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Human Activity Recognition (HAR) using wearable sensors has emerged as a 

significant research area that has found a key role in fitness tracking, ambient assisted 

living, and smart environments. Traditional machine learning (ML) methods with 

handcrafted features often exhibit limited ability in learning complex patterns and 

adaptability across datasets. To overcome this issue, deep learning (DL) techniques 

offer improved performance by automating feature extraction and capturing sequential 

patterns. However, DL-based HAR methods often face limitations such as high 

computational complexity and overfitting risks with deeper networks. To address these 

limitations, this paper proposes a novel, lightweight, attention-deep learning-based 

framework tailored for wearable sensor-based HAR (WHAR). The proposed method 

processes raw accelerometer readings through a convolutional autoencoder (ConvAE) 

architecture comprising an average pooling layer as a bottleneck layer for initial feature 

extraction. A self-attention layer is added to highlight the relevant, informative 

features, followed by two stacked long short-term memory (LSTM) layers to extract the 

deeper feature representation and long-term dependencies. These features are then 

passed through fully connected layers to classify activities. A scaling-based data 

augmentation technique is employed to address the imbalanced nature of datasets. The 

proposed method attained accuracies of 97.21%, 95.54%, and 99.84% on three publicly 

available datasets, namely, HAR70+, HARTH and MHealth, respectively. The 

experimental results demonstrate that the proposed framework achieved better 

performance across the wearable sensor-based application by introducing attention 

mechanism and augmentation techniques. 

Keywords: WHAR, deep learning, ConvAE, self-attention, LSTM, augmentation 

technique 

 

INTRODUCTION 

The rapid advancements in wearable technologies have revolutionized the domain of healthcare and personalized 

medical interventions, smart environments and assisted living [1][2]. The primary objective of HAR is to identify and 

classify physical activities performed by individuals through sensor data, which enables real-time monitoring. In 

sensor-based HAR, wearable-based methods have gained significant attention due to their ease of use and continuous 

monitoring capabilities [3]. These applications include smart home environments, elderly care, medical diagnosis, 

and rehabilitation programs. However, classification based on precise and relevant information about human 

activities remains a computational challenge in sensor-based HAR.  Wearable sensors typically leverage inertial 

measurement units (IMU) composed of tri-axial accelerometers and gyroscopes to measure body movements in 

terms of acceleration and angular velocity. Among these, accelerometers are the most widely utilized sensors in 

wearable-based HAR due to their ability to capture fine-grained motion data that help in learning variations in body 

movement and orientation, enabling the models to classify physical activities, particularly among elders [4]. 
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Many traditional handcrafted-based methods have been proposed. In those methods, first statistical features are 

extracted from the raw sensor data, followed by various ML-based classifiers such as support vector machines (SVM), 

random forests (RF), decision trees (DT) and K-nearest neighbor (KNN) for the classification of the activities. 

However, these methods often fail to capture the complex temporal dependencies in raw accelerometer signals [5]. 

Many DL-based methods have been exploited to overcome this problem of learning complex patterns. Among them, 

convolutional neural networks (CNN), long short-term memory (LSTM) and gated recurrent networks (GRUs), along 

with their variants, are primarily leveraged due to their remarkable performance in extracting both local and long-

term dependencies from sensor-based data [6][7][8]. To further improve the feature representations, an attention 

mechanism is introduced in the deep learning methods to focus on the relevant patterns. Attention modules such as 

self-attention, multihead attention, and convolutional block attention module (CBAM) [9][10][11][12] are utilized 

after feature extraction to select the relevant features.   

Considering the advantages of accelerometer readings, CNN, LSTM, and attention mechanisms, we propose a novel 

lightweight, attention-deep-based, sensor-based HAR tailored for healthcare applications. The proposed method 

leverages the raw accelerometer readings, which, in turn, undergo ConvAE architecture with an average pooling layer 

as the bottleneck layer for initial feature extraction, followed by a self-attention layer for learning the relevant 

features. These features are passed through two LSTM layers to extract deeper feature representations and long-term 

dependencies. The extracted features are flattened and passed to four fully connected layers to classify activities from 

sensor-based data. In the proposed framework, an augmentation technique called scaling is employed to tackle the 

problem of the imbalanced nature of datasets. The proposed framework is validated on publicly available datasets – 

HAR70+, HARTH and MHealth. Detailed performance and comparative analyses for each dataset are conducted. 

Furthermore, an ablation study is performed to investigate the impact of incorporating BiLSTM, two optimizers 

(Adam and RMSProp) and two activation functions (ReLU and Leaky ReLU), both with and without augmentation 

techniques. 

The contributions of the paper are as follows:  

1. A hybrid DL-attention-based framework combining ConvAE, self-attention and LSTM for sensor-based HAR. 

2. The scaling augmentation technique is applied to address the imbalanced nature of datasets. 

3. For the validation of the proposed methodology, three sensor-based datasets, namely, HAR70+, HARTH, and 

MHealth, are exploited in which the model gained an accuracy of 97.21%, 95.54%, and 99.84%, respectively. 

4. In this paper, we also conducted an ablation study for the impact of BiLSTM layers, two different optimizers and 

activation functions with and without augmentation techniques. 

The structure of the paper is as follows: Section 2 discusses HAR approaches based on deep and attention 

mechanisms. Section 3 details the proposed method, which utilizes deep learning algorithms and attention 

mechanisms. Section 4 describes the experimental setup for validations, which comprises details of datasets, 

performance analysis based on confusion matrices, training/validation loss/accuracy graphs, testing accuracy, 

comparative analysis, and ablation study for each dataset. Section 5 comprises the conclusions from the proposed 

method.  

LITERATURE REVIEW 

HAR using wearable sensors has become increasingly significant for healthcare monitoring and fitness tracking 

applications. Traditional ML approaches with handcrafted features often fail to generalize well due to their limited 

ability to capture complex spatial and temporal features. In contrast, DL methods demonstrate exemplary 

performance in feature extraction and classification phases. Further enhancing the feature representations, attention 

mechanisms have been adopted. This section discusses some DL and attention-based WHAR methods.  

2.1. Deep Learning-based WHAR methods 

Motivated by the automated feature of DL algorithms, Gupta (2021) [13] explores a DL approach that employs CNN 

and GRU algorithms to extract spatial and sequential dependencies. Similarly, Thu and Han (2021) [14] proposed a 

two-stage framework that focuses on the extraction of local features via CNN1D and BiLSTM from the window-based 
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sensor data at the data level, while global BiLSTM is employed for extracting the long-term dependencies from the 

adjacent windows as global features. 

Another method is introduced by Luwe et al. (2022) [15] that leverages CNN1D and BiLSTM to extract high-level 

representative features and long-term dependencies sequentially. Chandramouli et al. (2024) [16] designed a hybrid 

CNN-BiLSTM method that leverages the undersampling technique as pre-processing for the detection of activities 

performed by the elderly. Additionally, Nazar and Jalal (2024) [17] proposed a HAR method in which six statistical 

features are extracted and passed to a binary grey wolf optimizer (GWO), followed by multilayer perceptron (MLP) 

for optimization and classification, respectively. 

2.2. Attention-based WHAR methods 

Inspired by the benefits of attention mechanisms, Nithin et al. (2021) [18] proposed an attention-based deep learning 

framework that focuses on the classification of activities performed by the elderly. The authors extended baseline 

deep convolutional long short-term memory (DeepConvLSTM) architecture by adding two attention modules. The 

proposed framework attained an improved accuracy. Similarly, Al-Qaness et al. (2023) [19] introduced a multilevel-

based residual network that comprises an initial block and residual block in a parallel manner. The initial block 

consists of CNN1D, batch normalization, and ReLU, while the residual block consists of two CNN1D, batch 

normalization, ReLU layers and a residual connection. The resulting features are then concatenated and fed to BiGRU 

to extract temporal dependencies. An attention layer is added to extract the meaningful features for the classification 

of activities. Similarly, Zhang and Xu (2024) [20] introduced a multilevel network that leverages CNN and BiGRU to 

capture spatial and temporal dependencies. Along with it, spatial and temporal attention modules are designed to 

extract spatiotemporal attention maps in order to learn deeper feature representation. Meanwhile, a HAR method is 

introduced by Tang et al. (2023) [21], addressing the improvement in the CNN-based method without increasing the 

complexity and memory. In the proposed method, the hierarchical split idea is applied to extract multiscale features.  

Ullah et al. (2024) [22] developed a CNN-LSTM DL-based method that leverages a squeeze-and-excite (SE) attention 

module to enhance interdependencies and sparse learning in the fully connected layers. To address the long-term 

dependencies challenges in the domains of IoT, AbdelRaouf et al. (2024) [23] presented a framework that utilizes 

CNN1D, GRU and MHA to extract the spatial and temporal dependencies. Another method proposed by 

Mekruksavanich et al. (2024) [11] utilizes CNN and BiLSTM for the sequential extraction of spatio-temporal features. 

The extracted features are then passed through the CBAM mechanism to select relevant features before the 

classification of sports and daily activities. 

Despite notable advancements in DL and attention-based frameworks for WHAR, several critical challenges remain 

unaddressed. Firstly, some methods employ ensemble frameworks that lead to a complex architecture, high 

computational cost and overhead. Secondly, it is observed that most approaches utilized attention modules at the 

end of feature extraction to select the informative features. Furthermore, the issue of class imbalance in the publicly 

available HAR datasets adversely affects the classification performance for minority classes. 

To address the aforementioned issues, this paper proposes a lightweight, attention-deep-based framework that 

combines ConvAE for initial feature extraction, a self-attention layer, and two stacked LSTM layers to extract the 

long-term dependencies. The model is designed to operate efficiently on raw accelerometer data and is validated on 

three publicly available datasets. Furthermore, an augmentation technique is applied to address the imbalanced 

nature of the dataset, which improves the performance of the proposed method. 

PROPOSED METHOD 

This section details the components of the proposed WHAR method: ConvAE, LSTM and self-attention mechanism. 

The proposed approach for the classification of activities is discussed in detail. 

3.1. Convolutional Autoencoder (ConvAE) 

Autoencoder (AE) is a type of neural network designed to learn efficient feature representations from the input data. 

An AE consists of two primary elements: an encoder, which compresses the input data into a lower-dimensional 

latent representation and a decoder, which reconstructs the input from the compressed representations [8]. The 
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ConvAE extends the concept of traditional AE by integrating convolutional layers in encoders and decoders for the 

extraction of local patterns, hence resulting in robust and generalized feature extraction [24]. The encoding and 

decoding processes are mathematically represented as Equations 1 and 2.  

The input data is compressed into a latent space 𝑍𝑙  at the encoder.  

𝑍𝑙 = 𝜙 (∑ 𝑊𝑒
(𝑙)

∗ 𝑍(𝑙−1)

𝑙∈𝐿

+ 𝑏𝑒
(𝑙)

) , 𝑍0 = 𝑋 (1) 

The input data is reconstructed from the encoded features at the decoder. 

𝑍̂(𝑙) = 𝜙 (∑ 𝑊𝑑
(𝑙)

⊛ 𝑍̂(𝑙−1)

𝑙∈𝐿

+ 𝑏𝑑
(𝑙)

) , 𝑋̂ =  𝑍̂(𝑙) 
(2) 

where X or  𝑍0 denotes the input signal, which is compressed into a latent representation 𝑍𝑙  at the encoder while 𝑋̂ or 

𝑍̂(𝑙) denotes the reconstructed input signal at decoder at layer 𝑙. The encoder and decoder involve the convolutional 

and deconvolutional operations, represented by ∗  and ⊛ respectively. Here  𝑊𝑒, and 𝑏𝑒 refers to the weight and bias 

of the encoder, 𝑊𝑑, and 𝑏𝑑 corresponds to those of decoder. The symbol 𝜙 denotes the activation functions applied 

during both processes. 

3.2. Long Short-Term Memory (LSTM) 

LSTM is a type of recurrent neural network (RNN) designed to capture and retain the long-term dependencies in 

sequential data [8][25]. It addresses the vanishing gradients problem by introducing a unique memory cell that 

selectively stores or forgets the information as needed. It consists of four components: input gate, forget gate, output 

gate and memory, which regulate the flow and storage of relevant data while discarding unnecessary information. 

The mathematical representation of the gates and working in the LSTM cell is presented in Equations 3 to 8. 

𝑖𝑡 =  𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖) 

𝑓𝑡 =  𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓) 

𝑜𝑡 =  𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

𝑐̃𝑡 = tanh (𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑐) 

𝑐𝑡 =  𝑓𝑡 ∗  𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐̃𝑡 

ℎ𝑡 = tanh(𝑐𝑡) ∗ 𝑜𝑡 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

where  𝑖𝑡, 𝑓𝑡 and 𝑜𝑡 represent input gate, forget gate, and output gate, respectively. The variable 𝑥𝑡 denotes the input 

at current timestamp, while ℎ𝑡−1 is the output of previous LSTM block at timestamp t-1 and ℎ𝑡 is the current hidden 

state. The weights and biases associated with each gate are denotes as 𝑤𝑥 and 𝑏𝑥, where 𝑥 refers to the specific gate. 

The candidate cell state at timestamp t is represented by 𝑐̃𝑡 and the actual cell state (memory cell) at timestamp t is 

denoted by 𝑐𝑡. 

3.3. Self-Attention Mechanism 

The self-attention mechanism focuses on the relationships between different elements of the input data, computing 

a score for each pair of elements to capture long-term dependencies and contextual information [26]. This 

mechanism is done by transforming the input into three matrices- queries, keys and values, calculating the attention 

scores of each element with the help of the dot product of query and key matrices and multiplying the SoftMax output 

with the value matrix. This mechanism helps model to dynamically emphasize the most relavant information from 

the input sequence. The working of self-attention is depicted in Equations 9 and 10. 

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉    (9) 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉  (10) 

where 𝑋 denotes the input sensor sequence, that transformed into 𝑄, 𝐾, 𝑉 matrices with learnable weight matrices 

denoted as  𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉  for query, key, and value transformations, respectively. The attention score matrix is 

computed as 𝑄𝐾𝑇 with scaling factor, √𝑑𝑘 where 𝑑𝑘 is the dimensionality of the key vectors, to stabilize gradients 

during training.  

3.4. Proposed WHAR Framework 

The proposed method comprises three steps: pre-processing, feature extraction and classification of human activities. 

The architecture of the proposed method is illustrated in Figure 1. 

Pre-Processing 

The accelerometer readings are chosen from the raw data in three directions for the proposed method. Further, an 

augmentation technique called scaling is applied for the imbalanced classes. The scaling technique incorporates the 

variations in the amplitude of the sensor signal with a random scaling factor. These augmented readings are then 

converted into frames using the sliding window technique, which has a window size of 50 with a fixed overlap of 10.   

Fe ature Extraction 

The formulated frames undergo the attention-deep-based model for feature extraction. Initially, the frames are 

passed through an encoder framework that comprises two convolutional layers with 64 and 32 filters, a max pooling 

layer and a batch normalization layer to capture the low-level features. This encoder representation is then further 

compressed using an average pooling bottleneck layer. The decoder subsequently reconstructs the features with 

convolutional and upsampling layers, which aim to preserve the essential information from the original input.  

A self-attention layer with 64 units is introduced to extract relevant features. The attention-based features are then 

processed through two LSTM layers with 64 and 32 units for richer feature extraction.  

Classification 

The extracted features are then passed to three fully connected layers with 32, 16, and 8 units with the Leaky ReLU 

activation function. The final layer is introduced with units the same as a number of classes and SoftMax activation 

function. To address the problem of overfitting, a dropout layer is added with 0.2%. The proposed method is 

presented in Algorithm 1. 

Algorithm 1: Proposed Method 

Step 1: Initialize  

❖ Define input shape as (frame_size, 6) 

Step 2: Apply ConvAE architecture  

❖ Create Conv1D (64) → LeakyReLU → MaxPooling1D 

❖ Add Conv1D (32) → LeakyReLU 

❖ Apply BatchNormalization 

❖ Downsample using AveragePooling1D 

❖ Apply BatchNormalization again 

❖ Add Conv1D (32) → UpSampling1D → Conv1D (64) 

Step 3: Apply Self-Attention Layer 

❖ If (attention is active) then 

    Search: 

Compute Q, K, and V matrices 
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Calculate scaled dot-product attention 

Output attention-weighted values 

    End 

Step 4: Compute deeper feature representations 

❖ Stack LSTM (64) → LSTM (32) with return_sequences = True 

Step 5: Classification  

❖ Flatten the output tensor 

❖ Pass through Dense (32) → Dense (16) → Dropout → Dense (8) and use LeakyReLU activation function 

and L2 regularization 

❖ Pass through Dense (number of classes) and use SoftMax activation function 

 

Figure 1: Architecture of the proposed WHAR framework 

RESULTS AND DISCUSSIONS  

This section provides details of three utilized sensor-based datasets, namely, HAR70 +, HARTH, and MHealth. For 

the performance analysis, the confusion matrix, accuracy, training/validation accuracy, and training/validation per 

epoch graph are exploited. A study on the impact of optimizers and activation functions in the proposed method with 

LSTM and BiLSTM configurations is also presented. The implementations of the proposed method are conducted in 

the Google Colaboratory Pro environment with the Keras library. The proposed framework exploits the Adam 

optimizer and sparse categorical cross-entropy loss for each dataset. In each dataset, the split ratio (train: validation: 

test) is taken as 80:15:5.  

4.1. Datasets 

This section provides the details of utilized datasets to validate the proposed method. The details are summarized in 

Table 1. 

Table 1. Details of utilized datasets (Accelerometers (Acc), Gyroscope (Gryo)) 

 

 

Datasets 

HAR70+ HARTH MHealth 

Type Wearable Wearable Wearable 

Number of Activities 7 12 12 

Number of Participants 18 22 10 

Placements Lower Back, Thigh Lower Back, Thigh Wrist, Ankle, Chest 

Sensor Type Acc Acc Acc, Gryo 

HAR70 + 
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This dataset consists of accelerometer sensor readings in three axes from the device placed on the lower back and 

thighs of 18 adults aged between 70-85. The participants perform seven activities: walking, shuffling, ascending stairs 

(upstairs), descending stairs (downstairs), standing, sitting, and lying [27]. 

HARTH 

This dataset consists of readings from two accelerometer devices worn on the thigh and lower back in three axes in 

free-living settings. Twenty-two participants perform 12 activities, namely, walking, running, shuffling, ascending 

stairs (upstairs), descending stairs (downstairs), standing, sitting, lying, cycling (sit), cycling (stand), cycling (inactive 

and sit), cycling (inactive and standing) [28].  

MHealth 

This dataset comprises the readings of ten participants performing twelve activities: standing, sitting, lying, walking, 

ascending stairs (upstairs), bending, handwaving, crouching, jogging, running, and jumping. The readings are 

collected with accelerometers and gyroscopes placed on the wrist, ankle, and chest [29]. 

4.2. Performance Analysis 

The proposed method is validated with three publicly benchmark datasets, viz., HAR70+, HARTH and MHealth. This 

section provides insights into the experimental results based on the confusion matrix and training/validation 

accuracy/loss curves. The details of hyperparameters leveraged in the implementations of models with and without 

augmentation techniques are presented in Table 2. 

Table 2. Details of hyperparameters leveraged with and without augmentation technique for each dataset 

 With Augmentation Without Augmentation 

Hyperparameters 
Datasets Datasets 

HAR70+ HARTH MHealth HAR70+ HARTH MHealth 

Considered Number of 

Activities 
7 10 12 7 10 12 

Batch Size 128 256 128 32 64 32 

Epochs 70 80 45 70 70 45 

Readings per Activity 65650 221800 70000 4300 55450 10100 

Total Readings 459550 2218000 840000 30100 554500 121200 

The HAR70+ dataset attained a strong performance with an accuracy of 97.21%. The confusion matrix, shown in 

Figure 2(a), highlights some confusion among activities with similar patterns, namely, walking, shuffling and 

downstairs, which reduces accuracy. At the same time, other classes achieve high classification rates. The 

training/validation curves in Figure 2(b) reveal that the validation accuracy stabilizes near 97% after about 10 epochs, 

with both training/validation losses converging effectively. However, slight fluctuations are observed in validation 

loss, suggesting the generalization gaps are due to inter-class similarities. 
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Figure 2: (a) Confusion Matrix (b) Training /Validation Accuracy/Loss curves for HAR70+ dataset 

The HARTH dataset achieves an accuracy of 95.54%. The confusion matrix illustrated in Figure 3(a) indicates notable 

misclassifications between walking and shuffling and standing and running. These misclassifications may be caused 

by overlapping motion patterns when recorded by inertial sensors. The training/validation curves depicted in Figure 

3(b) show stable convergence, indicating better generalization ability of the proposed method. 

 

Figure 3: (a) Confusion Matrix (b) Training /Validation Accuracy/Loss curves for HARTH dataset 

 

Figure 4: (a) Confusion Matrix (b) Training /Validation Accuracy/Loss curves for MHealth dataset 

The MHealth dataset demonstrates superior classification performance with an accuracy of 99.84%. The confusion 

matrix depicted in Figure 4(a) reveals that nearly all activities are correctly classified with minimal confusion. The 

training/validation accuracy curves in Figure 4(b) indicate rapid convergence within the first 10 epochs. 
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Furthermore, the loss curve consistently decreases and stabilizes, depicting a better generalization of the proposed 

method. 

4.3. Comparative Analysis 

This section provides the comparative analysis for three datasets with machine- and deep-learning-based methods 

based on the attained accuracy. 

 The HAR70+ dataset has been analyzed against two DL-based methods, SelfPAB and CNN + Residual BiGRU, out 

of which the latter demonstrated good performance in capturing temporal dependencies, as presented in Table 3. 

The proposed method showed comparable efficiency by integrating convolutional autoencoding with the self-

attention mechanism. 

Table 3. Comparative Analysis for HAR70+ Dataset 

Year Ref. Methods Accuracy (%) 

2023 [30] SelfPAB 93.8 

2024 [31] CNN + Residual BiGRU  97.39 

  Proposed Method  97.21 

The HARTH dataset has been explored using traditional machine and DL-based methods. Classical approaches 

utilized statistical features combined with different classifiers such as multilayer perceptron (MLP), random forests 

(RF), K-nearest neighbors (KNNs) and decision trees (DT). DL-based methods are compared with the proposed 

method, including MobileNetV3 + Efficient B0 + Wrapper Optimization, SelfPAB, and CNN-LSTM. It is observed 

from Table 4 that the proposed method outperformed existing methods with the help of captured local and long-term 

dependencies through the attention mechanism. 

Table 4. Comparative Analysis for HARTH Dataset 

Year Ref. Methods Accuracy (%) 

2023 [32] MobileNetV3 + Efficient B0 + Wrapper Optimization  88.89 

2023 [30] SelfPAB 94.6 

2023 [33] CNN - LSTM 94.56 

2023 [34] 

Statistical Features + MLP 

Statistical Features + RF 

Statistical Features + KNN 

Statistical Features + DT 

92.92 

92.42 

86.86 

84.34 

2025 [35] GAF + Deep CNN 90.7 

  Proposed Method  95.54 

In the case of the MHealth dataset, the proposed method competes with deep and transfer learning-based methods, 

including deep CNN (DCNN), CNN-LSTM, Deep CNN + BiLSTM, Deep CNN – LSTM +Self-Attention and GAF + 

Deep CNN. It can be seen in Table 5 that the proposed method surpassed all existing methods with superior 

performance in the modeling of temporal patterns in sensor-based data. 

Table 5. Comparative Analysis for MHealth Dataset 

Year Ref. Methods Accuracy (%) 

2022 [36] Deep Transfer Learning 98.63 
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Year Ref. Methods Accuracy (%) 

2022 [37] Deep CNN-LSTM + Self Attention 98.76 

2022 [38] DCNN 87.43 

2023 [33] CNN - LSTM 94.56 

2024 [16] Deep CNN + BiLSTM 99.5 

2025 [35] GAF + Deep CNN 90.7 

  Proposed Method  99.84 

4.4. Ablation Study 

This section provides the studies of the impact of the augmentation technique with two optimizers and activation 

functions, namely, Adam, RMSProp, ReLU, and Leaky ReLU, across three datasets. The efficiency of the proposed 

method is also evaluated by integrating BiLSTM layers in place of LSTM layers. In the case of without augmentation 

technique-based implementations, the overlap is taken as 5. Also, in the implementation of the proposed method 

with BiLSTM configuration, training is performed for 70 epochs in the case of the HARTH dataset.    

LSTM without Augmentation using Different Activation Functions and Optimizers 

Tables 6 and 7 present the results of the proposed method with LSTM layers without augmentation, exploited for 

RMSProp and Adam optimizers. When optimized RMSProp with Leaky ReLU activation function, the method 

delivered better accuracy than ReLU across all datasets with accuracies of 95.08%, 94.20%, and 99.09% on HAR70+, 

HARTH, and MHealth, respectively. Conversely, when utilizing the Adam optimizer, ReLU outperformed Leaky 

ReLU in the case of the HAR70+ and MHealth datasets with an accuracy of 91.57% and 98.10%, respectively. 

Table 6. Accuracy attained by the proposed method with LSTM and RMSProp (Without Augmentation) 

Activation Function 
Datasets 

HAR70+ HARTH MHealth 

ReLU 90.35 94.06 97.82 

Leaky ReLU (0.1) 95.08 94.20 99.09 

Table 7. Accuracy attained by the proposed method with LSTM and Adam (Without Augmentation) 

Activation Function 
Datasets 

HAR70+ HARTH MHealth 

ReLU 91.57 94.97 98.10 

Leaky ReLU (0.1) 90.35 95.08 97.24 

LSTM with Augmentation using Different Activation Functions and Optimizers 

As depicted in Tables 8 and 9, the augmented dataset showed better results when applied to the LSTM-based model. 

When the RMSProp optimizer is utilized with Leaky ReLU, the model attained the highest accuracies of 96.67% and 

94.74% on HAR70+ and HARTH, respectively. However, in the case of the MHealth dataset, the method attained the 

highest accuracy of 99.80% with the ReLU function. In contrast, when the Adam optimizer is employed, the Leaky 

ReLU configuration again yielded a superior performance across all datasets with accuracies of 97.21%, 95.54%, and 

99.84% on HAR70+, HARTH, and MHealth datasets, respectively. It is also observed that ReLU achieved a 

marginally better accuracy of 99.88% on the MHealth dataset. 
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Table 8. Accuracy attained by the proposed method with LSTM and RMSProp (With Augmentation) 

Activation Function 
Datasets 

HAR70+ HARTH MHealth 

ReLU 96.32 94.53 99.80 

Leaky ReLU (0.1) 96.67 94.74 99.72 

Table 9. Accuracy attained by the proposed method with LSTM and Adam (With Augmentation) 

Activation Function 
Datasets 

HAR70+ HARTH MHealth 

ReLU 96.62 93.90 99.88 

Leaky ReLU (0.1) 97.21 95.54 99.84 

BiLSTM without Augmentation using Different Activation Functions and Optimizers 

Without the augmentation technique, the BiLSTM-based configuration’s performance is summarized in Tables 10 

and 11. While leveraging the RMSProp optimizer, Leaky ReLU attained better accuracies of 94.56, 94.88, and 98.37% 

on HAR70+, HARTH, and MHealth datasets, respectively, compared to the ReLU function. In contrast, the Adam 

optimizer yielded mixed outcomes. Although Leaky ReLU still performed well on HAR70+ and HARTH datasets with 

accuracies of 92.23% and 95.07%, respectively, it underperformed slightly on the MHealth dataset with an accuracy 

of 97.90% compared to the ReLU activation with an accuracy of 98.59%. 

Table 10. Accuracy attained by the proposed method with BiLSTM and RMSProp (Without Augmentation) 

Activation Function 
Datasets 

HAR70+ HARTH MHealth 

ReLU 91.46 94.66 98.21 

Leaky ReLU (0.1) 94.56 94.88 98.37 

 

Table 11. Accuracy attained by the proposed method with BiLSTM and Adam (Without Augmentation) 

Activation Function 
Datasets 

HAR70+ HARTH MHealth 

ReLU 88.47 93.29 98.59 

Leaky ReLU (0.1) 92.23 95.07 97.90 

BiLSTM with Augmentation using Different Activation Functions and Optimizers 

The performance of the proposed method with BiLSTM configuration with augmentation technique is presented in 

Tables 12 and 13 with different optimizers and activation functions. As depicted in the tables, the highest accuracy of 

97.34% on the HAR70+ dataset is achieved with Leaky ReLU activation and the Adam optimizer, slightly 

outperforming the ReLU counterpart. Similarly, on the HARTH dataset, Leaky ReLU with Adam achieved better 

performance with an accuracy of 95.30%, while ReLU with RMSProp achieved a comparable accuracy of 94.37%. For 

the MHealth dataset, the best accuracy of 99.77% is obtained with Leaky ReLU and Adam, outperforming ReLU with 

Adam at 96.73%.  
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Table 12. Accuracy attained by the proposed method with BiLSTM and RMSProp (With Augmentation) 

Activation Function 
Datasets 

HAR70+ HARTH MHealth 

ReLU 97.04 94.37 99.42 

Leaky ReLU (0.1) 94.34 90.96 98.72 

Table 13. Accuracy attained by the proposed method with BiLSTM and Adam (With Augmentation) 

Activation Function 
Datasets 

HAR70+ HARTH MHealth 

ReLU 97.01 95.20 96.73 

Leaky ReLU (0.1) 97.34 95.30 99.77 

From the implementations of the proposed method with different optimizers and activation functions and 

comparative analysis, key findings are summarized as follows: 

1. The proposed attention-deep-based HAR method achieved superior performance on three benchmark datasets 

– 97.21% on HAR70+, 95.54% on HARTH, and 99.84% on MHealth. These results demonstrate the proposed 

method’s good efficiency and generalization capabilities across sensor-based activity recognition tasks. 

2. The combination of ConvAE, self-attention mechanism, and LSTM layers enabled the model to learn richer and 

more discriminative feature representations comprising both local and long-range temporal dependencies. 

3. From the results obtained, it is observed that the augmentation technique significantly improved performance 

on imbalanced datasets. 

4. The comparative analysis shows that the proposed method outperformed existing DL and attention-based HAR 

frameworks in the case of the HARTH and MHealth datasets. 

5. From the ablation study, it can be inferred that there is a slight fall in the proposed method’s performance while 

utilizing the BiLSTM configuration. Also, it is noted that the Leaky ReLU with Adam optimizer delivered the 

best results. 

CONCLUSIONS 

In this work, we proposed an attention-DL-based lightweight WHAR framework. The framework comprises three 

steps: pre-processing, training, and classification. In the pre-processing step, a scaling augmentation technique is 

employed to tackle the imbalanced nature of datasets. The sliding window technique is applied to convert the raw 

accelerometer readings into frames with a fixed window size of 50 and an overlap of 10. For the extraction of features, 

the frames were initially passed to ConvAE with an average pooling layer as a bottleneck. The extracted features 

undergo a self-attention mechanism emphasizing relevant, informative features, followed by two LSTM layers to 

capture long-term dependencies and deeper feature representations. The extracted features are processed through 

four fully connected layers to classify activities from sensor-based data. The proposed method is validated on three 

publicly available datasets: HAR70+, HARTH, and MHealth. The proposed method demonstrated good performance 

with accuracies of 97.21%, 95.54% and 99.84% on the above-mentioned datasets, respectively. 

 For the evaluation of the efficiency of the proposed method, a comparative analysis is performed for each dataset. 

An ablation study is presented for the study of the impact on the proposed method with the introduction of BiLSTM 

layers in place of LSTM layers, augmentation techniques with two optimizers and activation functions- RMSProp, 

Adam, ReLU and Leaky ReLU. From the attained results, it is clearly seen that with the introduction of augmentation 

techniques, there is a significant improvement in the performance of the proposed method with both LSTM and 

BiLSTM configurations. It can also be inferred that the model with the Leaky ReLU activation function and Adam 

optimizer provides superior performance compared to RMSProp and ReLU functions. The plotted graphs of the 
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above-mentioned implementations indicate the presence of minimal overfitting. Future directions include 

integrating multiple sensor modalities and exploring the proposed method with different attention mechanisms and 

temporal modelling algorithms. 
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