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Introduction: 

Industry-critical systems in the IIoT have become so complex that intelligent 

approaches must manage avoidable issues alongside unexpected operational 

abnormalities. Threshold-based traditional monitoring methods do not provide real-

time information while failing to adjust to evolving behaviors so new artificial 

intelligence-based monitoring systems need to be developed. 

Objectives: 

The research project strives to develop an expandable dual digital twin system which 

enables continuous risk detection. The proposed research aims to achieve two primary 

objectives of building predictive and behavioral twins that serve specific purposes in 

industrial applications. 

Methods: 

The designers employed XGBoost supervised learning from the AI4I 2020 Predictive 

Maintenance Dataset to develop their Twin A implementation. The unsupervised 

anomaly detection system of Twin B used Isolation Forest and analyzed flattened 

sensor logs extracted from the hydraulic test rig operational data. The simulated real-

time dashboard received predictions through 1.5-second intervals to mimic industrial 

operational conditions while integrating both twins. 

Results: 

The predictive twin demonstrated 97% accuracy in classifying multi-class failures. The 

predictive model grouped risk states into three categories: Normal, Caution and Alert 

through probability analysis. The behavioral twin detected a 3.17% anomaly rate 

through which localized sensor drift appeared in particular pressure readings. A live 

dashboard showed the system could perform real-time inference procedures while 

displaying visual information thus proving its readiness for operational deployment. 

Conclusions: 

IIoT risk monitoring through dual digital twins provides extensive coverage of 

predictive and emergent fault detection across two architectures. The system base of 

intelligent manufacturing systems functions because of its real-time performance 

along with modular structure and adjustable capabilities. The proposed system can 
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1. INTRODUCTION 

 

IIoT has introduced a cutting-edge system of interconnected smart manufacturing through which industries 

now operate. IIoT achieves data acquisition and equipment-to-decision-systems communication through the 

integration of physical machinery with sensors and actuators and intelligent controllers. The technological 

improvement allows continuous industrial operation oversight and optimization which delivers substantial 

advantages for production efficiency alongside predictive servicing and hazard control (Khan et al., 2020; 

Stecuła et al., 2023). The rapid growth of interconnected industrial systems introduces difficult obstacles for 

dependable fault estimation alongside sensitive equipment behavior recognition. 

The main problem stems from the need to foresee machine breakdowns before they develop into expensive 

maintenance interruptions or safety incidents. The inability of rule-based systems alongside fixed-threshold 

alarms makes them inadequate for effective analysis of modern industrial sensor data which demonstrates 

high-dimensional and nonlinear characteristics. New fault conditions which were not present during training 

or configuration phase become detectable only when physical symptoms reach their peak. Predictive 

maintenance is now being implemented by industries with machine learning models that analyze historical 

sensor data for identifying failure patterns and degradation trends according to Lee et al. (2019) and Susto et 

al. (2014). 

The digital twin stands as one of the most promising developments which creates a digital replica of physical 

assets and processes to offer real-time dynamic monitoring of their conditions and usage alongside responses 

(Grieves & Vickers, 2017; Fuller et al., 2020). Industrial sectors started using digital twins stemming from 

aerospace product applications just to integrate predictive maintenance and process optimization and decision 

automation across various industries. The presence of a digital twin within IIoT infrastructures provides state 

observation functions alongside prognostic simulation methods to help employ ahead-of-time safety mitigation 

approaches. 

The current implementation of digital twins relies on static or simulated frameworks which fail to use real-time 

operational data for adaptive intelligence learning. Modern digital twins demand integration with AI and 

machine learning technologies according to consensus in academic and industrial communities as reported by 

Lee et al. (2015) and Gabor et al. (2016). The presented research develops a dual digital twin architecture which 

combines supervised and unsupervised methods to conduct real-time risk management in IIoT systems. 

Digital Twin A functions as a predictive twin which applies supervised learning methods for its development. 

The AI4I 2020 Predictive Maintenance Dataset provides labeled machine data which includes air temperature, 

torque and tool wear measurements to predict particular failure modes. The machine learning procedure starts 

by processing data through SMOTE normalization to resolve class disparity then operates XGBoost for model 

development and conducts real-time monitoring using risk boundary limits. The twin generates probabilistic 

results that correspond to risk states that include Normal, Caution and Alert. The system generates outputs 

which function as input for a feedback mechanism that would activate maintenance notifications or shutdown 

procedures in operational environments. 

The second component Digital Twin B functions as a behavioral twin dedicated to performing unsupervised 

anomaly detection. The system utilizes sensor data from a hydraulic test rig to develop its model despite the 

absence of failure labels. The Isolation Forest algorithm enables this twin to monitor pressure, temperature 

and flow readings throughout thousands of time steps for each sample. The analysis of sensor PS1 showed 

consistent multiple anomalies between time steps t4900–t4910 which could be caused by sensor drift or 

benefit from future development of model explainability methods along with increased 

human-machine interface capabilities. 

 

Keywords:  digital twin, predictive maintenance, IIoT, anomaly detection, real-time 

monitoring, machine learning, XGBoost, Isolation Forest. 
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unobserved system failure patterns. The twin operates autonomously from recognized failure types which 

enables its selection as a technology that detects unanticipated faults that supervised models would miss. 

The two digital twins form a complete monitoring system with Twin A monitoring known risks and Twin B 

monitoring unexpected anomalies. The blend of simulation with learning combined with real-time physical 

infrastructure interaction demonstrates a wider progress in digital twin research (Gabor et al., 2016; Fuller et 

al., 2020). Both predictive analytics and behavior modeling accomplish operational resilience together with 

safety and performance goals in industrial operations which face evolving fault types and continuous 

variability. Real-world industrial data is utilized to deploy and test this dual-twin system according to the 

methods described in this document. The supervised twin produces accurate predictions on predefined failure 

patterns equally well as the unsupervised twin identifies abnormal behaviors without requiring labeled data. 

Research results confirm the capability of integrating machine learning into digital twins to create smart 

scalable systems for IIoT risk management at real time. 

 

2. OBJECTIVES 

 

The purpose of this research is to improve time-sensitive risk monitoring in Industrial IoT deployments by 

creating dual digital twin architecture which combines predictive systems and human behavior recognition 

capabilities. The specific objectives are: 

• The project develops Twin A to predict equipment failure risks based on real-time analysis of industrial sensor 

data that has been labeled. Supervised machine learning models from the AI4I 2020 dataset enable this risk 

classification by generating results in Normal, Caution and Alert risk states. 

• A behavioral digital twin (Twin B) needs to be built for detecting abnormal patterns in unlabeled time-series 

sensor log data. The unsupervised anomaly detection method (Isolation Forest) enables Twin B to detect 

operational deviations from normal behavior which produces early warnings about unexpected risks. 

These objectives create a unified framework that detects known failures and new risks which occur in complex 

IIoT systems 

 

3. METHODOLOGY 

 

The research develops a dual digital twin structure which unites supervised together with unsupervised 

machine learning methods for continuous risk surveillance systems in Industrial IoT (IIoT) environments. The 

framework required two datasources for predictive maintenance prediction and behavioral anomaly 

monitoring purposes. A structured data preprocessing stage followed by model training methods allowed for 

detection of anomalies through dashboard simulation of live risk assessments. 

The entire process of data analysis together with modeling and visualization ran on Python version 3.11. The 

core Python libraries applied for this work consisted of Pandas and NumPy for data manipulation as well as 

Scikit-learn for machine learning algorithms together with Imbalanced-learn with SMOTE oversampling and 

XGBoost for gradient boosting classification and Dash by Plotly for real-time dashboard visua The development 

and testing of Notebooks occurred inside Jupyter Notebook which operates through Visual Studio Code. 

 

3.1 Dataset Description 

The research uses two datasets: 

• The AI4I 2020 Predictive Maintenance Dataset consists of 10,000 records which include sensor readings that 

include air temperature, torque, and rotational speed. The available failure indicators in the dataset include 

both binary and multi-class labels which enables supervised classification methods. 

• The Hydraulic Test Rig Sensor Dataset consists of multivariate sensor logs which are stored as tab-separated 

time series. The data consists of time-based rows which contain over 600 sequential measurements collected 

from pressure sensors (PS1–PS6), temperature sensors (TS1–TS4) and flow sensors (FS1–FS2). The dataset 

lacks labels which makes it suitable for detecting anomalies without supervision. 
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3.2 Data Preprocessing 

The preprocessing steps for Digital Twin A included dropping UDI and Product ID columns and converting 

Type variables into one-hot encoding. A new multi-class target variable was developed by assigning a single 

label to each record according to the first failure type that occurred among TWF, HDF, PWF, OSF, RNF. 

SMOTE (Synthetic Minority Oversampling Technique) was used to balance the training set classes by 

generating synthetic minority examples. 

The tab-separated values in Digital Twin B were converted into flattened numeric sequences which generated 

6,660 columns per record. The unsupervised model received improved performance after normalization was 

applied to the features. 

 

3.3 Digital Twin A: Supervised Failure Classification 

The developers chose XGBoost for implementing Twin A because of its high performance and its ability to 

process tabular sensor data. The AI4I dataset underwent training for the model to identify operational states 

from among six possible categories including no failure and five distinct failure types. 

The model produces a probability distribution across classes instead of providing a single class label. The risk 

levels were determined through an interpretation of these probabilities based on these thresholds: 

1. Equipment enters Alert state when any failure class prediction exceeds 0.7. 

2. The system classification becomes Caution when the probability value exists between 0.4 and 0.7. 

3. The system falls into the Normal category when the probability reaches 0.4 or below. 

 

The decision-making process uses this logic to make soft decisions through model confidence levels which were 

integrated into a live dashboard system. The dashboard receives individual test records from the model which 

displays risk states through visual indicators such as color-coded bar plots. 

 

3.4 Digital Twin B: Unsupervised Behavioral Anomaly Detection 

Time-windowed sensor data went through unsupervised learning detection for anomalies on Twin B. Training 

of an Isolation Forest algorithm occurred on the sensor data matrix after flattening it. The isolation process 

works by splitting the feature space randomly which indicates that samples needing less partitions are more 

likely to be anomalous. 

The model evaluated each sample to determine whether it belonged to the Normal or Anomaly category. The 

anomaly labeling process operated solely based on the data without needing any information about fault types. 

Additional analysis revealed what features from sensors showed the maximum deviation during anomaly 

detection periods. The pressure sensor PS1 time steps t4903–t4906 showed persistent abnormal readings 

across all flagged samples according to mean deviation analysis. 

The scoring function demonstrates how the model operates internally: 

𝑠(𝑥) = 2
−
𝐸(ℎ(𝑥))
𝑐(𝑛)  

where 𝐸(ℎ(𝑥)) is the average path length to isolate point 𝑥, and 𝑐(𝑛) is a normalization factor for sample size 

𝑛. Lower scores indicate higher anomaly likelihood. 

 

3.5 Twin Architecture Flow 

The proposed system operates through two independent processing streams which run simultaneously. 

• The supervised pipeline (Twin A) handles structured sensor data that follows a processing sequence of pre-

processing steps and XGBoost classification and risk logic threshold evaluation. 

• Twin B operates as an unsupervised pipeline which receives time-series logs and transforms them into 

numerical matrices before running Isolation Forest anomaly detection. 
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The twin states from both models merge into a unified dashboard for real-time monitoring after they output 

Normal, Caution, Alert or Anomaly results. The diagram in Figure 1 depicts the dual processing streams and 

their combined operation. 

 

 
Figure 1: Industrial AI-System Architecture 

 

3.6 Real-Time Risk Simulation 

The development of Dash produced a simulation environment that replicated actual IIoT deployments. The 

test instances travel to both twin models with an interval of 1.5 seconds. The dashboard automatically updates 

its display to show the present risk status. The XGBoost model running on Twin A produces failure class 

probabilities that instantly get translated into twin state information. The Isolation Forest model of Twin B 

detects any unusual behaviors that differ from its learned normal operating pattern. This simulation 

demonstrates operational deployment capability of digital twins which produces real-time risks available for 

interpretation. 

 

4. RESULTS 

 

This research shows that combining predictive and behavioral digital twins effectively controls Industrial IoT 

risks through the processing of labeled and unlabeled data. The evaluation of independent twins was done 

through real-time simulators while performance metrics and visual analytics were used for validation. This 

section presents results from Digital Twin A (supervised) alongside Digital Twin B (unsupervised) and it also 

includes findings from the live dashboard simulation environment. 

 

4.1 Results of Digital Twin A: Supervised Risk Prediction 

Digital Twin A received training from the AI4I 2020 Predictive Maintenance Dataset for XGBoost-based 

supervised learning model classification of failure events. The trained classifier distinguished between six 

classes including normal operation and five failure types after preprocessing and encoding and SMOTE 

balancing was applied. The evaluation of the model demonstrated a 97% accuracy rate on test data which 

establishes its reliability for multi-class predictive maintenance applications. 

The classifier generated probability distributions which represented each class for all test samples. The risk 

logic used three risk categories to interpret probability scores: Alert when any failure class exceeded 0.7 

probability and Caution between 0.4 and 0.7 and Normal below or equal to 0.4. This mapping supports real-

time interpretation and response strategies in industrial systems. 

The risk state distribution appears in Figure 2. The model processed 2,000 test cases where it identified 1,894 

instances as Normal and 81 as Alert and 25 as Caution. The system design demonstrates its risk-sensitive nature 

by producing alerts only when failure probability reaches high levels. Through this classification strategy the 

system maintains sensitivity to high-risk events alongside minimal occurrence of incorrect alerts. 
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Figure 2: Digital Twin A Risk States on Test Set 

 

The model performance analysis included an examination of how predicted risk scores distributed among 

failure classes. The risk scores from Figure 3 demonstrate that classes 2, 3 and 4 maintain their scores around 

1.0 which indicates high confidence levels. The distribution of lower confidence scores for class 1 Tool Wear 

Failure (TWF) was significantly wider than other classes indicating difficulties in detecting this particular fault 

mode. 

 

 
Figure 3: Risk Score Distribution per Failure Type 

 

Table 1 presents a summary of state counts. The majority of labels fall under Normal due to operational stability 

but the Alert and Caution states demonstrate the twin's ability to detect different levels of failure risk. 

 

Table 1. Distribution of Risk States (Twin A Test Set) 

Twin State Description Count 

Normal No immediate failure risk 1,894 

Caution Moderate risk (0.4–0.7) 25 

Alert High failure risk (> 0.7) 81 
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4.2 Results of Digital Twin B: Unsupervised Anomaly Detection 

Digital Twin B functions without training data labels by implementing behavioral modeling through the 

Hydraulic Test Rig Sensor Dataset. The dataset consisted of tab-separated sequences which recorded readings 

from different sensors. The sequences underwent flattening before being converted into high-dimensional 

time-windowed vectors which received normalization treatment. The Isolation Forest model learned normal 

operational behavior distribution through training to detect significant deviations from this pattern. 

The model processed all 2,205 samples through its training process to determine whether they belonged to the 

Normal or Anomaly category. The anomaly detection system identified 3.17% of samples as anomalous based 

on Figure 4 while most time windows fell into the normal category. The model correctly detects only outliers 

that deviate substantially from learned norms because it performs optimally on well-maintained equipment. 

 

 
Figure 4: Twin B – Anomaly Detection States 

 

A feature-level mean deviation analysis was performed to investigate the origin of these anomalies between 

normal and anomalous samples. The sensor PS1 demonstrated maximum average deviation values which 

surpassed 23 units above the baseline during time steps t4903 through t4906. Figure 4 shows the comparison 

of PS1 average readings between normal and anomalous windows as depicted in Figure 5. The pressure pattern 

in anomalies shows continuous elevation until it starts decreasing which might indicate system instability or a 

developing fault. 

 

 
Figure 5: Sensor PS1 Deviation in Anomaly Windows 
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Table 2 shows the most deviant sensor features. PS1 emerges as a vital sensor which functions as an early 

anomaly detection system through these values thereby proving how sensitive the unsupervised digital twin is 

to anomalies. 

 

Table 2. Top Drifting Features in Anomalous Windows 

Rank Feature Mean Deviation 

1 PS1_t4905 23.71 

2 PS1_t4904 23.56 

3 PS1_t4903 23.13 

4 PS1_t4906 22.99 

5 PS1_t4897 22.99 

4.3 Real-Time Twin Simulation Environment 

A real-time simulation environment built with Plotly Dash served to show the deployment capabilities of the 

twin system. The dashboard received test data samples through a 1.5-second streaming process. The real-time 

prediction results from Twin A appeared in textual and graphical displays. Twin B operated offline because of 

its high-dimensional inputs yet could be integrated through batch updates. 

The dashboard feedback process operates in real-time as shown in Figure 6 through the callback architecture. 

The interval-component activates state updates which transfer information to risk display modules (live-

update-text and risk-bar). The system architecture allows dynamic monitoring functionality while offering 

extended capabilities for deploying IIoT dashboards either on edge or cloud platforms. 

 

 
Figure 6: Callback Graph from Twin A Live Dashboard 

 

4.4 Consolidated Results Summary 

The summary of chief results acquired from digital twins and simulation environments appears in Table 3. The 

summary presents information about model performance together with risk response counts and anomaly 

insights and real-time responsiveness data. 

 

Table 3. Summary of Digital Twin System Outputs 

Twin Function Key Output Value 

Twin A Failure Classification Model Accuracy 97% 

Twin A Risk States – Alert Count 81 

Twin A Risk States – Caution Count 25 

Twin B Anomaly Detection Rate % of Anomalous Samples 3.17% 

Twin B Top Anomaly Feature Sensor Time Steps (PS1_t4903–4906) High Drift 

Dashboard Live Update Interval Risk update latency 1.5 seconds 
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The dual digital twin framework generated results that succeeded in proving system resilient operation and 

versatility. Twin A demonstrates reliable fault identification through classification and Twin B detects 

abnormal behaviors in unprocessed sensor information. The system provides a strong base for real-time 

industrial risk monitoring through its responsive interface integration. 

 

6. CONCLUSIONS 

 

The proposed framework used two digital twins which included a supervised predictive framework (Twin A) 

alongside an unsupervised behavioral model (Twin B) for implementing real-time risk management in 

Industrial IoT systems. The digital twin model named Twin A validated known system failure patterns with 

sensor labels at high precision but Twin B revealed undetected new anomalies in untagged multi-parameter 

time sequences. The twins worked together to deliver complete visibility across expected and unexpected faults 

which improved operational understanding and response potential. The system showed readiness for real-time 

operations through low-latency updates on a dashboard platform which proved its deployment suitability for 

dynamic industrial applications. The infrastructure creates a framework which establishes scalable self-

adaptive systems for IIoT from predictive maintenance functions. To enhance the system future work will 

concentrate on explaining AI approaches while implementing interactive dashboards that will provide live 

monitoring capabilities for machine diagnosis decisions and AI operation trust enhancement. 
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