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Retinal vascular disease remains a significant medical concern, yet accurately segmenting blood 

vessels in fundus images continues to be challenging due to uneven lighting, low contrast, and 

the wide variability in vessel morphology—including very fine capillaries as well as broad arteries 

and veins .Automated segmentation not only improves diagnostic precision but also significantly 

reduces the manual workload of ophthalmologists, enhancing efficiency in both clinical and 

large-scale screening settings. This study aims to segment retinal blood vessels through a three-

stage framework: Preprocessing: Improve image quality by applying CLAHE (Contrast Limited 

Adaptive Histogram Equalization) and a median filter to the green channel. Segmentation: 

Combine multiple techniques—Frangi filtering, 2D convolution, additional median filtering, 

Otsu’s thresholding, morphological operations, and background subtraction—to robustly 

delineate vessel structures. The proposed model is evaluated using statistical parameters on 

images from two publicly available databases. We achieve average accuracies of 0.9418 and 

0.9086 for DRIVE and STARE databases, respectively.  These metrics indicate that the proposed 

model is an effective and viable alternative for retinal vessel segmentation, offering a strong 

balance of precision and practicality for clinical and research applications. 
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INTRODUCTION 

            Accurate segmentation of retinal blood vessels in fundus images is crucial for diagnosing various eye diseases, 

including diabetic retinopathy, glaucoma, and age-related macular degeneration [1]. Precise delineation of both 

primary vessels and their branches enables detailed analysis of vascular morphology, facilitating early detection and 

effective monitoring of these conditions.  

Traditionally, ophthalmologists manually annotate blood vessels based on their expertise. This manual process is not 

only time-consuming but also susceptible to variability due to subjective judgment, potentially leading to 

inconsistencies in diagnosis. To address these challenges, automated retinal vessel segmentation methods have been 

developed. These techniques aim to enhance diagnostic accuracy and efficiency by providing consistent and objective 

analyses of retinal images [2]. By reducing reliance on manual annotation, automated systems can assist clinicians in 

making more reliable diagnoses and monitoring disease progression more effectively. Retinal fundus images often 

exhibit uneven grayscale distribution due to factors such as noise, artifacts, and varying illumination. This results in 

low contrast between blood vessels and the background, complicating accurate segmentation. Additionally, the 

overlapping and crossing of arteries and veins further hinder the segmentation process [3].  

To address these challenges, two primary categories of blood vessel segmentation methods have been developed: 

supervised and unsupervised learning approaches. Supervised methods involve training models on labeled datasets, 

where the blood vessels have been manually annotated. These models learn to identify vessel patterns and can 

generalize to new, unseen images. Common supervised approaches include Convolutional Neural Networks (CNNs), 

Fully Convolutional Networks (FCNs), and U-Net architectures. While these methods often achieve high accuracy, they 

require substantial labeled data and computational resources [4]. Unsupervised methods do not rely on labeled data. 
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Instead, they utilize image processing techniques and predefined rules to segment blood vessels. These approaches 

often involve filtering, thresholding, and morphological operations to enhance and extract vessel structures. While 

unsupervised methods are less dependent on annotated datasets, they may struggle with accurately detecting fine 

vessels and can be sensitive to image quality variations [5]. in summary, both supervised and unsupervised methods 

have their advantages and limitations. The choice between them depends on factors such as the availability of labeled 

data, computational resources, and the specific requirements of the segmentation task. 

Despite notable advances in segmentation techniques, practical implementation remains difficult due to several 

persistent issues. Image quality can suffer from noise during acquisition, compression artifacts, low contrast, uneven 

illumination, and wide variations in vessel diameter—factors that often lead to broken vessel structures and 

misclassified pixels. Additionally, individual retinal morphology—including both healthy and pathological variations—

introduces further unpredictability. Features such as lesions, the optic disc, vessel bifurcations, and crossovers pose 

challenges even for supervised models. Moreover, constructing a comprehensive training set that captures the full 

spectrum of these imaging and anatomical variations is incredibly difficult. This limitation constrains the capacity of 

classifiers and hampers the overall performance of automated systems [6]. Consequently, the primary challenge 

remains: developing a segmentation approach that is both simple to implement and reliably accurate across diverse 

image qualities and retinal variations. 

In this work, we present a novel hybrid model for the automatic and precise segmentation of retinal vasculature, which 

harnesses the strengths of unsupervised approaches. Our focus lies in enhancing both pre-processing and post-

processing stages: traditional techniques are employed to normalize illumination and contrast, while post-processing 

is used to remove disconnected or irrelevant components from the detected vessel network. This structured pipeline 

combines robustness to noise and variability with computational efficiency [7]. 

First, we extract the green channel from each fundus image, as this channel offers higher contrast between the blood 

vessels and the background, making their detection easier. On this channel, we then apply the CLAHE method 

(Contrast Limited Adaptive Histogram Equalization) to normalize the lighting and effectively enhance edges, 

particularly in regions with strong anisotropy or low local contrast. Finally, a median filter is used to reduce noise 

while preserving the fine vascular structures before the subsequent segmentation steps. Following preprocessing, a 

hybrid segmentation approach is applied to each image. This consists of: (1) enhancement with a Frangi vesselness 

filter, (2) feature extraction via a 2D convolutional filter, and (3) further filtering using a finite impulse response (FIR) 

filter—also referred to as an UOI filter. The enhanced image is then binarized using Otsu’s thresholding, followed by 

morphological post-processing to refine vessel connectivity and eliminate spurious regions. 

In the following section, we review previous studies on retinal blood vessels segmentation. Section 3 presents 

materials and details of the methodology used in this article. Section 4 discusses the experimental results obtained 

with our model and compares them to recent methods. Finally, we conclude this work in section 5. 

1. Related work 

            Retinal images are frequently affected by various types of noise, such as Poisson or Gaussian noise, which stem 

from sensor imperfections or digitization artifacts. To enhance image quality, it is essential to apply preprocessing 

techniques, including illumination correction and artifact removal. Common approaches include mean, median, and 

Gaussian filtering, as well as contrast enhancement methods like histogram equalization [8]. Numerous studies have 

demonstrated that effective preprocessing significantly improves the accuracy of retinal blood vessel segmentation. 

These preprocessing steps often involve contrast enhancement through transformations applied in the spatial, 

frequency, or temporal domains. One particularly effective approach is contrast adjustment using wavelet transforms, 

which leverage time-frequency multiresolution analysis [9]. Asem et al. [10] employed such multiresolution 

techniques for image denoising. Compared to conventional spatial enhancement methods, wavelet-based techniques 

have been shown—by Zhen et al. [11], Bankhead et al. [12], and Zhang et al. [9] to substantially improve edge detection 

and overall image quality. 

Despite their effectiveness, conventional transforms have shown limitations in accurately representing objects with 

pronounced anisotropic characteristics. To address these shortcomings, the Curvelet Transform was developed as a 

more suitable alternative to separable wavelet transforms for capturing curved structures and edges. This transform 

has proven highly effective in a range of image processing applications, particularly in enhancing visual quality. 
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Distinguished by its localization in the spatial, frequency, and directional domains, the Curvelet Transform 

demonstrates strong sensitivity to directional and anisotropic features [13].A notable implementation of this method, 

the Fast Discrete Curvelet Transform (FDCT), excels at efficiently capturing object boundaries, lines, curves, and edges 

across multiple orientations. It was utilized by Rahulkar et al. [14] for feature extraction and by Altan et al. [15] as a 

core technique for image contrast enhancement when combined with other processing models. In pursuit of further 

improvements in segmentation accuracy, various researchers such as Soares et al. [16], Aslan et al. [17] and Fang et al. 

[18] have adopted image transformation techniques based on advanced filters and Gabor wavelets. Gabor filters, 

mathematically defined as the product of a sinusoidal (or harmonic) wave and a Gaussian envelope, function as 

effective detectors of edges, lines, and shapes. Their key advantage lies in their ability to adapt to varying spatial 

frequencies and orientations, making them particularly well-suited for feature detection tasks in complex images [19]. 

In general, vascular system segmentation techniques can be classified into two main categories: supervised and 

unsupervised methods [20]. Unsupervised methods operate without the need for labeled training data. Instead, they 

rely on a range of morphological operations to analyze and segment retinal images. For instance, Tavakoli et al. [21] 

proposed an unsupervised automated method for extracting retinal vasculature by employing morphological operators 

during the preprocessing stage to enhance the vessel structure. The main processing stage involved the application of 

the Radon transform on overlapping image windows, followed by refinement and reconstruction steps to produce the 

final binarized vessel map. Similarly, Dash and Bhoi [22] introduced a recursive strategy for segmenting 

ophthalmoscopic images. Their method began with gamma correction, followed by contrast enhancement using 

CLAHE. They then applied an iterative adaptive thresholding algorithm to extract the vascular structures. The final 

segmentation results, characterized by high average precision, were further refined using morphological cleaning 

operations. 

Ravichandran et al. [23] proposed a fully automated method for blood vessel extraction based on enhancement and 

thresholding techniques. The input images were first enhanced using histogram matching and CLAHE (Contrast 

Limited Adaptive Histogram Equalization). To suppress background noise, Wiener filtering was applied. 

Subsequently, Gabor filter responses derived from the CLAHE-enhanced images were processed using a local entropy-

based thresholding technique to extract the retinal vasculature. Similarly, Saleh et al. [24] focused on key 

preprocessing steps, including contrast enhancement and thresholding, to develop an automatic retinal vessel 

segmentation pipeline. Dash et al. [20] utilized Mean-C thresholding to extract the vascular network after improving 

the performance of the Curvelet Transform through integration with the Jerman filter. In another approach, Dash et 

al. [6] combined a homomorphic filter with CLAHE to effectively segment the retinal vascular system while 

maintaining a low computational cost. 

Geethalakshmi et al. [25] investigated an alternative unsupervised method for retinal vessel segmentation, which 

combines CLAHE with median filtering to enhance the vascular structures. The core segmentation step was performed 

using maximum principal curvature analysis in conjunction with various morphological operations. Similarly, Jadoon 

et al. [26] and Nayab et al. [27] proposed unsupervised segmentation techniques that also begin with CLAHE-based 

contrast enhancement. Jadoon et al. [26] subsequently applied the Top-Hat morphological operation for noise 

reduction, followed by a sequence of High-Boost filtering, Frangi filtering, and ISODATA thresholding to generate the 

final binary vessel map. On the other hand, Nayab et al. [27] utilized Gabor wavelets in combination with a suitable 

filter and integrated a Human Visual System (HVS)-based approach to achieve robust vessel segmentation results. 

Among supervised approaches, Zhang et al. [9] introduced a retinal vessel binarization model that leverages a 

combination of filtering techniques and wavelet transforms. Their method applies specialized transformations to 

enhance feature extraction by maximizing orientation responses across multiple scales, enabling effective detection of 

vessels with varying diameters. The final segmentation is performed using a Random Forest classifier. Similarly, 

Soares et al. [16] constructed feature vectors based on pixel intensities and the scaled responses of two-dimensional 

Gabor wavelets applied to local pixel neighborhoods. These feature vectors were then classified into vessel and non-

vessel categories using a Bayesian classifier with Gaussian Mixture Models (GMM). 

Aslan et al. [17] extracted retinal vessels directly from original fundus images by feeding key features into an Extreme 

Learning Machine (ELM). During the feature extraction stage, they applied adaptive thresholding, Gabor filtering, and 

Top-Hat transformations to enhance the vascular structures. In a different approach, Boudegga et al. [28] proposed a 

U-shaped deep learning architecture composed of simple convolutional blocks. Their model was designed to maintain 
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high segmentation accuracy while reducing computational complexity, following a series of preprocessing operations. 

Comprehensive reviews of supervised retinal vessel segmentation techniques, particularly those based on neural 

networks and their variants, are available in Refs. [4], [29], [30] and [31].  

Supervised methods particularly those based on deep learning—typically yield higher segmentation accuracy than 

their unsupervised counterparts. However, their implementation can be complex due to the requirements of large 

annotated datasets and high computational resources. To capitalize on the strengths of both paradigms, several 

researchers have proposed hybrid approaches that integrate supervised and unsupervised techniques to achieve more 

efficient and robust segmentation [18], [32]. Hashemzadeh et al. [32] introduced a hybrid segmentation framework 

that begins with an unsupervised phase aimed at detecting prominent and thick blood vessels. This is followed by a 

AND supervised phase that focuses on identifying thinner vessels. The method relies on a diverse set of image features 

including the Top-Hat transform, Shade Correction, Bit Plane Slicing, and Fuzzy C-Means clustering. The final output 

is refined through post-processing, which involves slightly reducing the radius of the field of view (FOV) mask. Fang et 

al. [18] also proposed a hybrid model, beginning with a supervised segmentation step using a Generalized Linear 

Model (GLM) combined with Gabor wavelet transforms. This was followed by an unsupervised phase involving 

contrast enhancement via CLAHE to manage illumination variations and enhance local details. 

Drawing on numerous prior studies, this research introduces a hybrid segmentation approach that integrates the 

Frangi filter, a 2D convolution filter, and a FIR (UOI) filter, followed by Otsu’s thresholding and morphological 

processing. By combining these methods, the system achieves a more balanced sensitivity and specificity, resulting in 

an enhanced AUC. Performance evaluation is conducted using sensitivity, specificity, and AUC metrics. 

2. PROPOSED METHOD 

            In this study, we focused on the green channel of RGB fundus images, since blood vessels appear most distinct 

against the background in this channel, unlike the blue channel (which has limited dynamic range) and the red 

channel (which lacks sufficient contrast) Figure 1. Mendonça and Campilho [33] confirmed the superiority of the green 

channel by comparing it not only with other RGB channels but also with the NTSC luminance channel and the ‘a’ 

component of the Lab color space—and found that the green channel consistently provided the best overall contrast. 

As is standard in the field, we restrict segmentation to pixels within the image field of view (FOV); pixels outside this 

area are treated as background with no clinical relevance. Figure 2 presents a flowchart of the proposed methodology. 

The following sections provide a detailed breakdown of each processing step 

 

Figure 1:  Color fundus image and it’s different RGB channels. a RGB image, b red channel, c green channel and d 

blue channel. 
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Figure 2: Flowchart of the proposed model. 

2.1. Dataset 

            The DRIVE [34] and STARE [35]datasets—publicly available digital retinal image collections—are among the 

most widely used resources for developing and evaluating retinal vessel segmentation methods. Each dataset includes 

expert-generated manual segmentations of vessels, which serve as the ground truth reference. 

The DRIVE dataset consists of 40 color fundus images, evenly split into training and testing subsets. Each image is 

accompanied by a field-of-view (FOV) mask and expert manual segmentation of the vessel tree—one expert for the 

training set and two experts for the testing set. The images were captured using a Canon CR5 non-mydriatic camera 

with a 45° FOV, 8-bit depth, and a resolution of 768×584 pixels. Figure 3 shows an example test image alongside its 

manual vessel segmentation. 

The STARE dataset contains 20 color fundus images, half of which display various pathologies. Each image includes 

vessel-tree segmentations performed manually by two experts. These images were taken using a Canon TopCon TRV-

50 fundus camera with a 35° FOV, 8-bit depth, and a resolution of 700×605 pixels. Figure 4 presents a representative 

image and its manual vessel segmentation.  
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a                                  b                                    c 

 

Figure 3: (a)An image from the DRIVE test set with its respective manual vessel segmentation the (b) first observer 

and (c) second observer. 

a                                  b                                       c 

 

Figure 4: (a) An image from the STARE test set with its respective manual vessel segmentation the (b) first observer 

and (c) second observer. 

2.2. Preprocessing: 

            Preprocessing retinal images typically begins with decomposing the image into red, green, and blue (RGB) 

channels—since the green channel often provides the highest contrast and clarity, it is used for further enhancement—

followed by Contrast-Limited Adaptive Histogram Equalization (CLAHE) [36] [37], originally proposed by Zuiderveld, 

which divides the image into tiles, applies histogram equalization within each, and clips histogram peaks (commonly 

to limit amplification to a factor of ~3–4) to enhance local contrast and edge definition while suppressing noise 

amplification, in our experiments, we found that a 32×32 tile grid with a clip limit of 5.5 delivered optimal contrast 

improvement without introducing artifacts, and the final step applies a median filter to further reduce residual noise 

[37]. 

2.3.  Frangi Filter: 

             The segmentation process encompasses various techniques, one of which is the Frangi filter. This filter is 

instrumental in detecting and enhancing blood vessels in retinal images. Given the varying diameters of retinal blood 

vessels, the Frangi filter analyzes each pixel to determine the scale at which the maximum response occurs, effectively 

highlighting vessel structures. This detection mechanism relies on the computation of the Hessian matrix, which 

evaluates second-order derivatives to identify tubular formations within the image [38]. 

The Hessian matrix kernel in the Frangi filter is designed to analyze scalar functions of multiple variables, identifying 

points where the function attains local maxima or minima under specific conditions. For a function f(x,y,z), the 

Hessian matrix is a 3×3 matrix comprising second-order partial derivatives, as illustrated in Equation (1). This matrix 

is particularly relevant for functions defined in three-dimensional space [38]. 

𝐻𝑓(𝑥, 𝑦, 𝑧) =

[
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In the case of retinal images, it is enough to use 2 dimensions, namely f(x,y), so that the Hessian matrix is as shown in 

equation (2) [39]. 

𝐻𝑓(𝑥, 𝑦) = [

𝜕2𝑓

𝜕𝑥2      
𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦𝜕𝑥
     

𝜕2𝑓

𝜕𝑦2

]        (2) 

 the function f(x,y)is modeled as a two-dimensional Gaussian distribution, as presented in Equation (3). The Hessian 

matrix is constructed by computing the second-order partial derivatives of this Gaussian function. 

𝑓(𝑥, 𝑦) =
1

2𝜋𝜕2 𝑒−[(𝑥−𝑥0)2+(𝑦−𝑦0)2 ]/(2𝜎2)      (3) 

In this study, the eigenvalue decomposition of the Hessian matrix is employed to extract eigenvalues λ1 and λ2, which 

are instrumental in characterizing the local curvature of image structures. The scale parameter σ is pivotal in 

determining the appropriate scale for blood vessel detection. The Frangi filter's response is optimized when σ aligns 

with the actual size of the blood vessels; an incorrect σ value can diminish the filter's efficacy in vessel detection. 

The Frangi vesselness function for two-dimensional images is defined in Equation (4): 

  

𝑉𝑓(𝑠) = {

0                                                                     𝑖𝑓 𝜆 > 0                 

exp (−
𝑅𝐵 

𝛽2 
) (1 − 𝑒𝑥𝑝 (−

𝑠2

2𝑐2))          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
               (4) 

 

Here, 𝑅𝐵 = 
|𝜆1|

|𝜆2|
  quantifies the blob-like structure, and 𝑠 = √𝜆1

2 + 𝜆2
2  represents the second-order structureness. The 

parameters 𝜷and 𝒄 control the sensitivity of the filter to these measures. This formulation enhances the detection of 

tubular structures, such as blood vessels, by suppressing responses from blob-like or plate-like structures. 

2.4. Convolution Filtering: 

            Convolution filtering is a two-dimensional operation fundamentally shaped by its kernel. Formally, the process 

can be expressed as in Equation (5): 

𝐺(𝑥, 𝑦) = ∑ ∑ 𝑤(𝑠, 𝑡)𝑓(𝑥 − 𝑠, 𝑦 − 𝑡)𝑏
𝑡=−𝑏

𝑎
𝑠=−𝑎    (5) 

Here, 𝐺(𝑥, 𝑦) is the filtered output, 𝑓(𝑥, 𝑦) is the original image, and 𝑤(𝑠, 𝑡) is the convolution kernel. The indices 𝑠 and 

𝑡 each range from −a to +a and −b to +b, defining the neighborhood over which the kernel is applied. To enhance the 

clarity of blood vessels, this approach is combined with a two-dimensional Finite Impulse Response (FIR) filter—

specifically, a circular averaging (pillbox) filter. This smooths the image uniformly within the defined radius, 

improving vessel quality. 

2.5.  Otsu’s Thresholding: 

            The optimal threshold is the one that yields the lowest possible segmentation error. One widely used method for 

achieving optimal thresholding is Otsu's method [40]. Compared to other thresholding techniques, Otsu’s method 

offers several advantages: it is computationally efficient, delivers strong performance when combined with other 

image processing methods, and maintains stable results across various applications [41]. Otsu’s algorithm 

automatically determines the optimal threshold by assuming that the image histogram is bimodal, meaning it 

represents two distinct pixel classes—typically foreground and background. The method works by minimizing the 

intra-class variance between these two-pixel classes [42]. 

The intra-class variance equation is given by: 

𝜎2(𝑡) = 𝑞1(𝑡)𝜎1
2(𝑡) + 𝑞2(𝑡)𝜎2

2(𝑡)    (6) 

where 𝑞1(𝑡) and 𝑞2(𝑡) are the probabilities of the two classes (background and foreground), and 𝜎1
2(𝑡) , 𝜎2

2(𝑡) are their 

respective variances. These class probabilities and variances are calculated using the following equations: 
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                 𝑞1(𝑡) = ∑ 𝑃(𝑖)𝑡
𝑖=0             (7) 

              𝑞2(𝑡) = ∑ 𝑃(𝑖)𝑘
𝑖=𝑡+1             (8) 

𝜎1
2(𝑡) = ∑ [𝑖 − 𝜇1(𝑡)]

2𝑡
𝑖=0 .

𝑃(𝑖)

𝑞1(𝑡)
        (9) 

Where 𝜇1(𝑡) and 𝜇2(𝑡)are the class means, given by: 

               𝜇1(𝑡) =
∑ 𝑖𝑃(𝑖)𝑡

𝑖=0

𝑞1(𝑡)
              (10) 

                 𝜇2(𝑡) =
∑ 𝑖𝑃(𝑖)𝑘

𝑖=𝑡+1

𝑞2(𝑡)
            (11) 

Here, 𝑃(𝑖) denotes the probability of pixel intensity 𝑖, and 𝑘 is the maximum intensity value (typically 255 for 8-bit 

images). As illustrated in Figure 2, the Otsu thresholding method is applied after the Frangi filtering stage, followed by 

morphological image processing. In this study, the threshold value obtained via Otsu’s method is normalized on a scale 

from 0 to 1. 

2.6. Morphological Processing: 

            Morphological processing refers to operations that modify the structural shape of objects within an image. 

These operations involve two two-dimensional matrices: the first is the input image to be processed, and the second is 

the structuring element or kernel. In this study, three morphological operations are employed: closing, diagonal fill, 

and bridging unconnected pixels. The closing operation is defined by the mathematical model in Equation (12). This 

operation consists of a dilation followed by an erosion, and is typically used to fill small holes and connect adjacent 

structures [43]. 

𝐴. 𝐵 = (𝐴 ⊕ 𝐵) ⊖ 𝐵    (12) 

The diagonal fill operation is applied to remove background connectivity via 8-connected neighbors, which helps 

isolate meaningful structures. The bridging operation aims to connect previously unlinked pixels by setting a pixel 

with value 0 to 1 if it has two non-zero neighbors that are not directly connected—effectively filling small gaps in vessel 

structures. These binary morphological operations are used to refine the output from the Otsu thresholding step, 

specifically by eliminating non-vessel pixels and enhancing the continuity and clarity of blood vessels. 

2.7. Evaluation criteria :  

            The effectiveness of any vascular segmentation method depends on its ability to accurately distinguish vessel 

pixels from background pixels. To evaluate performance, the segmentation results are compared against manually 

annotated binary ground-truth masks, which serve as reference standards. This pixel-level comparison yields four 

fundamental outcomes: 

• True Positive (TP): Vessel pixels correctly identified as vessels. 

• False Negative (FN): Vessel pixels incorrectly classified as background. 

• True Negative (TN): Background pixels correctly identified as background. 

• False Positive (FP): Background pixels incorrectly classified as vessels. 

These four categories are essential for evaluating the performance of any vascular segmentation method. From these 

values, various performance metrics are derived to quantitatively compare the proposed technique with state-of-the-

art methods: 

Sensitivity (Sn) or True Positive Rate (TPR): Indicates the method’s effectiveness in detecting vessel pixels. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (13) 

Specificity (Sp):  Measures the accuracy of background pixel classification. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
           (14) 
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Accuracy: Represents the proportion of correctly classified pixels (both vessels and background) relative to the total 

number of pixels in the Field of View (FOV). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
    (15) 

Another widely used performance metric is the Area Under the Curve (AUC), derived from the Receiver Operating 

Characteristic (ROC) curve by evaluating performance across varying threshold values. However, AUC is not 

applicable in our case, as we treat the segmentation of large and small vessels as separate binary classification 

problems. These results are then linearly combined to generate the final segmentation output. 

2.8. Environment Setup 

            We used Google’s free cloud services to implement the proposed model—outstanding tools for image processing 

with Python. The services we employed include the "Google Colab" cloud which is a platform hosting open source 

“Jupyter notebooks” with free GPU support and "Google Drive" cloud storage solution used to upload and store our 

image datasets, which can be easily mounted and accessed directly from within Colab. 

3. Results And Discussion  

            Research using the method illustrated in Figure 2 yielded several outputs. Initially, segmentation results are 

displayed in Figure.5 , which depicts the test outcomes on the DRIVE dataset. Figure 5 shows the results of main 

processing phases of proposed approach for an image sample using the DRIVE database. Figure 6 shows the results of 

main processing phases of proposed approach for an image sample using the STARE database, respectively. 

The subsequent output was the performance evaluation of our proposed system, conducted using two benchmark 

datasets: DRIVE and STARE. We assessed performance based on three key metrics—sensitivity, specificity, and 

accuracy—as defined in Equations (13-15). The evaluation used a sample set of 20 retinal images. For each image, 

segmentation results produced by our model were compared against manually annotated segmentations provided by 

expert graders in both datasets. The numerical results for all 20 cases are compiled in Table I. 

(a)                                   (b)                                  (c)                                 (d) 

 

(e)                                   (f)                                  (g)                                 (h) 
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(i)                                                      (j)                                   (k) 

 

Figure. 5: Visual inspection of the processing steps of the proposed system using the DRIVE database: (a) the 

original image, (b) the green channel, (c) the image after CLAHE enhanced, (d) the image after Median filter, (e) the 

image after Frangi filter, (f) the image after 2D CONV, (g) the image after Fir filtering, (h) the image after Otsu, (i) 

Post-processing operation, (j) cleaned image, (k) the final image. 

(a)                                                   (b)                                  (c)                                 (d) 

  

                          (e)                                             (f)                                  (g)                                 (h) 

                           
(i)                                         (j)                                   (k) 

 

Figure. 6  Visual inspection of the processing steps of the proposed system using the SARE database: (a) the 

original image, (b) the green channel, (c) the image after CLAHE enhanced, (d) the image after Median filter, (e) the 

image after Frangi filter, (f) the image after 2D CONV, (g) the image after Fir filtering, (h) the image after Otsu, (i) 

Post-processing operation, (j) cleaned image, (k)  the final image 
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3.1. Discussion 

            Tests of the proposed segmentation model on both the DRIVE and STARE datasets revealed consistent 

performance differences. On DRIVE, specificity was notably higher than sensitivity, meaning the system more reliably 

identifies background pixels (true negatives) than blood-vessel pixels (true positives). Overall accuracy reached 94 %, 

confirming the model's strong general pixel classification capability. For STARE, performance dipped somewhat. This 

is understandable, as STARE contains more delicate and intricate vessel structures that are harder to distinguish from 

the background compared to DRIVE. Consequently, while sensitivity and specificity are both affected, the model still 

maintains a respectable overall accuracy of approximately 90 %.  

We note sensitivity is limited by the challenge of accurately selecting the Frangi filter parameters c and β (see Equation 

4). When these parameters are paired incorrectly, they can counteract each other, resulting in suboptimal 

performance. Table I results were obtained through manual tuning across various (c,β) combinations. The optimal 

values identified were: c= (1, 15); β=5. However, manual parameter selection is inefficient and prone to error. To 

automate and improve this tuning process, one could apply computational intelligence optimization—such as genetic 

algorithms, particle swarm optimization, or ant colony optimization. This would allow the system to systematically and 

adaptively find the optimal (c,β) pair based on performance feedback, eliminating reliance on manual experimentation 

and ensuring more consistent results.          

NUM DRIVE STARE 

ACC SP SN ACC SP SN 

1 0.9555 0.9810 0.6390 0.9710 0.7602 0.5494 

2 0.9449 0.9790 0.6008 0.9755 0.7248 0.4741 

3 0.9177 0.9382 0.6269 0.9738 0.7683 0.5628 

4 0.9320 0.9826 0.5457 0.8704 0.9003 0.9301 

5 0.9345 0.9854 0.4554 0.9531 0.8579 0.7628 

6 0.9426 0.9777 0.5575 0.8779 0.8799 0.8819 

7 0.9452 0.9761 0.6256 0.8999 0.9039 0.9079 

8 0.9384 0.9716 0.6320 0.9030 0.8811 0.8593 

9 0.9485 0.9808 0.5966 0.9068 0.9110 0.9152 

10 0.9463 0.9848 0.4948 0.8583 0.9074 0.9566 

11 0.9524 0.9744 0.6106 0.9087 0.8721 0.8355 

12 0.9558 0.9865 0.6116 0.8891 0.9114 0.9338 

13 0.9491 0.9764 0.6393 0.8746 0.8970 0.9194 

14 0.9020 0.9375 0.5741 0.8502 0.8858 0.9213 

15 0.9468 0.9697 0.7053 0.8890 0.8548 0.8206 

16 0.9382 0.9790 0.6035 0.8691 0.8949 0.9206 

17 0.9343 0.9565 0.7026 0.9886 0.7079 0.4272 

18 0.9505 0.9806 0.6323 0.8614 0.8699 0.8784 

19 0.9449 0.9752 0.6230 0.9194 0.8554 0.7915 

20 0.9564 0.9799 0.6699 0.8965 0.8702 0.8439 

MEAN 0.9418 0.9736 0.6073 0.9086 0.8557 0.8046 
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TABLE I: Testing Results Using Dataset 

 

AUTHOR ACC SP SN 

DASH ET AL. [6] 0.7203 NAN NAN 

SHIN [44] 0.9271 0.9255 0.9382 

ROYETAL [45]  0.9295 0.4392 0.9622 

 WIHARTO [46] 0.8904 0. 8689 0. 9118 

APPROACH 1 0.9418 0.9736 0.6073 

Table 2: Comparison of experimental results of different algorithms on DRIVE. 

 

AUTHOR ACC SP SN 

DASH ET AL. [6] 0.6454 NAN NAN 

NUGROHO [47] 0.8876 0.9038 0.7550 

ROYETAL [45] 0.9488 0.4317 0.9718 

APPROACH 2 0.9086 0.8557 0.8046 

Table 3: Comparison of experimental results of different algorithms on STARE 

For comparison with the previous vessel detection methods, experiments were conducted on DRIVE and STARE 

datasets, and their performance evaluation metrics were gauged. An objective comparison follows in the forms of 

tables 2 and 3 where the performance parameters are compared with other top vessel segmentation  strategies. the 

performance of the proposed hybrid segmentation model, evaluated using the ACC metric, demonstrates capabilities 

superior to several previous studies, as shown in Table II. It is also comparable to the results reported by Wiharto [45]. 

However, Wiharto’s study relies on a combination of multiple methods—Frangi filter, median filter, and Otsu—which 

entails high computational complexity and longer processing times to achieve such performance. 

The comparison continues with the work of Dash et al. [6], where the authors combined a homomorphic filter with 

CLAHE to effectively segment the retinal vascular system while maintaining low computational cost. On the DRIVE 

dataset, they achieved an ACC of 0.7203, which remains lower than the performance of our model. Similarly, in the 

study by Roy et al. [24], although their method achieves high sensitivity (up to 97.6%), their specificity remains lower 

than that of our model, and their overall accuracy is also inferior. 

For the STARE database, the proposed method achieves acceptable scores, with sensitivity (Sn) of 0.8046, specificity 

(Sp) of 0.8557, and precision of 0.9086—values comparable to those of the top competitors in their respective 

categories. It is also worth noting that some techniques achieve high scores in certain metrics but often at the expense 

of other performance indicators. 

CONCLUSION AND FUTURE WORK 

           Automated vessel segmentation is a foundational step in retinal image analysis. Once the vasculature is 

extracted, it enables precise measurements such as vessel diameter, tortuosity, and the distinction between arteries 

and veins to compute the arteriovenous ratio. Additionally, these segmented vessels serve as essential features in 

systems designed to diagnose retinal diseases and detect systemic conditions like diabetes, stroke, and hypertension. 

In this paper, we propose a fully unsupervised approach for blood vessel segmentation in retinal images, validated on 

the DRIVE and STARE databases. Our preprocessing consists of three sequential steps: Green-channel extraction, 

which provides a uniform basis for further processing, CLAHE (Contrast Limited Adaptive Histogram Equalization) to 

enhance image contrast, Median filtering to reduce noise. Following preprocessing, segmentation is performed 

through a hybrid pipeline that includes: A Frangi filter to enhance vessel-like tubular structures, Otsu’s thresholding 

for automatic binarization of the enhanced image, and Morphological operations to close gaps, remove small artifacts, 
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and ensure continuity of the vessel network. This combined Frangi–Otsu–morphological pipeline effectively segments 

retinal blood vessels in both the DRIVE and STARE datasets. Experimental results demonstrate accuracies of 0.9418 

on DRIVE and 0.9086 on STARE, with corresponding specificity values of 0.9736 and 0.8557. Comparative analysis 

indicates that our model offers statistically competitive performance relative to established methods in the literature. 

Importantly, our algorithm relies on straightforward processing techniques that are easy to implement, making it 

highly suitable for automated workflows. This facilitates the optimization of diagnostic tools for various retinal 

disorders. 

The proposed model, evaluated using the ACC metric, presents a promising alternative for retinal blood vessel 

segmentation. Its performance can be further improved by fine-tuning the c and β parameters of the Frangi filter. 

Future work could leverage optimization algorithms—such as Particle Swarm Optimization—to automatically identify 

these optimal parameter values. 
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