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This study presents an advanced diagnostic method for wind turbine generators based on the 

Wavelet Transform (WT), aimed at enhancing the accuracy of fault detection and localization. 

By analyzing the stator and rotor currents, the method leverages WT's capacity to process 

nonstationary and transient signals, which is particularly effective for capturing dynamic 

anomalies in wind energy systems. Three distinct algorithms—Morlet, Gabor, and Wigner-

Ville—were implemented to classify faults in both stator and rotor circuits. These approaches 

collectively form a robust framework suitable for real-time condition monitoring. The diagnostic 

method significantly improves early fault identification, minimizes operational downtime 

through precise localization, and enhances the reliability of wind energy generation systems. 

Moreover, it enables the optimization of maintenance strategies by facilitating the targeting of 

specific fault types. Experimental results confirm the effectiveness of WT in converting raw 

current data into diagnostically relevant insights, thereby contributing to the development of 

more efficient and resilient wind energy infrastructures. 

Keywords: Wavelet Transform, Wind Turbine Diagnostics, Fault detection, Stator-Rotor 

Currents, Morlet Algorithm, Predictive Maintenance. 

 

INTRODUCTION 

OVER the past two decades, the demand for robust and intelligent diagnostic methodologies has surged, propelled 

by the growing complexity of modern systems and the imperative to improve their reliability, efficiency, and 

operational continuity—especially in the field of renewable energy generation [1-5]. Among these systems, wind 

turbines have emerged as pivotal components of sustainable energy infrastructure. Their continuous and optimal 

operation hinges on timely maintenance interventions and accurate, real-time fault detection mechanisms. Without 

such capabilities, unexpected failures can lead to costly downtimes, reduced energy output, and premature 

equipment degradation. Consequently, advanced monitoring strategies are essential to prevent generator faults, 

extend system lifespan, and optimize maintenance planning, all while minimizing operational costs [6-9]. 

In parallel with these technological needs, wavelet analysis has gained prominence as a powerful and versatile signal 

processing tool, offering significant advantages over traditional approaches such as Fourier analysis. While 

conventional methods primarily provide insights in the frequency domain, wavelet transforms deliver joint time-

frequency representations, enabling the precise localization of transient, non-stationary phenomena within signals 

[6], [10-14]. This attribute is particularly beneficial for diagnosing electrical and mechanical faults in highly dynamic 

systems like wind turbine generators, where signal patterns often exhibit abrupt, unpredictable variations due to 

fluctuating environmental and operational conditions [15-19]. 

The global transition toward cleaner energy sources has further accelerated the development of innovative diagnostic 

and control technologies. In 2009 alone, renewable energy technologies—led by wind, solar, and hydroelectric 

power—added over 157,531 MW to global energy capacity, marking a 30% increase from the previous year [20-25]. 

As wind energy continues to account for a growing share of the global power mix, ensuring the stability and 
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sustainability of this energy source depends heavily on the deployment of smart diagnostic tools capable of 

maintaining system integrity and supporting grid resilience. 

DIAGNOSIS METHODOLOGIES 

Monitoring wind turbines involves comprehensive, real-time analysis of their operational processes to ensure both 

performance optimization and system reliability. This is particularly crucial given the susceptibility of wind turbines 

to a wide array of mechanical and electrical faults. Figure 1 highlights the core components of a typical wind turbine 

that are subject to failure analysis, along with a statistical distribution of failures observed in Swedish wind power 

plants between 2000 and 2004 [13], [18]. The data clearly show that the majority of reported failures were linked to 

the electrical system, followed by sensor malfunctions and issues with the blades or pitch control mechanisms. These 

findings underscore the importance of deploying effective and targeted diagnostic techniques to monitor critical 

subsystems, thereby reducing unplanned downtime, maintenance costs, and the risk of catastrophic failure. 

A broad spectrum of diagnostic techniques has been developed over the years, drawing on disciplines such as 

electrical engineering, signal processing, artificial intelligence, and mechanical diagnostics. Many of these methods, 

initially designed for induction motors—which share operational similarities with wind turbine generators—have 

been adapted and applied in the wind energy sector. Commonly used diagnostic approaches include: 

▪ Electromagnetic field monitoring: Detects anomalies by analyzing electromagnetic emissions 

indicative of faults. 

▪ Temperature measurement: Monitors thermal behavior to detect overheating or thermal stress in 

components. 

▪ Infrared thermography: Uses infrared imaging to identify thermal irregularities and potential 

hotspots. 

▪ Radio frequency (RF) emissions monitoring: Captures high-frequency signals related to partial 

discharges or insulation degradation. 

▪ Noise and vibration analysis: Analyzes acoustic and vibrational patterns to diagnose mechanical 

imbalances or structural failures. 

▪ Motor Current Signature Analysis (MCSA): Interprets electrical current waveforms to detect 

electrical and electromechanical defects. 

▪ Model-based and AI-driven methods (e.g., neural networks): Utilize computational models and 

machine learning techniques for automated fault classification and predictive diagnostics. 

Each of these techniques offers specific advantages and is typically optimized for detecting certain categories of faults. 

However, the increasing complexity of modern wind turbines, combined with the demand for high reliability and 

predictive maintenance, necessitates the development of more sophisticated and versatile diagnostic frameworks 

capable of identifying a range of fault types with high precision and adaptability. 

In this study, we propose a diagnostic approach centered on the spectral analysis of electrical current signals and 

their time-frequency representation. By employing the wavelet transform, which excels at capturing transient and 

non-stationary signal features, the methodology aims to detect and classify faults in the electrical components of wind 

turbine generators. This advanced signal processing technique enhances diagnostic accuracy, enabling early fault 

detection and supporting condition-based maintenance strategies. Ultimately, the proposed framework contributes 

to increased system uptime, operational efficiency, and the long-term sustainability of wind energy infrastructure.  

  



Journal of Information Systems Engineering and Management 

2025, 10(4) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1796 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Fig.1. Failures number distribution [%] for Swedish wind power plants 

DOUBLY FED INDUCTION MACHINE MODELLING 

The doubly-fed induction generator (DFIG) shares operational similarities with conventional wound-rotor induction 

machines, but differs fundamentally in its treatment of rotor voltages. While following the same basic modeling 

principles as standard induction machines, the DFIG model incorporates non-zero rotor voltages - a critical feature 

that accounts for the active power control applied to the rotor circuit [1], [16], [18], [26-32]. This distinctive 

characteristic enables advanced control capabilities in wind energy applications. The machine's dynamic behavior is 

most effectively represented in the synchronous rotating d-q reference frame, yielding the following mathematical 

formulation: 

 

𝑉𝑑𝑠 = 𝑅𝑠𝐼𝑑𝑠 +
𝑑𝑗𝑑𝑠

𝑑𝑡
− 𝜃̇𝑠𝜙𝑞𝑠

𝑉𝑞𝑠 = 𝑅𝑠𝐼𝑞𝑠 +
𝑑𝑗𝑞𝑠

𝑑𝑡
+ 𝜃̇𝑠𝜙𝑑𝑠

𝑉𝑑𝑟 = 𝑅𝑟𝐼𝑑𝑟 +
𝑑𝑗𝑑𝑟

𝑑𝑡
− 𝜃̇𝑟𝜙𝑞𝑟

                                                                    (1) 

 𝑉𝑞𝑟 = 𝑅𝑟𝐼𝑞𝑟 +
𝑑𝜙𝑞𝑟

𝑑𝑡
+ 𝜃̇𝑟𝜙𝑑𝑟                                                                     (2) 

 

𝜙𝑑𝑠 = 𝐿𝑠𝐼𝑑𝑠 + 𝑀𝐼𝑑𝑟

𝜙𝑞𝑠 = 𝐿𝑠𝐼𝑞𝑠 + 𝑀𝐼𝑞𝑟

𝜙𝑑𝑟 = 𝐿𝑟𝐼𝑑𝑟 + 𝑀𝐼𝑑𝑠

                                                                           (3) 

 𝜙𝑞𝑟 = 𝐿𝑟𝐼𝑞𝑟 + 𝑀𝐼𝑞𝑠                                                                    (4) 

 𝑔 =
𝜗̇𝑠−𝜗̇𝑟

𝜗̇𝑠
                                                                                    (5) 

The expression of the torque is: 

𝛤𝑒𝑙𝑚 = 𝑝 𝑀/𝐿𝑠   (𝐼𝑞𝑟  𝜙𝑑𝑠 − 𝐼𝑑𝑟  𝜙𝑞𝑠)                                                          (6) 

Where:  

𝑉𝑑𝑠 , 𝑉𝑞𝑠 : d and q axes stator voltages. 

𝜙𝑑𝑠 , 𝜙𝑞𝑠  d and q axes stator fluxes. 

I_ds, I_qs: d and q axes stator currents. 

𝑅𝑠 , 𝑅𝑟:  stator and rotor resistances. 

𝐿𝑠 , 𝑀:  : stator, rotor and mutual inductances. 

𝜗̇𝑟 , 𝜗̇𝑠: stator and rotor speed. 
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P: pole pairs. 

𝐿𝑠: electromagnetic torque. 

g : slip speed. 

By substituting the expressions for the fluxes, the system of equations (2) can be reformulated as follows 

𝑉𝑑𝑠 = 𝑅𝑠𝐼𝑑𝑠 + 𝑠(𝐿𝑠𝐼𝑑𝑠 + 𝑀𝐼𝑑𝑟) − 𝜃̇𝑠(𝐿𝑠𝐼𝑞𝑠 + 𝑀𝐼𝑞𝑟)

𝑉𝑞𝑠 = 𝑅𝑠𝐼𝑞𝑠 + 𝑠(𝐿𝑠𝐼𝑞𝑠 + 𝑀𝐼𝑞𝑟) + 𝜃̇𝑠(𝐿𝑠𝐼𝑑𝑠 + 𝑀𝐼𝑑𝑟)

𝑉𝑑𝑟 = 𝑅𝑟𝐼𝑑𝑟 + 𝑠(𝐿𝑟𝐼𝑑𝑟 + 𝑀𝐼𝑑𝑠) − 𝜃̇𝑟(𝐿𝑟𝐼𝑞𝑟 + 𝑀𝐼𝑞𝑠)

𝑉𝑞𝑟 = 𝑅𝑟𝐼𝑞𝑟 + 𝑠(𝐿𝑟𝐼𝑞𝑟 + 𝑀𝐼𝑞𝑠) + 𝜃̇𝑟(𝐿𝑟𝐼𝑑𝑟 + 𝑀𝐼𝑑𝑠)

                                                          (7) 

By choosing state variables vector: 

𝑋 = [𝐼𝑑𝑠 𝐼𝑞𝑠 𝐼𝑑𝑟 𝐼𝑞𝑟]𝑇                                                                           (8) 

𝑋̇ = 𝐴𝑋 + 𝐵𝑈                                                                                                (9) 

Where state matrices A and B are:  

[𝐴] =
1

𝑀2−𝐿𝑟.𝐿𝑠

[
 
 
 
 −𝐿𝑟 . 𝐿𝑠 𝐿𝑟 . 𝐿𝑠𝜔𝑠 − 𝜔𝑟 . 𝑀

2 𝑀𝑅𝑟 𝑀𝐿𝑟𝑔𝜃𝑠

.

𝜔𝑟 . 𝑀
2 − 𝐿𝑟 . 𝐿𝑠𝜔𝑠 −𝐿𝑟 . 𝑅𝑠 𝑀(𝐿𝑟𝜔𝑟 − 𝜔𝑠. 𝐿𝑟) 𝑀𝑅𝑟

𝑅𝑠. 𝑀 −𝑔𝜔𝑠𝐿𝑠. 𝑀 −𝐿𝑠 . 𝑅𝑟 𝐿𝑠 . 𝜔𝑟 . 𝐿𝑟 − 𝜔𝑠. 𝑀
2

𝑔𝜔𝑠𝐿𝑠. 𝑀 𝑀𝑅𝑠 𝜔𝑠. 𝑀
2 − 𝐿𝑠. 𝐿𝑟 . 𝜔𝑟 −𝐿𝑠 . 𝑅𝑟 ]

 
 
 
 

                           (10) 

[𝐵] =
1

𝑀2−𝐿𝑟.𝐿𝑠
[

−𝐿𝑟 0 𝑀 0
0 −𝐿𝑟 0 𝑀
𝑀 0 −𝐿𝑠 0
0 𝑀 0 −𝐿𝑠

]                                                                        (11) 

As the matrix A varies with time or operating conditions, system (7) becomes inherently nonlinear. Consequently, 
traditional Fault Detection and Isolation (FDI) techniques must be adapted to account for this nonlinear behavior. 
To address this challenge, we propose an alternative approach based on wavelet transform analysis, which offers 
enhanced capabilities for detecting and isolating faults in nonlinear dynamic systems. 

EXPERIMENTAL RESULTS 

The experimental data used in this study were collected at the Automation Laboratory of the National Polytechnic 

School of Oran, Algeria. The experimental setup is carefully designed to emulate real-world operating conditions, 

providing a platform for the testing and validation of advanced diagnostic methods for electrical machines. At the 

heart of the test bench is a three-phase induction motor (Leroy Somer LS 132S), mechanically coupled to a powder 

brake. This configuration enables the simulation of various load profiles and mechanical stress conditions, thus 

offering a controlled environment for fault generation and analysis. 

As shown in Fig. 2, the experimental system includes a data acquisition unit that continuously monitors and records 

essential electrical parameters. Specifically, the three-phase supply currents of the induction machine are captured 

in real time, serving as the primary input signals for diagnostic analysis using wavelet transforms and other signal 

processing techniques. The use of the Leroy Somer LS 132S—a robust, industry-standard motor known for its 

reliability—ensures that the experimental results are both meaningful and applicable to a wide range of practical 

scenarios. 

The inclusion of a powder brake allows for precise manipulation of the mechanical load applied to the motor, making 

it possible to recreate typical fault conditions under controlled circumstances. By systematically varying the 

operational load and other parameters, the test bench generates a comprehensive dataset suitable for assessing the 

performance of fault detection, isolation, and classification techniques. This well-structured experimental framework 

highlights the importance of laboratory-based validation in the development of reliable, real-world-ready diagnostic 

systems aimed at improving the operational safety and efficiency of electrical machines. 



Journal of Information Systems Engineering and Management 

2025, 10(4) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1798 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Fig. 1 Experimental benchmark 

The acquisition duration is one second with a sampling rate of 10 KHz. In Fig. 3 and 4, we show the current stator 

without default and with default. 

  

Fig. 3A. Asynchronous generator current 

without default 

Fig. 3B. Asynchronous generator current 

without default 

The most notable observation is that a time-domain representation alone is insufficient to distinguish between 
healthy and faulty generator conditions. This limitation necessitates a shift toward a time-frequency representation 

for more effective fault detection. 

WAVELET TRANSFORM OF A CURRENT SIGNAL 

All wavelet families are derived from a fundamental function known as the mother wavelet 𝜓. This function is characterized by 
having a zero mean, which is a key property for effective signal analysis 

∫ 𝜓(𝑡)𝑑𝑡 = 0
−∞

−∞
                                                                                     (12) 

This mother wavelet generates all other wavelets in the family through two key operations: 

▪ Dilation: Controlled by scale parameter *a* (where a > 0) 

▪ Translation: Determined by shift parameter *b* 

The scaled and shifted wavelet is expressed as: 

𝜓𝑎,𝑏
(𝑡) =

1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
)                                                                (13) 

The wavelet transform analyzes a current signal 𝑖(𝑡) by decomposing it into different scales and translations. This is achieved by 

correlating the signal with a mother wavelet 𝜓, which is dilated by a scale parameter a and translated by a shift parameter b. 

Mathematical Formulation 

The continuous wavelet transforms (CWT) of a signal 𝑖(𝑡) such as a current signal, at a given scale a and position b, is obtained by 

correlating the signal with the scaled and translated version of the mother wavelet. This is expressed as: 

𝑇𝑂[𝑖(𝑎, 𝑏)] =
1

√𝑎
∫ 𝑖(𝑡)𝜓∗+∞

−∞
(
𝑡−𝑏

𝑎
)𝑑𝑡                                                                 (14) 
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Where: 

𝑖(𝑡):  

𝜓(𝑡)  

𝑎     

𝑏        
∗    

Current 
Mother wavelet A 
called scale factor. 
translation  factors 
operation of complex conjugate 

 

1. Haar Wavelet (Discrete, orthogonal): 

𝛹(𝑡) = {

1              𝑖𝑓 0 ≤ 𝑡 ≤
1

2

−1           𝑖𝑓  −
1

2
≤ 𝑡 ≤ 1

0             𝑒𝑙𝑠𝑒

                                                                      (15)        

 
2. Morlet Wavelet (Continuous, complex): 

𝜓(𝑡) = 𝑒−𝜋𝑡2
𝑒 10𝑖𝜋𝑡                                                                                       (16) 

∫ 𝜓(𝑡)𝑑𝑡 = 0
−∞

−∞
                                                     (17) 

For practical implementations (with ω₀ ≥ 5), the simplified version is: 

𝜓𝑎,𝑏
(𝑡) =

1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
)                                                                                      (18) 

I is a complex number: 𝐼2 = −1 

These wavelet functions allow for detailed time-frequency analysis, capturing both high- and low-frequency components of the 
signal with varying resolutions, making them particularly effective for non-stationary signal processing such as fault detection in 
electrical machines. 

4.1. Application of short Fourier transforms 

In light of the well-documented limitations of the traditional Fourier transform in accurately detecting signal anomalies and 
failures—particularly in the context of non-stationary signals—we sought to investigate alternative signal processing techniques 
better suited for this task. As an initial step, we employed the Short-Time Fourier Transform (STFT), which offers a time-frequency 
domain representation of signals. This method was selected for its ability to analyze non-stationary signals by segmenting them 
into smaller time windows, thereby enabling the capture of localized spectral characteristics. By leveraging the STFT, our objective 
was to overcome the inherent drawbacks of the classical Fourier approach and to enhance the precision, relevance, and 
interpretability of failure detection in dynamic signal environments. 

𝑆𝐹𝑇(𝑣, 𝑏) = ∫ 𝐼(𝑡) ⋅ 𝑔𝑣,𝑏(𝑡)𝑑𝑡
+∞

−∞
                                                                    (19) 

Where: 

𝑆𝐹𝑇(𝑣, 𝑏): à Short Fourier Transform 

𝑔𝑣,𝑏(𝑡)        : is a time-frequency atoms 

The application of the Short-Time Fourier Transform (STFT) enables the detection of the transition from a healthy condition 
to a faulty one, as evidenced in Figures 3A and 3B.   
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Fig. 4A. Short time Fourier transform of healthy 
machine current  

Fig. 4B. Short time Fourier transform of faulty 

machine current 

 

 

By examining Figures 3A and 3B, it becomes clear that the presence of the defect is markedly more pronounced in Figure 3B. This 
enhanced amplification significantly improves the defect’s visibility, making it easier to detect and interpret. The increased clarity 
not only facilitates more accurate diagnosis but also demonstrates the effectiveness of the applied method in isolating and 
emphasizing fault characteristics. This improvement underscores the method’s value in enhancing diagnostic precision and 
supporting early failure detection. 

APPLICATION OF GABOR AND MORLET TRANSFORMS 

Wavelet analysis has emerged as a highly effective tool for the examination and reconstruction of complex signals, particularly 
those exhibiting non-stationary behavior. In our investigation, we initially applied the Gabor transform due to its well-established 
strength in analyzing highly non-stationary signals. Its ability to focus on localized frequency bands makes it especially suitable 
for identifying transient phenomena, as noted in studies [2], [4], and [6]. 

Both the Gabor and Morlet transforms demonstrated robust performance in detecting the characteristic frequency components 
associated with the defect, while also enabling a precise quantification of their amplitudes. This dual function—simultaneous 
detection and quantification—positions these transforms as powerful tools for fault diagnosis. Their application provides a 
detailed time-frequency representation that captures the subtle spectral variations introduced by the presence of defects, thereby 
improving signal interpretability and reliability of the analysis [7]. 

WIGNER-VILE DISTRIBUTION  

The Wigner-Ville Distribution (WVD) is a high-resolution time-frequency representation particularly suited for the 
analysis of non-stationary signals encountered in diagnostic applications. By providing joint time and frequency 
information, the WVD enables precise localization of transient events and frequency shifts, which are critical for 
identifying system faults and degradations. Its application in fault diagnosis enhances the detection of subtle signal 
variations that may not be visible with conventional spectral methods, making it a valuable tool in predictive 

maintenance and condition monitoring. 

 

𝑊𝑖(𝑡, 𝑖) = ∫ 𝑖(𝑡 +
𝜏

2
)𝑖∗𝑡 −

𝜏

2
) ⋅ 𝑒(−𝑗𝑤𝜏)+∞

−∞
𝑑𝜏                                                       (18) 
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Fig. 5A. Wigner-Ville distribution of healthy machine 
current 

 
Fig. 5B. Wigner-Ville distribution of faulty machine 

current 

 

 

 

 
Fig. 6A. Gabor distribution of healthy machine current 

 
  Fig. 6B. Gabor distribution of healthy machine 

current 
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Fig. 6A. Morlet distribution of healthy machine  

current 
Fig. 6A. Morlet distribution of healthy machine current 

  
Fig. 7A. Morlet distribution healthy machine current Fig. 7B. Morlet distribution faulty machine current 

CONCLUSION 

This paper has presented a comprehensive methodology for fault detection in wind turbine generator currents, 
supported by both theoretical modeling and simulation-based validation. The analysis demonstrated that faults 
introduce distinct, localized patterns in the time-frequency representation of the signal, underscoring the importance 

of selecting appropriate time-frequency analysis tools for accurate interpretation. 

By employing advanced wavelet-based methods, particularly the Gabor and Morlet transforms, the proposed 
approach effectively captures transient frequency components associated with electrical faults. This enables 
enhanced real-time condition monitoring capabilities for wind turbine systems. The time-frequency features 
extracted using this framework offer both high resolution and robustness to non-stationary operating conditions. 

A hybrid fault diagnosis scheme was developed, combining wavelet-based feature extraction with a polynomial-based 
representation tailored to dynamic linear systems. Applied to a Doubly Fed Induction Generator (DFIG) under 
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varying operational scenarios, the method achieved high diagnostic accuracy. Furthermore, the proposed approach 
demonstrates scalability to a wide range of fault types, suggesting strong generalization potential. 

The performance of the methodology under nonlinear and variable-speed regimes—typical of real-world wind turbine 
operation—confirms its applicability in practical deployment environments. These findings contribute to the 
development of more resilient and intelligent fault diagnosis systems for wind energy applications. 

FUTURE WORK 

Future research will focus on the following directions to further extend the applicability and impact of the proposed 

approach: 

Fault Diagnosis under Partial Observability:  

▪ Development of estimation techniques to enable accurate diagnosis with incomplete or noisy sensor data. 
▪ Multi-Fault and Hybrid System Integration: Extension of the framework to detect simultaneous faults and 

to operate within hybrid renewable energy systems (e.g., wind–solar systems). 

Edge Computing and IoT Implementation: Design and deployment of lightweight versions of the diagnostic 
algorithm suitable for embedded platforms and edge devices in industrial monitoring architectures. 

IMPACT AND RELEVANCE 

The proposed framework contributes toward the realization of reliable, scalable, and intelligent diagnostic systems 

for renewable energy technologies, By improving the accuracy, adaptability, and implementation readiness of wind 

turbine fault detection. 
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