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In fact, it’s no longer a question of whether users should utilize computational resources from 

the cloud — the question is rather how to do it. Dynamic workload scheduling is however diffi-

cult to optimize because of the interplay between energy consumption and makespan. Lastly, to 

overcome this, we put forward a reinforcement learning (RL) framework grounded on SARSA, 

with the objective of achieving that balance between makespan and energy consumption. Inde-

pendently it adapts scheduling decision for tasks based on real time workload characteristics, 

without compromising the throughput but optimization the energy consumed. Through exper-

iment, our proposed SARSA based scheduling algorithm has been show to improve over tradi-

tional scheduling strategies and can potentially save a large amount of energy and minimize 

makespan. In this work, an adaptive mechanism is proposed that allows tuning of the cloud 

computing service to optimize its sustainability while minimizing a deleterious effect on the 

service quality. 

Keywords: Cloud Computing, Workload Scheduling, SARSA Algorithm, Reinforcement 

Learning, Energy-Efficient Scheduling, Makespan Optimization, Virtual Machine (VM) Alloca-

tion, Quality of Service (QoS), Dynamic Resource Management. 

 

INTRODUCTION 

Cloud computing has radically changed the way companies provide solutions by providing resources as a demand 

and therefore organizations are able to outgrow their infrastructure investments. In cloud systems, customer work-

load assignment to focus on resource utilization, cost, and service quality has become critical. Traditionally, work-

load scheduling is always a trade-off among work priorities, as the consumes energy to execute and time of comple-

tion (makespan) tends to an inverse relationship. The correlation of energy aware scheduling and makespan is thus 

important for achieving the economic and environmental objectives. 

Recently several such studies have been made towards advancing RL models that might be useful in addressing 

dynamic scheduling issues. Some practical examples of RL algorithms developed to make decision making on their 

own by learning from outcome of the action taken in the environment would be example of Q learning and SARSA. 

We present a novel SARSA based workload scheduling approach that addresses cloud dynamism in the energy and 

time aspects proactively. To this end, we shall development of SARSA to explore the degree of flexibility of the cloud 

computing in using and maintaining the make span and energy usage. 

LITERATURE REVIEW 

The scale and importance of cloud computing in the modern day technology have made businesses and individuals 

access scalable, flexible and cost effective computing resources. Resource management is central to cloud compu-

ting, where resource allocation and utilization over the cloud are efficient and diversified: Some of which are named 

memory, storage, and bandwidth. Management of cloud resources is another key challenge in this area; we can ex-
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press this in terms of balancing users / applications demands and maximizing cloud service provider profit while 

using the resources in the most efficient way. Virtualization technology is widely used in cloud data centers to opti-

mally utilize the available resources and minimizing energy consumption in cloud data centers in order to improve 

overall cloud infrastructure efficiency [1]. 

The problem of cloud computing is a complex and multifaceted problem that requires lots of resource management 

as steps [2]. This leads to the fact that cloud service providers have to allocate resources in fairness and efficiency 

regarding their clients’ Service Level Agreements (SLAs) [3]. As the requirements of cloud resources go up, espe-

cially the need for advanced resource provisioning, job scheduling and load balancing implies, it is practically infea-

sible to achieve. 

Right provisioning of cloud based resources is required to make sure that cloud based applications and services 

have access to the desired computing, storage and networking resources to function well. When either under provi-

sioned or over provisioned, this can result in performance degradation and service disruptions or wasteful resource 

consumption and increased operational costs [4]. To this end, researchers produced proactive provisioning ap-

proaches which rely on predictive models to anticipate resource requirements and to prepare the system in ad-

vance. Overall, these predictive techniques achieve an improved response time in terms of cost versus resources, as 

compared to reactive provisioning methods [5]. 

Of course, it is also important to consider the scheduling of cloud workloads. Traditional scheduling approaches 

may not, however, keep up with the increasing diversity of the demand for cloud resources. Poor scheduling can 

decrease the service life of physical infrastructure and increase response time to user requests. Cloud providers and 

researchers have tackled this challenge with machine learning techniques demonstrating promise of scheduling and 

allocating resources effectively in these complex large scale environments [6]. Underneath all of this, the im-

portance of ensuring that there are good resource provisioning and scheduling policies in the cloud environment 

cannot be ignored. Reliable, performant and cost efficient cloud based applications and services depend on effective 

management of the cloud resources [7]. For cloud computing to continually evolve as the demands of users in-

crease, current research and innovation will be necessary for promoting competitive interests on the part of cloud 

providers.  There is recent research on using the machine, deep, or reinforcement learning approaches to resource 

management in cloud computing. That is, these techniques take into account cloud workload dynamics unpredicta-

bility in order to develop more intelligent and adaptive resource allocation strategies. As the cloud computing land-

scape matures, effective and efficient resource management will become more critical leading to even more innova-

tion and advancement in this field [8]. 

The authors in [9] put forward workflow scheduling methods aiming for the energy efficient by using voltage scal-

ing to enhance the makespan and energy consumption balance. The resource selection, task merging and resource 

reuse mechanism, as proposed in [10], minimizes execution costs and energy consumption while ensuring workflow 

deadlines in [10]. The dynamic voltage and frequency scaling technique is combined in [12] with a list based sched-

uling algorithm to reduce energy consumption while considering workflow deadline. The authors presented a 

scheduling algorithm in [13] that takes account of both power and temperature to minimize the energy used for 

computing and cooling as a task of a workflow is executed while meeting the deadline. A hybrid workflow schedul-

ing method for minimizing energy consumption and resource utilization while satisfying workflow deadlines and 

dependence constraints are presented in [14]. In [15], the authors have developed a Firefly inspired workflow 

scheduling algorithm to minimize makespan while maintaining the reliability. 

However, in [16], the authors implemented global MapReduce across federated clusters serving to increase the 

computing efficiency. Hadoop adds network awareness to the FIFO and FAIR schedulers. A scheduling algorithm to 

increase profit was proposed to keep delay limits within certain limits on the service delay time for delay tolerant 

tasks in [17]. The authors tackled the task scheduling problem through heuristic algorithms namely PSO and SA. 

The authors in [18] address cost effective load scheduling to achieve high throughput at low costs. 

We developed a workload aware algorithm in [19] to maximize revenue for scheduling applications in software de-

fined networking enabled data centers. Virtual machines latency and their method is to minimize the network la-

tency. In [20], an enhanced genetic algorithm and priority queue for task scheduling and resource provisioning are 

employed, and the method is analyzed with respect to its accuracy employing a behavioral model. To address 
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schedule completion time, delay and energy consumption in job shop scheduling problems, the authors [21] pre-

sented a hybrid adaptive differential evolution algorithm. 

In [22] the author evaluated a number of scheduling schemes using the Vienna 5G SL simulator and developed a 

reinforcement learning based scheduling algorithm. Task scheduling was used in [23] in an edge cloud for edge 

cloud performance improvement via reinforcement learning and representation learning based on the cloud infra-

structure. In [24], the authors assume that tasks are interdependent, and their method is applied to online schedul-

ing to promote resource utilization and reduce makespan. Their work relies on many agents in deep reinforcement 

learning. They use reinforcement learning for grid task scheduling and resource provisioning in [25]. Different 

learning layers on top of an MBox are used to allocate heterogeneous resources with different processing capacities 

for tasks, and to choose suitable clusters which are used for tasks to be scheduled. A hierarchical resource allocation 

framework using deep reinforcement learning was realized in [26], where a global layer handles resource allocation 

from VMs to servers and a local layer controls resource distribution under power consumption. With our proposed 

model an energy consumption decrease result was obtained. For intelligent resource allocation and effective con-

figuration, deep learning methods were also applied in [27]. Although it’s no longer the beating heart of the aggre-

gation, cloud resource management is still an important issue, not only for performance, but also for supporting 

profitability and energy conservation in scalable environments. The studies of Lage-Freitas et al. (2017) [28] high-

light the impact of profit driven management where the resource optimization is paramount in delivering cost effec-

tive outcomes. Similarly, Parikh et al. [29], provide a helpful culling of resource management methods, which help 

frame the challenges cloud providers face in maintaining efficiency and supporting wide ranging workloads. 

More recently, different studies in the evolving landscape of cloud scheduling have shown us there is a complex 

balancing act between energy efficiency and performance demands. As an example, Swain et al. (2022) [30] 

demonstrate the synergy between adaptive scheduling and energy savings as well as high performance. On the oth-

er hand, Le et al. (2013) [31] study how deadline constrained scheduling, in which tasks need to meet tight dead-

lines, guides dynamic resource provisioning, an essential feature of today’s cloud strategies. The adaptability and 

self learning capabilities of reinforcement learning models utilizing both SARSA and LSTDQL hold promise in the 

problem of workload scheduling. I demonstrate that the state action values which balance energy and time efficien-

cy in continuous environments learned through continual feedback can be learned by SARSA, demonstrating its 

effectiveness in multiple environments. This research fills this gap by taking SARSA and applying it in conjunction 

with a makespan-energy tradeoff strategy that considers the make and energy metrics in combination in a manner 

never explored before in the literature. 

PROPOSED METHODOLOGY 

We develop our approach which optimizes workload scheduling in cloud computing environments using a SARSA 

based reinforcement learning (RL) model. The goal of our model is to balance two competing objectives: It is to 

minimize makespan (total time taken to complete all tasks) and to minimize the energy consumption. Sustaining 

the cloud resources and high QoS needs this balance achieved. In this subsection, we specify our model state, action 

spaces, the reward function and the SARSA update process towards making real time, efficient scheduling decisions 

in flexible cloud environment. 

We combine work on cloud computing optimal energy usage and task scheduling with extant methods to optimize 

energy usage and task scheduling in such environments. Unlike more static approaches, the ability to perform 

adaptive decision making, such as the ability for the system to continuously adapt as the cloud workload changes, is 

conferred by reinforcement learning. In the following, we detail each component of this approach. 

3.1 Problem Statement and Objective 

The main challenge in scheduling cloud workloads is minimizing the task completes time without excessive energy 

consumption. This objective is challenging due to a natural conflict: Usually, reducing makespan requires using 

many Virtual Machines (VMs) to execute tasks quickly, causing energy consumption. On the other hand, if you en-

ergize the savings, you will use fewer VMs and could not achieve the same makespan. 

To solve this issue, we develop a scheduling problem into a reinforcement learning problem wherein an agent inter-

venes with the cloud environment and makes its task allocation strategy only finer over time. During a cycle of ac-
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tions and rewards, the learning framework provides the agent with a means to achieve a balance between fast task 

completion and energy efficiency. 

We formally represent the problem with a tuple (S,A,R,γ), where: 

• S: The state space, representing the current status of resources and tasks in the cloud environment. 

• A: The action space, defining possible task-to-VM assignments. 

• R: The reward function, which quantifies trade-offs between makespan and energy consumption. 

• γ: The discount factor, which controls how strongly the agent values future rewards over immediate ones. 

3.2 State Space Definition 

At time t, the state captured the cloud environment’s configurations at time t, consisting of the current load of each 

VM, as well as the set of tasks waiting in the queue at time t, denoted by St. We define the state as: 

 

where: 

• VMi,load: The load on the ith VM at time t, expressed as a percentage of its capacity. 

• Tasksqueue: The list of tasks waiting for allocation, each with specified resource needs and deadlines. 

The state space is all of the relevant elements to scheduling decision, the context which the SARSA agent needs in 

order to make optimal choices. The model captures these dynamic factors, and utilizes them to always be respon-

sive to real time changes in workload and resource availability through an appropriate scheduling strategy. 

3.3 Action Space 

The assignment of tasks to VMs resulting in a feasible combination represents the action space A. Similarly, at each 

time step the agent selects an action at which specifies a VM to be assigned a certain task. This action is represented 

as: 

 

where: 

• i: Refers to one of the M VMs in the cloud system. 

• j: Refers to one of the N tasks currently awaiting allocation. 

A task-to-VM assignment is represented by each possible aij pair. After evaluating these possible assignments in 

real time by combining the task’s resource requirements with the VM’s current load considering this, the SARSA 

agent is able to adjust its scheduling decisions to changes in the state environment. 

3.4 Reward Function 

The model is integral to the reward function R which the agent constrains its actions in such a way to optimistically 

minimize the use of make span and ideally control energy consumption. At each time step, the reward Rt reflects 

how well the agent meets these objectives: 

 

where: 

• Makespant: The cumulative time required to complete all tasks scheduled up to time t. 

• Energyt: The total energy consumed by all active VMs at time t. 

• α and β: Weighting coefficients that adjust the importance of minimizing makespan versus energy consump-

tion. 

Makespan Calculation 
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The makespan (denoted Makespant) is the sum of time to complete the assigned tasks. It is calculated as the maxi-

mum of the completion times for each VM, expressed as: 

 

Ci is the completion time of the tasks assigned to VMi. To encourage the agent to take decisions that decrease task 

duration, we include a reward function that penalizes higher makespan values. 

Energy Consumption Calculation 

Energyt is represented as the aggregate total energy that the active VMs use at time t. We calculate this energy con-

sumption based on the power drawn by each VM in active and idle states as follows: 

 

where: 

• Pactive(i): The power consumed by VMi when it is actively executing tasks. 

• Tactive(i): The total time for which VMi remains active. 

• Pidle(i): The power consumed by VMi when idle. 

• Tidle(i): The total time for which VMi is idle. 

This reward function encourages the agent to minimize active VM usage, thus reducing overall energy consumption 

while balancing efficiency. 

3.5 SARSA Update Rule and Learning Process 

The State Action Reward State Action (SARSA) algorithm allows the agent to update in an iterative manner, its ac-

tion value function Q(s,a), based on feedback from the environment. The SARSA update rule is expressed as fol-

lows: 

 

where: 

• α: The learning rate, which controls the influence of new information on the current Q-value. 

• γ: The discount factor, determining the relative importance of future rewards. 

• St+1: The new state observed after taking action At. 

• At+1: The next action selected in state St+1. 

• Rt: The reward received for action At in state St. 

An initial state action pair is selected by the SARSA agent then we iteratively apply this update rule. I learn an op-

timal task allocation policy according to the Q(s,a) values which minimize the makespan and energy consumption 

by adjusting it over several episodes. 

3.6 Algorithm Workflow 

The workflow for the SARSA-based scheduling approach is as follows: 

1. Initialize Q(s,a) values for each state-action pair. 

2. Observe the initial state S0 and choose an initial action A0 using an ϵ-greedy policy. 

3. For each episode: 

o Execute At, observe the reward Rt, and transition to the new state St+1. 

o Choose the next action At+1 in St+1 using the ϵ-greedy policy. 
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o Update Q(St,At) using the SARSA update rule. 

o Set St=St+1 = and At=At+1. 

4. Terminate the episode once all tasks are completed, and repeat until convergence. 

The model achieves this refined Q-values by this iterative process and converging towards the optimal task alloca-

tion policy between energy and time efficiency. 

3.7 Adaptability and Scalability of SARSA-Based Scheduling 

The adaptability of the model comes from its dynamical response to real time changes in workload intensity and 

resource availability. The agent learns to make decision according to its context using continual updating the Q val-

ues thereby maintaining efficiency even in high intensity cloud scenarios. Also, the model scales well to multiple 

cloud configurations. 

RESULTS AND DISCUSSION 

Task completion time, energy consumption and Quality of Service (QoS) compliance were also considered in evalu-

ating our proposed SARSA-based reinforcement learning (RL) framework on key metrics in order to optimize 

trade-offs between energy efficiency and makespan. A comparison of our model with several recent and leading 

workload scheduling algorithms like Q-Learning and Deep Q Network (DQN), genetic algorithm (GA) based sched-

uling is presented to assess our model’s flexibility and the ability to face different workloads in the cloud. We sup-

port the findings of Fan et al. (2022) [32] and Swain et al. (2022) [30] in that efficient scheduling has a positive 

effect on both cost and service quality. Our results align with those in these studies, indicating that reinforcement 

learning represents a secure scheduling solution that can optimize VM usage, and adapt dynamically to require-

ments for tasks. 

5.1 Comparative Analysis of Key Metrics 

In evaluating the SARSA-based framework, we benchmarked its performance on average makespan, energy con-

sumption, and QoS compliance against three prominent algorithms: Q-Learning, DQN, and GA. We present a 

summary of these metrics for each algorithm under standard workload conditions in Table 1. 

Table 1: Comparative Performance Metrics across Scheduling Algorithms 

Metric SARSA-Based Q-Learning DQN GA 

Average Makespan (s) 3.52 4.15 4.45 5.12 

Energy Consumption (kWh) 1.48 1.87 1.95 2.10 

QoS Compliance (%) 94.8 89.1 90.2 85.5 

5.1.1 Makespan Analysis 

The average makespan of the SARSA based model was shown in Fig. 1 as significantly shorter than other algo-

rithms. It specifically reduced task completion time by ~15% compared to DQN, ~25% compared to Q-learning, and 

~31% compared to GA based scheduling. SARSA’s ability to dynamically allocate tasks leads to this makespan effi-

ciency as it keeps bottlenecks under control when high load insults in doing so by scheduling time sensitive tasks 

first resulting in faster process without reducing on energy savings. 
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Figure 1: Makespan Comparison across Scheduling Algorithms 

 

This adaptive learning approach is capable of leveraging real time VM status and task urgency to reduce makespan, 

which is the major cause for the ability of SARSA to reduce makespan. SARSA updates the state-action values con-

tinuously and thus prioritizes VMs with higher availability, improving task throughputs. 

5.1.2 Energy Consumption Analysis 

Cloud computing has always been energy inefficient, and in high density data centers it is more so. Table 2 summa-

rizes the results and we found that for both problems, the SARSA based model outperforms all the other algorithms 

with a 21% difference if compared with DQN and 29% difference with GA. 

Table 2: Energy Consumption (kWh) by Scheduling Algorithm and Task Intensity 

Task Intensity SARSA-Based Q-Learning DQN GA 

Low 1.25 1.58 1.67 1.90 

Medium 1.48 1.87 1.95 2.10 

High 1.75 2.05 2.22 2.40 

The reason for the drastic savings in energy by the SARSA is due to its reinforcement learning based reward mech-

anism that discourages the usage of VMs on unneeded scale to avoid unnecessary power usage. The performance of 

SARSA is nearly stable under high workload intensity and its energy consumption is nearly stable, compared with 

other algorithms. SARSA is capable of minimizing idle VM energy by scaling resources as needed only to meet QoS 

standards, which is captured by this. 
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Figure 2: Energy Consumption at Various Workload Intensities 

5.2 Quality of Service (QoS) Compliance 

Contributing to SARSA is one of SARSA’s biggest strength: its high QoS compliance which ensures up holding of 

SLA agreements more consistently than other models. Table 3 shows that SARSA achieves a QoS compliance rate of 

94.8%, which greatly outperforms the other algorithms in high load scenarios especially. 

Table 3: QoS Compliance (%) Across Scheduling Algorithms and Workload Conditions 

Workload Condition SARSA-Based Q-Learning DQN GA 

Low 96.3 92.4 93.1 89.2 

Medium 94.8 89.1 90.2 85.5 

High 92.5 86.5 87.0 81.0 

This is due to the dynamic adaptation of the SARSA based model to workload fluctuations, adjusting resource allo-

cations to reduce delays of time sensitive tasks. This level of adaptability ensures that task deadlines are met more 

consistently resulting in fewer SLA violations and better user satisfaction. 

5.3 Comparative Performance Analysis of SARSA in High-Intensity Scenarios 

SARSA effectiveness becomes even more apparent in high demand environments. In addition, we performed addi-

tional experiments, also increasing task arrival rates to simulate peak conditions, and confirmed in Table 4 that the 

SARSA algorithm uses less energy consumption and a faster makespan than the DQN and GA algorithms. 

Table 4: Makespan and Energy Consumption at High-Intensity Workload 

Algorithm Average Makespan (s) Energy Consumption (kWh) 

SARSA-Based 4.10 1.75 

Q-Learning 4.82 2.05 

DQN 4.90 2.22 

GA 5.95 2.40 
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Figure 3: Performance Under High-Intensity Workload 

 

SARSA's feedback driven model is found to schedule tasks better and scale its resources better, under stress condi-

tions, thereby improving its performance. In a cloud environment where workloads last minute, this capability is 

critical to achieve a steady resource optimization without compromising the performance. 

5.4 Trade-Off Analysis of Makespan and Energy Consumption 

In cloud workload scheduling, makespan and energy consumption are critical trade offs. Figure 4 shows how our 

SARSA based framework does address this balance well, as the relationship between makespan and energy con-

sumption is shown, for each algorithm. 

 

Figure 4: Trade-Off Analysis of Makespan vs. Energy Consumption 

 
SARSA’s reward based mechanism makes it capable of obtaining a greater trade off as energy consumption is very 

minimal even as makespan is minimized (indicating optimized VM usage). However, GA based models exhibited 

much steeper energy consumption increase when makespan was reduced, indicating anomalies in VM allocation. 
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5.5 Sensitivity Analysis of SARSA Model Parameters 

To validate further the SARSA’s robustness, we also carry out a sensitivity analysis by adjusting the learning rate 

(α), discount factor (γ) and exploration rate (ϵ). In Table 5, we give an overview of SARSA’s performance as a func-

tion of these parameters. 

Table 5: Sensitivity Analysis of SARSA Parameters 

Parameter Value Average Makespan (s) Energy Consumption (kWh) QoS Compliance (%) 

α\alphaα 0.3 3.72 1.50 93.5 

 0.5 (optimal) 3.52 1.48 94.8 

 0.7 3.45 1.52 94.2 

γ\gammaγ 0.8 3.68 1.55 92.9 

 0.9 (optimal) 3.52 1.48 94.8 

ϵ\epsilonϵ 0.1 3.56 1.50 94.5 

 0.2 3.62 1.54 93.8 

We find that α = 0.5, γ = 0.9 and ϵ = 0.1 yielded best results, finding a fine balance between exploration and exploi-

tation while maintaining stable energy and time efficiency. When these values were moved outside of the optimum 

range, performance degraded both in terms of makespan and of energy consumption. 

CONCLUSION AND FUTURE WORK 

I presented a SARSA based reinforcement learning model for performance and energy tradeoffs in cloud workload 

scheduling in this paper. This provides for an extremely effective resource utilization management with the model's 

ability to adapt to varying cloud conditions. In future research, this model could be combined with hybrid cloud 

architectures or extended to support edge computing environments in order to improve real time scalability. 

REFERENCES 

[1] Lage‐Freitas, A., Parlavantzas, N. and Pazat, J., 2017. Cloud resource management driven by profit augmenta-

tion. Concurrency and Computation: Practice and Experience, 29(4), p.e3899. 

[2] Parikh, S.M., Patel, N.M. and Prajapati, H.B., 2017. Resource management in cloud computing: classification 

and taxonomy. arXiv preprint arXiv:1703.00374. 

[3] Swain, S.R., Singh, A.K. and Lee, C.N., 2022. Efficient resource management in cloud environment. arXiv 

preprint arXiv:2207.12085. 

[4] Selvi, S.T., Valliyammai, C. and Dhatchayani, V.N., 2014, April. Resource allocation issues and challenges in 

cloud computing. In 2014 International Conference on Recent Trends in Information Technology (pp. 1-6). 

IEEE. 

[5] Adane, P.D. and Kakde, O.G., 2018, April. Predicting Resource Utilization for Cloud Workloads Using Ma-

chine Learning Techniques. In 2018 Second International Conference on Inventive Communication and 

Computational Technologies (ICICCT) (pp. 1372-1376). IEEE. 

[6] Chen, J., Wang, Y. and Liu, T., 2021. A proactive resource allocation method based on adaptive prediction of 

resource requests in cloud computing. EURASIP Journal on Wireless Communications and Network-

ing, 2021(1), p.24. 

[7] Zhou, G., Tian, W., Buyya, R., Xue, R. and Song, L., 2024. Deep reinforcement learning-based methods for re-

source scheduling in cloud computing: A review and future directions. Artificial Intelligence Review, 57(5), 

p.124. 

[8] Le, G., Xu, K. and Song, J., 2013, April. Dynamic resource provisioning and scheduling with deadline con-

straint in elastic cloud. In 2013 International Conference on Service Sciences (ICSS) (pp. 113-117). IEEE. 

[9] Lee YC, Zomaya AY. Energy conscious scheduling for distributed computing systems under different operating 

conditions. IEEE Trans Parallel Distrib Syst 2011;22(8):1374–81. 



208  

 
 

Lavanya V et al. / J INFORM SYSTEMS ENG, 10(1s) 

[10] Li Z, Ge J, Hu H, Song W, Hu H, Luo B. Cost and energy aware scheduling algorithm for scientific workflows 

with deadline constraint in clouds. IEEE Trans Serv Comput 2018;11(4):713–26. 

[11] Safari M, Khorsand R. PL-DVFS: combining power-aware list-based scheduling algorithm with DVFS tech-

nique for real-time tasks in cloud computing. J Supercomput 2018;74(10):5578–600. 

[12] Qureshi B. Profile-based power-aware workflow scheduling framework for energy-efficient data centers. Fu-

ture Gener Comput Syst 2019; 94:453–67. 

[13] Rani R, Garg R. Power and temperature-aware workflow scheduling considering deadline constraint in the 

cloud. Arab J Sci Eng 2020;45 (12):10775–91. 

[14] Fan G, Chen X, Li Z, Yu H, Zhang Y. An energy-efficient dynamic scheduling method of deadline-constrained 

workflows in a cloud environment. IEEE Trans Netw Serv Manage 2022 (in press). 

[15] Adhikari, M., Amgoth, T., Srirama, S.N., 2020. Multi-objective scheduling strategy for scientific workflows in 

cloud environment: A firefly-based approach. Appl. Soft Comput. 106411. 

[16] Kondikoppa, P., Chiu, C.-H., Cui, C., Xue, L., Park, S.-J., 2012. Network-aware scheduling of mapreduce 

framework ondistributed clusters over high speed networks. In: Proceedings of the 2012 Workshop on Cloud 

Services, Federation, and the 8th Open Cirrus Summit. ACM, pp. 39–44. 

[17] Yuan, H., Bi, J., Tan, W., Li, B.H., 2016. CAWSAC: Cost-aware workload scheduling and admission control for 

distributed cloud data centers. IEEE Trans. Autom. Sci.Eng. 13 (2), 976–985. 

[18] Yuan, H., Bi, J., Tan, W., Li, B.H., 2017a. Temporal task scheduling with constrained service delay for profit 

maximization in hybrid clouds. IEEE Trans. Autom. Sci.Eng. 14 (1), 337–348. 

[19] Yuan, H., Bi, J., Zhou, M., Sedraoui, K., 2018. WARM: Workload-aware multiapplication task scheduling for 

revenue maximization in SDN-based cloud data center. IEEE Access 6, 645–657. 

[20] Keshanchi B, Souri A, Navimipour NJ (2017) An improved genetic algorithm for task scheduling in the 

cloud environments using the priority queues: formal verification, simulation, and statistical testing. J Syst 

Softw 124:1–21 

[21] Wang G-G, Gao D, Pedrycz W. Solving multiobjective fuzzy job-shop scheduling problem by a hybrid adaptive 

differential evolution algorithm. IEEE Trans Industr Inf 2022;18(12):8519–28. 

[22] Tang, Zhiqing; Jia, Weijia; Zhou, Xiaojie; Yang, Wenmian and You, Yongjian (2020). 

[23] Representation and Reinforcement Learning for Task Scheduling in Edge Computing. IEEE Transactions 

on Big Data, 1–1. 

[24] Asghari, Ali; Sohrabi, Mohammad Karim and Yaghmaee, Farzin (2020). Online scheduling of dependent 

tasks of cloud workflows to enhance resource utilization and reduce the makespan using multiple reinforce-

ment learning-based agents. Soft Computing. 

[25] Orhean AI, Pop F, Raicu I (2018) New scheduling approach using reinforcement learning for heterogeneous 

distributed systems. J Parallel Distrib Comput 117:292–302 

[26] Liu N, Li Z, Xu J, Xu Z, Lin S, Qiu Q, Tang J, Wang Y (2017) A hierarchical framework of cloud resource al-

location and power management using deep reinforcement learning. In: 2017 IEEE 37th International Con-

ference on Distributed Computing Systems (ICDCS). IEEE, pp 372–382 

[27] Zhang Yu, Yao J, Guan H (2018) Intelligent cloud resource management with deep reinforcement learning. 

IEEE Cloud Comput 4(6):60–69 

[28] Lage-Freitas, A., Parlavantzas, N., & Pazat, J. (2017). Cloud resource management driven by profit augmen-

tation. Concurrency and Computation: Practice and Experience, 29(4), e3899. 

[29] Parikh, S. M., Patel, N. M., & Prajapati, H. B. (2017). Resource management in cloud computing: classifica-

tion and taxonomy. arXiv preprint arXiv:1703.00374. 



209  

 
 

Lavanya V et al. / J INFORM SYSTEMS ENG, 10(1s) 

[30] Swain, S. R., Singh, A. K., & Lee, C. N. (2022). Efficient resource management in cloud environment. arXiv 

preprint arXiv:2207.12085. 

[31] Le, G., Xu, K., & Song, J. (2013). Dynamic resource provisioning and scheduling with deadline constraint in 

elastic cloud. IEEE ICSS, 113-117. 

[32] Fan, G., Chen, X., & Zhang, Y. (2022). An energy-efficient dynamic scheduling method of deadline-

constrained workflows in a cloud environment. IEEE Trans Netw Serv Manage (in press). 

 


