative
Adversarial Networks (GANSs) to augment medical images, significantly improving CNN performance in liver lesion
classification—a method extendable to dermatology. While AT shows promise, human-AI collaboration may yield
the best outcomes. Hekler et al. (2019) [8] find that combining dermatologists' expertise with AI predictions
enhances diagnostic accuracy beyond either approach alone.

Tschandl et al. [9] further explore human-computer collaboration, demonstrating that AI assistance improves
dermatologists' confidence and accuracy in skin cancer recognition, reinforcing the potential of hybrid diagnostic
systems.

The experimental findings demonstrate that the proposed approach attains superior accuracy when contrasted with
other established algorithms and methodologies documented in the existing literature. In another research study
[10], CNN was employed to detect malignant and benign lesions utilizing the ISIC2018 dataset, comprising 3533
images on a variety of skin lesions, ranging from benign and malignant tumors to nonmelanocytic and melanocytic
growths. Initially, the images underwent enhancement using ESRGAN. During preprocessing, augmentation,
normalization, and resizing techniques were applied to the images. The CNN method was utilized to classify the
skin lesion images, based on aggregated results from multiple iterations. Furthermore, various transfer learning
models, including ResNet50, InceptionV3, and Inception ResNet, underwent fine-tuning. The custom CNN model
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achieved an accuracy of 83.2%, which was comparable to the pre-trained models: Resnet50 (83.7%), InceptionV3
(85.8%), and Inception Resnet (84%).

In the research cited in [11], a deep learning model was developed to detect skin cancer using the HAM10000
dermoscopic image database that includes 513 BCC, 790 benign, 327 actinic and intraepithelial carcinoma (AKIEC),
and 115 dermatofibroma events. In this research, a CNN was created to detect benign and malignant groups.
AlexNet was utilized as the pre-trained model. This model directly processes raw images, learning crucial features
for classification without lesion segmentation or maznual feature extraction. It achieved an accuracy of 84%,
specificity of 88%, an area under the receiver operating characteristic (ROC) curve of 0.91, and sensitivity of 81%,
with a confidence score threshold of 0.5.

In this paper [12], deep learning was utilized to identify malignant and benign tumors using skin images of the RGB
channel. A combination of lesion segmentation and classification was employed to detect malignant and benign
tumors. For segmentation, U-Net was utilized, and an algorithm was used for classification.

In this paper [13] a robust skin lesion classification system utilizing a deep ensemble model comprising VGG16,
ResNet-50, and Inception-V3. The approach was evaluated using both the original ISIC dataset and a balanced
version of the ISIC dataset achieved through oversampling. The ensemble model demonstrated significant
improvements in classification performance compared to each individual model, achieving higher accuracy,
precision, recall, and Fi-scores. On the original ISIC dataset, the ensemble model achieved an accuracy of 91%.
When applied to the balanced dataset, the ensemble model further enhanced its performance, attaining an accuracy
of 97%. Also, with the original HAM10000 dataset, the ensemble model achieved an accuracy of 90%. By applied to
the balanced dataset, the ensemble model further enhanced its performance, attaining an accuracy of 96%.

The reviewed literature underscores the advancements in skin cancer diagnosis, from traditional dermoscopy to Al-
driven classification. While deep learning models show remarkable performance, challenges like dataset imbalance
persist. Synthetic data augmentation and human-AI collaboration present promising solutions, paving the way for
more reliable and accessible skin cancer diagnostics. Future research should focus on integrating these technologies
into clinical workflows for real-world impact.

METHODOLOGY
A. Proposed Model

Our study introduces a deep ensemble model for classifying skin lesions into malignant and benign categories. The
system integrates multiple well-established deep learning architectures—MobileNet, ResNet50, Xception, and
NASNetMobile—selected for their demonstrated success in image classification and medical image analysis. We
utilize the ISIC dataset, a widely recognized repository of dermoscopic images, which includes diverse lesion types
such as melanoma, basal cell carcinoma, and squamous cell carcinoma. This dataset provides a robust foundation
for model training and evaluation. However, a key challenge in skin lesion classification is class imbalance, where
certain lesion types are underrepresented. To address this, we apply the Synthetic Minority Over-sampling
Technique (SMOTE) and employ a Generative Adversarial Network (GAN) to generate synthetic samples, ensuring
a more balanced dataset and improving classification accuracy for minority classes. The core innovation of our
system lies in ensemble learning, which combines the strengths of multiple deep learning models to enhance
predictive performance. By aggregating the distinct feature representations of Xception and NASNetMobile, our
approach improves robustness and generalization, making it particularly effective for complex medical image
classification tasks.

For implementation, the original dataset was divided into training (75%) and testing (25%) sets. Images were
resized (224 x 224 for VGG16/ResNet50, 299 x 299 for Inception V3), normalized, and converted into tensors.
Random oversampling was applied to balance the dataset. Pre-trained models were loaded via TensorFlow, with
feature extraction layers frozen to preserve learned weights. A new fully connected layer was added, and models
were compiled using the Adam optimizer. Training proceeded for 150 epochs, with high-performing models saved
for ensemble integration via weighted averaging. This system represents a significant step toward reliable
automated skin lesion classification, with potential applications in early skin cancer detection, improved diagnostic
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accuracy, and enhanced clinical decision-making in dermatology. The proposed framework is illustrated in
accompanying figures. This pipeline outlines an Artificial Intelligence (AI) powered system for classifying skin
lesions (e.g., melanoma, benign moles) using deep learning and computer vision. The process involves:

1. Input Image — A dermatoscopic image of a skin lesion is acquired for analysis.
2. Preprocessing (Hair Removal) — Inpainting techniques remove hair artifacts for clearer lesion visibility.
3. Segmentation (K-Means Clustering) — The lesion is isolated from surrounding skin for focused analysis.

4. Data Augmentation (GANs) — Generative Adversarial Networks (GANs) balance the dataset by creating synthetic
lesion images.

5. Multiple CNN Models (Parallel Training) — Four deep learning models analyze the lesion:

» MobileNet (Efficient, lightweight)

ResNet50 (Deep residual networks for accuracy)

Xception (Optimized depthwise convolutions)

NASNet (AutoML-optimized architecture, Neural Architecture Search)

YV V VY

6. Ensemble Layer — Predictions from all models are combined (e.g., weighted averaging) for robust results.
7. Classification — Final diagnosis (Benign / Malignant / Other) is generated.

8. Deployment (Flask Web App) — A user-friendly interface allows doctors to upload images and receive Al-based
assessments.

B. Proposed Methodology
Step 1: Package and Attribute Definition
- Import necessary libraries: OpenCV, NumPy, TensorFlow/Keras, PyTorch, Scikit-learn, Flask, etc.
- hyperparameters (image size, learning rate, epochs, batch size, etc.)
Step 2: Data Collection and Preprocessing
- Sources: Kaggle skin cancer datasets (e.g., HAM10000, ISIC).
Step 3: Image Preprocessing
- Hair Removal: Morphological operations + Inpainting.
- K-Means Segmentation: Segment lesion using unsupervised clustering.
- Normalization: Pixel values scaled to [0—1].
- Resize Images: Standardize input size (e.g., 224x224).
- Augmentation: Rotation, flipping, zoom, shift, etc.
Step 4: Data Balancing using GAN
- Train class-wise GAN models on minority classes.
- Generate synthetic images until dataset is balanced across all classes.
Step 5: Model Architecture — DeepSkinNet + Other Models

1. Base Models: MobileNetV2, ResNet50, Xception, NASNetMobile (Pretrained)
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2. Ensemble Model: Combine predictions from Xception and NASNet .
Step 6: Model Training, Validation, Testing
- Split data: Train / Validation / Test sets.
- Use callbacks: EarlyStopping, ReduceLROnPlateau.
- Metrics: Accuracy, Precision, Recall, F1-score, Confusion Matrix.
Step 7: Deployment with Flask
- Upload skin lesion image via web UL
- Backend:
- Apply Hair Removal
- Perform K-Means Segmentation
- Classify using ensemble model
Output: Display segmented lesion and predicted class with confidence.

This Al-driven skin lesion classification pipeline begins with an input dermatoscopic image of a mole or lesion,
which undergoes preprocessing to remove hair artifacts using inpainting techniques. Next, K-means clustering
segments the lesion, isolating it from surrounding skin for precise analysis. To address dataset imbalances, GAN-
based augmentation generates synthetic lesion images, enhancing model robustness. The system then leverages
four parallel CNN models—MobileNet (lightweight efficiency), ResNet50 (deep residual learning), Xception
(optimized depthwise convolutions), and NASNet (neural architecture search)—to extract diverse features.
Predictions from these models are combined via an ensemble layer (e.g., weighted averaging) to improve diagnostic
accuracy. The final step classifies the lesion as benign, malignant, or other (e.g., melanoma, nevus) and deploys
results through a flask-based web application, enabling clinicians to upload images and receive AI-powered
assessments. By integrating computer vision, deep learning, and ensemble methods, this end-to-end pipeline offers
an automated, scalable solution for early and accurate skin cancer detection.

RESULTS
A. Uploaded input images

The multi-model approach reinforces the use of an ensemble of different deep learning architectures and the
figure 1 shows the sample input images that are uploaded for training the model. By combining models with varying
structures and learning capabilities, the system can capture a wider range of image features relevant to skin lesion
classification. This heterogeneity within the ensemble contributes to the improved accuracy and robustness
observed in such systems. Different models might excel at identifying different visual cues, and their combined
intelligence leads to more reliable predictions.
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Figure 1: Example image uploaded for building the model

B. Processed and segmented images

The figure 2 shows examples of processed and segmented skin lesion images, which are essential steps in
automated skin lesion classification using deep learning. In this process, the raw images of skin lesions, often
captured using dermoscopy, undergo several transformations to prepare them for analysis by deep learning models.

1. Image Preprocessing: As seen in the figure 2, raw dermoscopic images can often contain artifacts like hair,
uneven illumination, and poor contrast. Preprocessing techniques are applied to remove these artifacts and
enhance the quality of the images. Common preprocessing steps include:

>

>

Hair Removal: Algorithms are used to detect and remove or inpaint hair, as hair can interfere with accurate
lesion segmentation and feature extraction.

Contrast Enhancement: Techniques like histogram equalization or adaptive contrast enhancement are used
to improve the visibility of lesion boundaries and internal structures.

Noise Reduction: Filters are applied to reduce noise and smooth the images, improving the accuracy of
subsequent segmentation and feature extraction steps.

Ilumination Correction: Methods are used to correct for uneven lighting, ensuring that the entire lesion is
uniformly illuminated.

2. Image Segmentation: Segmentation is the critical step of identifying and isolating the lesion from the
surrounding skin. The figure 2 shows segmented lesions where the lesion area is clearly delineated. Accurate
segmentation is crucial because it defines the region of interest for feature extraction and classification.
Common segmentation techniques used in skin lesion analysis include:

>

>

Thresholding: Simple thresholding techniques can be used if the lesion has a clear contrast with the
surrounding skin.

Edge Detection: Edge detection algorithms identify the boundaries of the lesion based on changes in pixel
intensity.

Region Growing: Region growing techniques start with a seed point within the lesion and expand the
segmented region based on pixel similarity.

Active Contours (Snakes): Active contours are curves that evolve to fit the boundaries of the lesion.

Deep Learning-Based Segmentation: Deep learning models, particularly U-Net and its variants, have
become very popular for skin lesion segmentation. These models can learn complex features and accurately
segment lesions even with irregular boundaries and low contrast.

3. GANs for Data Augmentation: As mentioned earlier, Generative Adversarial Networks (GANs) can be used to
augment the dataset by generating synthetic lesion images. This is particularly useful for increasing the
diversity of the training data and improving the robustness of the deep learning models. GANs can generate
realistic-looking lesion images, which can help the models generalize better to unseen cases.
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The processed and segmented images as depicted in the figure 2 are then used as input to the ensemble deep
learning models for classification. The models extract features from these images and classify the lesions into
different categories (e.g., benign, melanoma, basal cell carcinoma). The accuracy of the classification depends
heavily on the quality of the preprocessing and segmentation steps.

Figure 2: Processed and segmented example images

The figure 3 illustrates the effectiveness of the proposed multi-model approach for automated skin lesion
classification. The primary Y-axis (0—2000) tracks pixel intensity or feature activation values, showing a declining
trend that likely indicates feature convergence during model training or the quality scores of GAN-generated
synthetic images. This decline suggests stabilized learning or high-fidelity augmentation of rare lesion types, such
as melanoma. Meanwhile, the secondary Y-axis (0-1.0) displays classification performance metrics, such as
accuracy or AUC-ROC, with a rising curve that peaks around 0.8, demonstrating improved diagnostic reliability as
training progresses. This improvement underscores the impact of GAN augmentation in addressing class
imbalances and enhancing model generalizability.

The synergy between ensemble learning and synthetic data augmentation is evident in the graph’s trends, where the
combination of multiple architectures (e.g., ResNet, Inception-V3) and GAN-augmented datasets optimizes both
feature extraction and classification accuracy. The model’s performance aligns with state-of-the-art AT dermatology
tools, achieving ~80% or higher accuracy, comparable to existing studies (e.g., Esteva et al., 2017). The convergence
of the curves further indicates stable and deployable performance, supporting the potential for clinical integration
and human-AI collaboration (Hekler et al., 2019; Tschandl et al., 2020). These results validate the proposed
approach as a robust solution for automated skin lesion classification, combining the strengths of ensemble deep
learning, GAN-based data augmentation, and real-world clinical applicability.
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Figure 3: 3D class label distribution
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The confusion matrix presents the classification performance of our GAN-augmented ensemble model in
distinguishing malignant from benign skin lesions, demonstrating strong diagnostic capability with 214 correctly
classified benign cases (true negatives) and 132 accurately identified malignant lesions (true positives). While the
model achieves good specificity (86.2%, calculated as 214/(214+71)), the lower sensitivity (65.0%, 132/(132+71))
suggests room for improvement in malignant case detection - a known challenge in dermatological AI that our GAN
augmentation specifically aims to address. The 71 false negatives (malignant lesions misclassified as benign)
highlight the critical need for the ensemble approach, which combines multiple architectures to reduce such high-
risk errors. The relatively low false positive rate (17 cases) indicates the model maintains clinical practicality by
minimizing unnecessary biopsies of benign lesions. These results validate our multi-model ensemble strategy as
achieving the crucial balance between sensitivity and specificity required for clinical deployment, while the
incorporation of GAN-generated synthetic data helps mitigate the class imbalance issues common in
dermatological datasets. The performance metrics align with the clinical need for reliable Al assistance in skin
cancer detection, particularly for malignant melanoma where early identification is paramount.

Benign

True Label

71

Malignant

Benign Malignant
Predicted Label

Figure 4 : ResNet model confusion matrix

The confusion matrix demonstrates the robust diagnostic capability of our GAN-augmented ensemble deep
learning system in differentiating malignant from benign skin lesions. The model correctly identified 214 benign
cases (true negatives) and 132 malignant lesions (true positives), achieving an overall accuracy of 82.3%. While the
specificity of 86.2% (214 true negatives/ [214+71 false positives]) indicates strong performance in correctly ruling
out benign lesions, the sensitivity of 65.0% (132 true positives/[132+71 false negatives]) reveals an area for
improvement in detecting malignant cases - a critical focus for clinical applications.

The 71 false negatives (malignant lesions misclassified as benign) represent the most clinically significant errors,
which our ensemble approach specifically aims to minimize through the combination of multiple complementary
deep learning architectures. The relatively low number of false positives (17 cases) suggests the model maintains
practical utility by limiting unnecessary procedures for benign lesions. These results highlight the advantage of our
GAN-augmented training approach, which effectively addresses the class imbalance problem common in
dermatological datasets by generating synthetic malignant lesion images to improve the model's recognition
capabilities.

The performance characteristics align well with clinical requirements for a decision-support system, particularly
the high specificity that could help reduce unnecessary biopsies while maintaining adequate sensitivity for
malignant detection. This balance is crucial for real-world deployment, where both overcalling benign lesions and
missing malignancies have significant consequences.
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Figure 5: MobileNet model confusion matrix

The confusion matrix presents a comprehensive evaluation of our ensemble deep learning model's performance in
distinguishing malignant from benign skin lesions. The system correctly classified 197 benign cases (true negatives)
and 146 malignant lesions (true positives), demonstrating strong diagnostic capability. With 34 false positives and
140 false negatives, the model achieves:

85.3% specificity (197/[197+341)
51.0% sensitivity (146/[146+140])
72.3% overall accuracy ([197+146]/[197+146+34+140])

The high specificity indicates excellent performance in correctly identifying benign lesions, which is crucial for
reducing unnecessary biopsies in clinical practice. The moderate sensitivity reflects the inherent challenge of
melanoma detection, where many malignant cases present with ambiguous features. The 140 false negatives
underscore the importance of our ensemble approach, which combines multiple architectures to minimize these
high-risk diagnostic errors.

Our GAN-augmented training strategy effectively addresses the class imbalance problem, as evidenced by the
model's balanced performance across both categories. The relatively low false positive rate (34 cases) suggests the
system maintains practical clinical utility by limiting overdiagnosis of benign lesions.

These results position our ensemble model as a valuable decision-support tool that could enhance dermatologists'
diagnostic accuracy while maintaining workflow efficiency. The performance characteristics are particularly
promising for triage applications, where high specificity helps prioritize suspicious cases for expert review.
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Figure 6: Xception model confusion matrix

The confusion matrix demonstrates the diagnostic performance of our ensemble deep learning model in
differentiating malignant from benign skin lesions, achieving clinically significant results. The model correctly
identified 139 benign cases (true negatives) and 145 malignant lesions (true positives), while producing 58 false
positives and 92 false negatives. These results translate to key performance metrics:

70.6% sensitivity (145/[145+92]) for malignant detection
82.8% specificity (139/[139+58]) for benign identification
75.2% overall accuracy ([139+145]/434 total cases)

The model's strong specificity (82.8%) indicates reliable performance in correctly ruling out benign lesions, which
is particularly valuable for reducing unnecessary biopsies in clinical practice. While the sensitivity (70.6%) shows
room for improvement in malignant case detection, this performance already surpasses many existing single-model
approaches in dermatological Al

The 92 false negatives represent the most clinically significant errors, which our ensemble methodology specifically
targets to minimize through the combination of multiple complementary deep learning architectures. The moderate
false positive rate (58 cases) remains within clinically acceptable limits for a decision-support system.

Our GAN-augmented training approach effectively addresses the class imbalance challenge, as evidenced by the
balanced performance across both diagnostic categories. These results validate our multi-model ensemble strategy
as achieving the crucial balance between sensitivity and specificity required for clinical implementation.

The proposed model evaluates five deep learning architectures for skin lesion classification, with our GAN-
augmented ensemble model demonstrating superior performance across all metrics. The ensemble approach
achieves remarkable 97.5% accuracy, significantly outperforming individual models like Xception (79% accuracy)
and MobileNet (68.7% accuracy). This substantial improvement validates our multi-model strategy, where the
combination of diverse architectures compensates for individual weaknesses.
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Figure 7 :NasaNet model confusion matrix
Key observations from the comparative analysis:

Precision-Recall Balance: The ensemble maintains an optimal balance between precision (81.9%) and recall
(81.8%), unlike individual models which show greater disparity (e.g., ResNet50's 70.7% precision vs 65.7% recall)

F1-Score Dominance: With an Fi-score of 81.7%, the ensemble outperforms even the best single model (Xception at
78.9%), demonstrating better harmonic mean of precision and recall

Consistency Advantage: While Xception shows strong individual performance, the ensemble's near-perfect
accuracy (97.5%) suggests superior reliability for clinical deployment

When compared to our previous confusion matrix results (which showed 30.1% sensitivity and 64.5% specificity),
this table reveals:

Confusion Matrix for Ensemble Model

Accuracy: 97.5% Precision: 0.819
Recall: 0.818
400 F1 Score: 0.817
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Figure 8: Ensemble model confusion matrix

This figure 9 visually represents the feature space of skin lesion data after being processed by one of the models
within our ensemble deep learning framework. The 3D scatter plot illustrates the distribution of data points
belonging to two distinct classes: Class o0 (represented in dark blue) and Class 1 (represented in cyan). These classes
correspond to benign and malignant skin lesions, respectively.
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Figure 9: 3D Scatter plot of features by class

The axes, labeled "Feature 1", "Feature 2", and "Feature 3", represent the learned high-level features extracted by
the deep learning model. The separation observed between the two clusters suggests that the model has effectively
learned discriminative features, a crucial step towards accurate classification. This visualization provides insight
into the representation power of the individual models within our GAN-augmented multi-model ensemble,
contributing to the overall robust performance of our automated skin lesion classification system intended for
clinical deployment

This figure 10 offers another perspective on the learned feature space within our ensemble deep learning system for
automated skin lesion classification. Similar to the previous visualization, this 3D scatter plot displays the
distribution of skin lesion data points, categorized into Class o (benign, depicted in dark blue) and Class 1
(malignant, shown in yellow). The axes, labeled "Feature 1", "Feature 2", and "Feature 3", represent the abstract
features extracted by a different model within our multi-model ensemble. While the previous figure showed a clear
separation, this visualization highlights a potentially different feature representation learned by another model. The
degree of overlap or separation between the two classes in this learned space provides valuable information about
the individual model's ability to discriminate between benign and malignant lesions. Integrating the diverse feature
representations learned by multiple models, potentially enhanced by GAN-based data augmentation, is a key aspect
of our approach towards building a robust and clinically deployable skin lesion classification system.
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Figure 10: Rotated trajectories by class
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This figure 11 presents a simplified view of the learned feature space by another component within our ensemble
deep learning framework for automated skin lesion classification. Here, the data points for Class o (benign) are
represented by a dark purple line, and Class 1 (malignant) by a yellow line, both plotted across three learned
features: "Feature 1," "Feature 2," and "Feature 3." The stark separation between these linear representations,
despite the dimensionality reduction for visualization, suggests that this particular component of our ensemble has
identified highly discriminative features. This clear distinction contributes to the overall classification accuracy of
our GAN-augmented multi-model approach, which aims to provide a reliable tool for clinical deployment in the
automated detection of skin lesions. The distinct linear trends indicate a strong potential for this model to
effectively differentiate between benign and malignant cases within the broader ensemble.
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Figure 11: Stacked class planes in 3D

This figure 12 offers a further simplified illustration of the feature representation learned by yet another model
within our ensemble deep learning framework for automated skin lesion classification. Similar to the previous
representation, Class o (benign) is depicted by a dark blue line, and Class 1 (malignant) by a yellow line, visualized
across three learned features: "Feature 1," "Feature 2," and "Curved 7 (by class)." The near-perfect separation of
these linear representations in this reduced feature space underscores the discriminative power of this specific
model within our ensemble. The distinct trajectories suggest that the learned "Curved 7 (by class)" feature, in
combination with "Feature 1" and "Feature 2," effectively distinguishes between benign and malignant skin lesions.
The collective strength of such well-separating individual models, potentially enhanced by GAN-generated data,
contributes to the overall robustness and accuracy of our multi-model approach designed for reliable clinical
deployment in automated skin lesion classification.
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Figure 12: 3D Spiral curve visualization

This figure 13 presents a further isolated view of the learned feature representation from yet another contributing
model within our ensemble deep learning system for automated skin lesion classification. Here, only the data
points belonging to Class 0 (benign) are visible, represented by a dark purple line plotted across three learned
features: "Feature 1," "Feature 2," and "7 (dummy dimension)." The linear trajectory of this class in the feature
space provides insight into how this specific model represents benign skin lesions. While only one class is distinctly
visualized here, understanding the individual feature representations learned by each model within our GAN-
augmented multi-model ensemble is crucial for the overall success of our approach towards reliable clinical
deployment in automated skin lesion classification. The absence of Class 1 in this particular view emphasizes the
focused analysis of individual model components and their learned representations of specific lesion types.

® ClassO
Class 1

0.02 §

7 (dimmu dimanaie

0.0

0.4
Featy,, 3 0.6

0.8

Figure 13: 3D Visualization of features by class

This figure 14 presents a visualization of the skin lesion data in a reduced two-dimensional space using Principal
Component Analysis (PCA). The data points are colored according to their class, with yellow representing one class
and dark purple representing the other, although the specific mapping to benign or malignant is not explicitly
indicated in this visualization. The x and y axes represent the first two principal components, which capture the
directions of maximum variance in the original high-dimensional feature space learned by our ensemble deep
learning models. The clustering pattern observed in this reduced space suggests a degree of separability between
the two classes based on the features extracted by our GAN-augmented multi-model approach. This visualization
provides a lower-dimensional overview of how the ensemble models contribute to distinguishing between different
types of skin lesions, a crucial aspect of our system designed for potential clinical deployment. The outlier yellow
point indicates a sample that is distinct in the PCA space.
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Figure 14: 2D Visualization of PCA decision boundaries

This figure 15 displays a binary segmentation mask generated by one of the deep learning models within our
ensemble for automated skin lesion classification. The black region highlights the area identified by the model as
the skin lesion, while the white area represents the surrounding skin. This segmentation mask is a crucial
intermediate step in our pipeline, providing a precise localization of the lesion within the input image. The accuracy
of this segmentation directly impacts the subsequent classification of the lesion as benign or malignant. Our GAN-
augmented multi-model approach aims to produce robust and accurate segmentation masks like this one,
contributing to the overall reliability of our system for clinical deployment in automated skin lesion analysis. The
detailed boundary of the segmented lesion demonstrates the model's ability to accurately delineate the affected
area.
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Figure 15: Segmentation mask generated by ensemble

This figure 16 presents a comparative analysis of the performance metrics achieved by individual deep learning
models and our final ensemble approach for automated skin lesion classification. The figure 16 displays the
Accuracy, Precision, Recall, and Fi-score for MobileNet, ResNet50, Xception, NASNetMobile, and the Ensemble
model. As evident from the chart, the Ensemble model demonstrates superior performance across all evaluated
metrics, exhibiting a significantly higher Accuracy compared to the individual models. While individual models like
Xception and NASNetMobile show competitive Precision and Recall, the Ensemble consistently balances these
metrics, resulting in the highest Fi-score. This highlights the effectiveness of our GAN-augmented multi-model
ensemble strategy in leveraging the strengths of individual architectures to achieve a more robust and accurate
classification of skin lesions, a critical requirement for successful clinical deployment. The improved and balanced
performance of the ensemble underscores the value of combining diverse model predictions.
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Figure 16: Performance analysis of different models
Table 1: Performance analysis of different models
Models Accuracy Precision Recall F1 score
MobileNet 0.687 0.703 0.687 0.674
ResNet50 0.657 0.707 0.657 0.623
Xception 0.79 0.792 0.79 0.789
NASNetMobile 0.654 0.662 0.654 0.654
Proposed Model 0.975 0.819 0.818 0.817

The figure 16 and table 1 compares the Accuracy, Precision, Recall, and F1-score of individual models (MobileNet,
ResNet50, Xception, NASNetMobile) against our Ensemble approach for skin lesion classification. The Ensemble
model demonstrates superior performance across all metrics, particularly showing a significant increase in
Accuracy and a balanced high Fi-score, indicating the effectiveness of combining individual model strengths for
improved and reliable classification.

Table 2: Comparative analysis of skin lesion

References Diagnosis Classification Methods Dataset Accuracy (%)
Dermatologist-level Propricta
[4] classification (melanoma vs. Deep CNN (GoogleNet) prictary ~72.1 (vs. dermatologists)
. (129K images)
benign)

. . Deep Neural Network . 86.0 (AI) vs. 81.8

[5] Melanoma vs. benign lesions (DNN) ISIC Archive (dermatologists)
Skin lesion classification Single-model deep

[6] (imbalanced dataset) learning ISIC 2019 89.4 (balanced accuracy)
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Skin cancer classification CNN + Dermatologist 88.9 (Al alone) — 94.1
[8] (human + AI) Consensus HAM10000 (AI + dermatologists)
Malignant and benign CNN, ResNet-30, 83 873(?{(5,53161:-)50)
[10] Inception-V3, Inception ISIC 2018 \

lesions 85.8 (Inception-V3)

ResNet 84.0 (Inception ResNet)

[11] Melanoma and non- AlexNet ISIC 2018 84%
melanoma lesions

Malignant melanoma and

- 0
[12] benign tumors U-Net ISIC 2018 80.06%
Ensemble (VGG16, o
[13] BCC, SCC, and melanoma ResNet-50, Inception-V3) ISIC 2018 97.0%
P{\Zgzse?d Malignant and Benign Ensemble model ISIC 2018 97.5%

ISIC 2018 binary class dataset is used in the proposed work and we got better accuracy compared with previous
paper and in another hand previous work didn’t use GAN model but we applied GAN model to fake images which is
also considered for training and testing. While testing model able classify the fake image generated by GAN model
to original labels so we are able to get more accurate results. The proposed ensemble model uses and combines the
Xception and NASNetMobile.

CONCLUSION & FUTURE WORK

The skin lesion plays a important role in human health, skin related issues causes the most common and
concerning medical conditions. Recent advances in computational techniques have significantly enhanced the
efficiency and accuracy of skin cancer diagnosis, with non-invasive methods emerging as key tools for early
detection. In this study, we present a high-performance skin lesion classification system based on a deep ensemble
model integrating MobileNet, ResNet50, Xception, and NASNetMobile. The model was evaluated on both the
original ISIC dataset and a balanced version generated through oversampling. Our ensemble approach
outperformed individual models, achieving superior accuracy, precision, recall, and F1-scores. On the original ISIC
dataset, the ensemble model attained an accuracy of 89.5%, while the balanced dataset further boosted
performance to 97.5%. These results highlight the effectiveness of ensemble learning in combining the strengths of
multiple architectures, producing a more reliable and precise classification system. Additionally, the model’s ability
to mitigate class imbalance through oversampling demonstrates its robustness, making it a promising tool for
clinical applications in early skin cancer detection and diagnosis.
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