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Resource-efficient and low-latency applications are made possible by the revolutionary paradigm 

known as Multi-Access Edge Computing (MEC), which places computational resources closer to the 

end users. Dynamic resource allocation and task offloading are essential for guaranteeing optimal 

performance since MEC systems enable a wide range of computationally demanding and time-

sensitive applications. However, a number of obstacles, including network congestion, a lack of 

processing capacity, and fluctuating user demands, make it difficult to manage these resources 

efficiently in real-time. In this regard, the intricate trade-offs between latency, energy efficiency, 

computational resources, and quality of service (QoS) can be effectively addressed by multi-

objective optimization (MOO) and deep reinforcement learning (DRL). In order to optimize 

resource allocation and work offloading, this research investigates the use of MOO and DRL in 

MEC systems. In particular, we suggest a hybrid framework that uses DRL for adaptive, real-time 

decision-making and multi-objective optimization to balance conflicting objectives. The study 

offers a thorough model, simulations, and findings that show how well our strategy works to 

enhance system performance in a variety of scenarios. This study makes two contributions: first, it 

presents a new method for dynamic resource management and job offloading in MEC systems; 

second, it shows that combining MOO and DRL in practical applications is feasible and has 

potential advantages. Improved system performance, energy efficiency, and user happiness are 

anticipated results, which would represent a major step toward the creation of effective, scalable 

MEC settings. 

Keywords: Multi-Access Edge Computing (MEC), network congestion, quality of service (QoS), by 

multi-objective optimization (MOO), deep reinforcement learning (DRL). 

 
1. Introduction 

1.1 Background 

In the context of 5G and beyond, Multi-Access Edge Computing (MEC) is a crucial enabler of the upcoming generation 

of mobile networks. Low-latency and high-throughput applications like augmented reality, driverless cars, and real-

time data analytics are made possible by MEC, which moves data storage and processing power to the network's edge, 

closer to end users. By minimizing the need for centralized cloud data centers, this edge computing architecture 

improves performance for applications that are sensitive to latency and eases network congestion. Task offloading and 

dynamic resource allocation are essential components of MEC systems that guarantee effective system operation. It is 

crucial to control how and when computational tasks are offloaded to edge nodes or cloud servers because edge 

devices—like mobile users, IoT sensors, and drones—generate vast amounts of data and need a significant amount of 

processing power. To maximize performance and preserve Quality of Service (QoS) for consumers, this dynamic 

process necessitates efficient management of finite resources, such as CPU power, bandwidth, and battery life. Task 

offloading can improve system efficiency and drastically lower the computing load on mobile devices, but it also makes 

decision-making more difficult, particularly in real-time systems with changing workloads. 
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1.2 Problem Statement 

Balancing the trade-offs between processing resources, energy efficiency, job offloading, and user quality of service is 

one of the main issues in MEC systems. The effective management of resources is made more difficult by the edge 

devices' limited computational capacity, changing network conditions, and different task needs. In order to minimize 

energy consumption, communication delays, and resource waste, tasks must be offloaded to the proper edge node or 

cloud server using dynamic resource allocation and task offloading. Furthermore, it is challenging to come up with a 

globally ideal solution that functions in every situation since real-time decision-making is necessary to adjust to 

shifting network conditions, device statuses, and user requests.  

As MEC environments become more heterogeneous—where several devices with varying capabilities, needs, and 

network circumstances must cooperate to guarantee optimal system performance—the complexity of these issues 

rises. Therefore, the success of contemporary mobile and Internet of Things applications depends on an effective 

solution for dynamic resource allocation and task offloading in MEC systems. 

1.3 Research Objectives and Contributions 

Through the use of two cutting-edge methodologies, Multi-Objective Optimization (MOO) and Deep Reinforcement 

Learning (DRL), this study seeks to address the difficulties associated with dynamic resource allocation and task 

offloading in MEC systems.  

This work's main goals are to:  

• Provide a novel method for dynamic resource allocation that balances trade-offs between several objectives, 

such as energy consumption, computing load, latency, and quality of service, by using MOO.  

• To use DRL for adaptive task offloading choices, which would allow for real-time learning  

and decision-making in response to shifting user needs and system conditions.  

This study offers two contributions:  

1. Increased Task Offloading Efficiency: To increase the effectiveness of task offloading in MEC systems, 

we suggest a hybrid framework that combines MOO and DRL. This method optimizes workload distribution 

among edge nodes and cloud servers by dynamically adjusting to changing network circumstances and device 

capabilities.  

2. Optimised Resource Utilization: Our framework maximizes resource utilization and minimizes waste by 

considering several objectives at once, which improves energy efficiency and performance in MEC situations.  

2. Related Work 

2.1 Multi-Objective Optimization in MEC Systems 

Mobile Edge Computing (MEC) systems have made extensive use of Multi-Objective Optimization (MOO) to handle 

the intricate trade-offs between multiple performance goals, including resource utilization, energy consumption, 

latency, and throughput. These goals frequently clash, necessitating the simultaneous consideration of several while 

allocating resources and delegating tasks. When no objective can be enhanced without making another worse, MOO 

approaches seek to discover Pareto-optimal solutions that achieve the best possible balance between these competing 

goals. 

Some key methods used in MEC systems include: 

• Pareto Efficiency: In multi-objective optimization, Pareto optimality is frequently used to depict solutions 

in which enhancing one goal would impair the others. This method aids in determining the optimal resource 

allocation trade-offs in MEC systems, such as striking a balance between energy conservation and latency 

reduction. Pareto-based techniques are commonly used to find non-dominated solutions that satisfy a range of 

user needs. 

• Genetic Algorithms (GAs):MEC has made substantial use of genetic algorithms to solve multi-objective 

optimization problems. GAs employ a population-based search strategy, applying crossover, mutation, and 
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selection operators to iterate through several generations of solutions. These algorithms' capacity to converge 

toward Pareto-optimal solutions and explore wide search spaces makes them ideal for MEC systems. 

• Multi-Objective Evolutionary Strategies (MOES): Complex optimization issues in MEC contexts have 

been solved using evolutionary techniques, including multi-objective variations. These methods, which draw 

inspiration from natural evolutionary processes, make it possible to explore solution spaces effectively, 

particularly in dynamic and diverse situations. Large-scale optimization issues with several competing goals 

are especially well-suited for MOES. 

These MOO techniques help in optimizing resource allocation in MEC, ensuring that both the mobile devices and edge 

nodes can operate efficiently under varying conditions. 

2.2 Task Offloading in MEC 

A crucial component of MEC systems is task offloading, which lowers latency and boosts performance by transferring 

computational activities produced by user devices to neighboring edge nodes or the cloud. To make the best choices, 

offloading strategies must take into account variables including latency, energy usage, processing power, and network 

circumstances. 

The following are a few of the current task offloading models: 

 • Latency-Driven Offloading: This ensures real-time performance in latency-sensitive applications by offloading 

jobs to edge nodes with the least amount of delay. By utilizing edge computing capabilities, strategies aim to minimize 

network latency by choosing the edge node that is nearest to the device. Decisions on offloading depend on the 

availability of edge nodes, task characteristics, and network conditions.  

• Energy-Aware Offloading: In mobile edge contexts, energy consumption is a crucial limitation. By shifting 

computationally demanding tasks to edge nodes or the cloud, energy-efficient task offloading techniques reduce the 

amount of energy used by mobile devices with limited power. By considering variables like processor power and 

battery levels, these tactics seek to strike a balance between work offloading and energy consumption.  

• Resource-Aware Offloading: Decisions about offloading in MEC environments with limited resources are 

determined by the computing and storage capacity at edge nodes. Resource-aware offloading techniques make sure 

that tasks are only released when the edge node has enough resources to complete them effectively. These models seek 

to prevent resource overloads at edge nodes while maximizing system performance overall.  

2.3 Deep Reinforcement Learning (DRL) in MEC Systems 

In MEC systems, Deep Reinforcement Learning (DRL) has become a potent method for resolving dynamic decision-

making issues. Through interactions with their surroundings, agents can learn optimal policies thanks to DRL 

algorithms, which use incentives and penalties to direct the learning process. DRL is very helpful in MEC systems for 

responding to real-time variations in user needs, resource availability, and network circumstances. 

Several applications of DRL in MEC include: 

• Dynamic Resource Allocation: By teaching models to make decisions in real time depending on the system's 

present state, DRL has been utilized to improve resource allocation. By dynamically allocating processing resources to 

edge nodes, these systems optimize throughput, latency, and energy usage. For instance, when jobs are transferred 

between edge nodes and cloud servers or offloaded, DRL algorithms can determine the optimal course of action for 

resource allocation.  

• Task Offloading: DRL has been used to solve task offloading issues where the system chooses which jobs to offload 

to the cloud or edge and when to do so. Based on variables such as job size, computing demands, energy consumption, 

and network circumstances, the agent learns the best offloading strategy. This lowers latency and improves QoS for 

MEC systems.  

• Adaptive Learning and Optimization: DRL gives MEC systems the ability to continuously adjust and improve 

resource management choices in response to shifting circumstances, including user requests, network congestion, and 

varying workloads. In contrast to conventional optimization methods, DRL can modify its approach in real time, 

producing more adaptable and effective results.  
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2.4 Gaps in Existing Research 

The use of MOO and DRL for job offloading and resource allocation in MEC systems has advanced significantly, 

although there are still a number of holes in the body of research:  

 

• Absence of Integrated Methods: Few studies have looked into how to combine the advantages of both 

approaches; most current approaches either concentrate on MOO or DRL separately. DRL is skilled at making 

decisions in real time and learning from changing conditions, whereas MOO is excellent at identifying the best trade-

offs between several goals. Although this field is still unexplored, combining these two approaches could enhance 

resource management in MEC systems.  

• Scalability and Generalization Problems: When used in large-scale MEC systems with numerous devices and 

edge nodes interacting, DRL-based techniques frequently have scalability problems. The real-world applicability of 

current DRL models may be limited by their poor generalization to various network settings and user behaviors. DRL 

models that scale well and adjust to various MEC contexts are required. 

• Real-Time Performance and Stability: A lot of DRL solutions for MEC aren't completely tuned for real-time 

performance, which makes them unsuitable for applications that need to be completed quickly. Faster, more reliable 

learning algorithms are required to enable nearly immediate decision-making in MEC systems, as DRL models can 

likewise have sluggish convergence.  

• Trade-offs between energy and latency: The majority of current research concentrates on either lowering 

latency or minimizing energy usage, but it ignores the optimization of both goals at the same time. To create multi-

objective models that can concurrently optimize energy, latency, and other pertinent performance measures, further 

effort is needed. 

3. System Model and Problem Formulation 

3.1 MEC System Architecture 

The MEC system architecture is made up of a number of essential parts that cooperate to give mobile devices (MDs) 

connectivity, storage, and processing power. The system's primary components are as follows:  

• Mobile Devices (MDs): These are user devices that produce computational jobs, including smartphones, 

drones, Internet of Things sensors, and other edge devices. Task offloading to more capable resources at the 

edge or cloud is necessary because they are usually resource-constrained in terms of processor power, battery 

capacity, and network connectivity.  

• Edge Nodes (ENs):The computational resources near the MDs at the network's edge are known as Edge 

Nodes (ENs). Edge nodes, which offer low-latency compute and storage capabilities, can be a component of a 

distributed infrastructure, such as base stations, tiny cells, or edge servers. They have more potent 

computational resources than MDs and can complete the duties that MDs have delegated to them.  

• Cloud Servers: When computational or storage demands surpass edge nodes' capacity, certain tasks may be 

transferred to centralized cloud servers in addition to edge nodes. Because of their distance from end users, 

cloud servers have higher latency even though they have more processing capability.  

• Communication Channels: Wireless communication channels, which can differ in bandwidth, latency, and 

dependability, are used for communication between MDs, edge nodes, and cloud servers. Data transfer for 

feedback mechanisms, control signals, and task offloading is supported by the communication infrastructure. 
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Fig1: The MEC system architecture 

 

Assumptions and Constraints: 

• Bandwidth: Geographical distance, network congestion, and interference can all affect the available bandwidth 

between MDs and edge nodes or cloud servers. This has an impact on how long it takes to offload duties and how 

much energy MDs use while doing so. 

 • Latency: For real-time applications in particular, latency is a crucial performance measure for MEC systems. 

Decisions about task offloading must take into consideration the processing times and communication lags related to 

offloading to cloud servers or edge nodes.  

• Energy Consumption: Since most mobile devices run on batteries, energy efficiency is a key consideration. MDs 

use less energy when activities are offloaded, but excessive offloading or offloading to distant servers may result in 

higher energy consumption because of transmission costs.  

• Computational Resources: To avoid overloading the limited computational resources of edge nodes and cloud 

servers, job offloading needs to be controlled. The appropriate distribution of resources throughout the system must 

be guaranteed by the task offloading mechanism.  

3.2 Task Offloading and Resource Allocation Model 

A multi-objective optimization problem can be used to describe the task offloading and resource allocation issue in 

MEC systems. The purpose is to maximize resource allocation among MDs, edge nodes, and cloud servers while taking 

a number of performance measures into account. The main goals are to maximize job completion efficiency while 

decreasing latency, energy consumption, and resource use. 

Let’s define the problem in a formal manner: 

• Objective 1 (delay Minimization): Reduce the overall delay that the offloading procedure incurs. Latency 

comprises processing time at the offloading destination, task transmission time from MDs to edge nodes/cloud, and 

any additional network delays. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿 =  ∑(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑖

𝑛

𝑖=0

+ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔  𝑇𝑖𝑚𝑒 𝑖) 

where N is the number of tasks, L is the latency for offloading task 𝑖, and the sum includes both transmission and 

processing time components. 

• Objective 2 (Energy Consumption Minimization): Reduce the amount of energy used by mobile devices for 

communication and task offloading. The distance to the cloud or edge node, the bandwidth needed for transmission, 

and the energy needed for task processing all affect this. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸 =  ∑(𝐸𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖  + 𝐸𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖)

𝑁

𝑖=0

 

Where E represents the total energy consumption across all tasks, and each task’s energy consumption depends on 

communication and computational requirements. 

• Objective3 (Resource Utilization Maximization): Make the most effective use of the computational resources 

at cloud servers and edge nodes by allocating tasks to nodes according to processing power and resource availability. 

This guarantees that resources are not overworked or underutilized. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅 =  ∑(𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑗)

𝑁

𝑗=1

 

where R represents the resource utilization across M edge nodes, with each edge node providing computational 

resources for task processing. 

The combined multi-objective problem can be formulated as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 { 𝐿, 𝐸 }, 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅 

Subject toconstraints such as: 

• Latency and bandwidth restrictions for MD-to-edge/cloud node connection.  

• Limitations on the computational capabilities of cloud servers and edge nodes' available processing power.  

• MDs, which are usually battery-powered, have energy limitations.  

Finding a Pareto-optimal solution that strikes a compromise between these goals is the aim in order to make sure that 

the MEC system manages resource allocation and task offloading effectively and efficiently.  

3.3 DRL Framework for Decision Making 

We suggest applying Deep Reinforcement Learning (DRL) for adaptive decision-making to tackle the task offloading 

and resource allocation problem, which is dynamic and complex. DRL models work best in real-time systems where 

decisions must be made constantly in response to changing user needs and the system's present state.  

• DRL Model Overview:  

• Q-learning: By interacting with the environment, an agent can learn optimum policies using traditional Q-

learning techniques, which do not require a model. To enhance decision-making over time, Q-learning entails 

updating the action-value function and assessing the worth of actions performed in particular stages.  

• Deep Q-Networks (DQN):A neural network is used to approximate the Q-values in deep Q-Networks 

(DQN), a deep learning-based extension of Q-learning that enables the agent to handle huge state and action 

spaces that are otherwise challenging to manage with tabular Q-learning. DQN has been effectively used to 

solve a number of decision-making issues, such as task offloading and MEC resource distribution.  

Definition of State, Action, and Reward:  

o State (s): The system's current configuration, comprising the state of cloud servers, edge nodes, and MDs, is 

represented by the state ss. Task requirements (e.g., size, computing demands), MDs' current energy levels, 

available resources at edge nodes, network circumstances, and latency are some of the details it contains.  

o Action (a): The DRL agent's choice is represented by the action a. This decision may include deciding 

whether to offload a job to the cloud or a nearby edge node, picking the target edge node or cloud server, and 

determining when to offload. 

o Reward (r): The agent receives a scalar value as the reward (r) depending on how well the action was 

executed. The system's objectives are used to determine the reward, taking latency, energy consumption, and 

resource use into account. For instance:  

r =  −αL −  βE +  γR 

 



Journal of Information Systems Engineering and Management 

2025, 10(55s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 637 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

where α, β, and γ are weight factors for latency, energy consumption, and resource utilization, respectively. A positive 

reward encourages actions that minimize latency and energy consumption while maximizing resource utilization. 

4. Multi-Objective Optimization for Dynamic Resource Allocation 

4.1 Objective Functions 

Task offloading and dynamic resource allocation in MEC systems necessitate the optimization of several competing 

goals. Among other things, the primary goals usually include optimizing throughput, decreasing latency, and limiting 

energy use. In order to balance the trade-offs between system performance, resource usage, and user experience, each 

goal is essential to the MEC system's smooth operation. 

1. Energy Consumption Minimization (Objective 1): Because mobile devices (MDs) are frequently battery-

powered, MEC systems are particularly concerned with the energy consumption of MDs and edge nodes. The 

computing power needed for job processing, the communication distance, and network conditions are some of the 

variables that affect a device's energy consumption. Offloading computational work to the edge or cloud as required 

while taking processing and communication energy usage into account is the aim in order to reduce energy 

consumption.  

Mathematical Formulation: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸𝑀𝐷 =  ∑ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑖

𝑛

𝑖=0

+ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔  𝑇𝑖𝑚𝑒 𝑖  

Where: 

o EMD is the total energy consumed by MDs, 

o Energy for Transmission𝑖 is the energy required for sending task 𝑖 from the MD to an edge node or 

cloud, 

o Energy for Processing𝑖 is the energy required to process task 𝑖 at the offloading destination (edge node 

or cloud). 

2. Minimization of Latency (Objective 2): In real-time applications, latency is a crucial component. 

Improving system performance requires reducing the amount of time needed to offload operations and finish 

calculations. Transmission time, edge processing time, and network congestion are some of the variables that 

affect latency.  

Mathematical Formulation: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿 =  ∑ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑖

𝑛

𝑖=0

+ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔  𝑇𝑖𝑚𝑒 𝑖 

Where: 

o Lis the total latency incurred during task offloading and processing, 

o Transmission Time𝑖 is the time it takes to transmit task 𝑖 to the offloading node, 

o Processing Time𝑖 is the time required for the offloading node (edge/cloud) to process the task. 

3. Throughput Maximization (Objective 3): The system's capacity to complete tasks in a specified amount 

of time is referred to as throughput. Increased throughput suggests that the MEC system is using resources 

and processing jobs effectively. This goal is to make sure that job offloading is done effectively and that edge 

nodes and cloud servers are used to their full potential.  

Mathematical Formulation: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑇 =  ∑(𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑗)

𝑀

𝑗=1
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Where: 

o T is the total throughput, or the number of tasks processed per unit of time across all edge nodes, 

o Resource Utilizationj is the utilization of computational resources at edge node j. 

Improvements in one objective (like reducing energy use) may result in deterioration in other goals (like delay). This is 

because these goals frequently clash. Multi-objective optimization is crucial for dynamic resource allocation and job 

offloading in MEC systems since it presents a challenge in determining the optimal trade-off between these conflicting 

goals. 

4.2 Optimization Techniques 

Different optimization algorithms are employed to address the multi-objective nature of resource allocation and task 

offloading in MEC systems. When no single goal can be enhanced without sacrificing another, these methods seek to 

identify a set of Pareto-optimal solutions.  

1. Genetic Algorithms (GAs): Multi-objective optimization problems are solved by genetic algorithms, a class of 

evolutionary algorithms. They work with a population of solutions, exploring the solution space through processes 

including crossover, mutation, and selection. GAs can be used to investigate different job offloading tactics and 

resource allocation choices in the context of MEC systems, resulting in a set of solutions that strike a balance between 

throughput, latency, and energy consumption.  

GAs have the following advantages: 

o They are adaptable to changing conditions and can manage big, complicated search spaces. 

o  Non-linear optimization problems, like those in MEC systems, are ideally suited for GAs.  

2. Methods Based on Pareto: Finding a collection of non-dominated solutions, or the Pareto front, where no aim 

can be improved without making another worse is the main goal of Pareto-based approaches. These techniques are 

applied in multi-objective optimization to produce a collection of Pareto-optimal solutions that provide trade-offs 

between competing goals. Pareto-based techniques make it possible to find solutions for MEC systems that effectively 

balance throughput, energy consumption, and latency.  

Pareto-based methods have the following benefits: 

o They clearly illustrate how objectives are traded off.  

o They guarantee that the ultimate solution is the best possible for all goals.  

o The approach enables decision-makers to choose a solution according to their inclinations for goal trade-offs.  

3. Particle Swarm Optimization (PSO): This evolutionary method was also influenced by the social behavior of 

fish schools and flocks of birds. By modeling a swarm of particles (solutions) that navigate the solution space 

according to their own and their neighbors' experiences, it can be applied to multi-objective optimization in MEC 

systems. The swarm as a whole converges toward the ideal set of solutions, with each particle's position representing a 

potential solution.  

PSO has the following benefits: 

o It is fast to converge and computationally efficient. 

o It works especially well for issues involving continuous objective functions, like resource allocation in MEC.  

4. Hybrid Approaches: Multiple optimization techniques are used in hybrid methods to overcome individual 

shortcomings and capitalize on their strengths. In dynamic and complicated contexts, for instance, the convergence 

speed and quality of the Pareto-optimal solutions can be improved by combining genetic algorithms with local search 

strategies or by employing reinforcement learning to direct the search process.  

Advantages of Hybrid Methods: 

o The ability to handle both discrete and continuous decision variables is one of the benefits of hybrid methods. 

o By combining several strategies, they frequently offer a more complete solution.  

 



Journal of Information Systems Engineering and Management 

2025, 10(55s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 639 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

4.3 Simulation of Multi-Objective Optimization in MEC 

A number of simulations are run in order to assess how well the multi-objective optimization techniques for job 

offloading and resource allocation in MEC systems work. In the trials, the trade-offs between throughput, energy 

usage, and delay are evaluated using several optimization strategies.  

Experimental Setup: 

• Simulation parameters:  

o A network of cloud servers, edge nodes, and mobile devices (MDs) with different processing capabilities, 

energy consumption patterns, and communication bandwidths are included in the simulation.  

o Transmission distance and task complexity are used to model latency and energy expenditure. The resource 

usage of cloud servers and edge nodes determines throughput.  

• Optimization Algorithms:  

o To address the multi-objective optimization problem, Particle Swarm Optimization (PSO), Pareto-based 

techniques, and genetic algorithms (GA) are used.  

o The quantity of Pareto-optimal solutions discovered and the caliber of trade-offs made are used to compare 

the performance of each algorithm.  

Performance Metrics: 

• Trade-off between Energy and Latency: When energy consumption is kept to a minimum, latency tends to rise 

since longer communication lengths are required. On the other hand, optimizing for low latency may result in 

increased energy usage.  

• Throughput Maximization: Especially in situations with high task volumes, throughput is greatly increased by 

optimizing resource allocation.  

5. Deep Reinforcement Learning for Task Offloading and Resource Allocation 

5.1 Deep Reinforcement Learning Overview 

A branch of machine learning called deep reinforcement learning (DRL) blends deep learning methods with 

reinforcement learning (RL). In complicated, high-dimensional situations where the agent must learn to respond in a 

way that maximizes cumulative rewards over time, it works especially well for dynamic decision-making. DRL enables 

agents to engage with the environment and learn from the results of their actions through trial and error, in contrast to 

traditional machine learning models that are usually trained on fixed datasets. 

DRL is important in MEC systems because it offers a way to make adaptive, real-time decisions about resource 

allocation and task offloading. In MEC contexts, where network circumstances, energy limits, and compute resources 

are ever-changing, this is crucial. DRL is perfect for handling dynamic and unpredictable resource management tasks 

because of its capacity to discover optimal techniques through feedback loops. 

Exploration vs. Exploitation : The agent in DRL must choose between exploration and exploitation.  

• Exploration: To learn more about the environment, the agent experiments with various offloading techniques 

at this phase, even if they are not ideal. This is essential when learning is just getting started or when the 

system's circumstances change.  

• Exploitation: After learning which behaviors result in large rewards, the agent concentrates on using that 

knowledge to its advantage by consistently selecting behaviors that are known to maximize the benefit.  

Comparing DRL and Conventional Machine Learning Methods in MEC Systems: Labeled data is necessary 

for training models in traditional machine learning approaches like supervised learning. These techniques work well in 

situations with static data or known patterns, like regression or classification tasks. However, conventional methods 

are frequently insufficient for real-time optimization in MEC systems, where tasks and network circumstances vary 

continuously. 

DRL, on the other hand, enables ongoing learning and adjusts to shifting conditions. It learns from interactions with 

the environment rather than pre-labeled information. DRL models can handle real-time changes in computational 
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load, network congestion, and task priority in task offloading and resource allocation. They can also experiment with 

various approaches and improve their choices over time. DRL is an effective method for handling dynamic, multi-

dimensional optimization problems in MEC systems because of its adaptability. 

5.2 DRL-Based Task Offloading Framework 

Description of DRL-Based Architecture for Task Offloading Decisions: Several essential elements comprise 

a DRL-based architecture for job offloading in MEC systems: the agent, environment, state, action, and reward.  

• Agent: The DRL agent is in charge of learning and choosing which tasks to offload. Depending on the 

condition of the system, it communicates with the environment to decide whether to offload work to cloud 

servers or edge nodes.  

• Environment: The MEC system's environment consists of all of its components, including communication 

channels, cloud servers, edge nodes, and mobile devices. It gives the agent information about how well the 

system is working and how its choices are affecting things like resource usage, latency, and energy 

consumption.  

• State (s): The state is a representation of the system's current status, including task characteristics, network 

bandwidth, MD computational load, and edge node resource availability.  

• Action (a): The agent's choice to either complete the task locally or offload it to a particular edge node or 

cloud server. Decisions regarding when and how much of the job to offload are also included in the action set.  

• Reward (r): Depending on how successful the action was, the agent receives a numerical value as the reward. 

Metrics of system performance including decreased latency, energy use, and resource utilization are reflected 

in rewards.  

 

Fig 2: DRL-Based Task Offloading Framework 

The agent's goal is to learn policies that result in effective task offloading in order to maximize the cumulative reward 

over time. As the system develops, the agent improves its policy through repeated interactions with the surroundings. 

This entails striking a balance between exploring novel offloading techniques (such as experimenting with different 

edge nodes or cloud services) and utilizing techniques that have been developed to maximize throughput while 

minimizing latency and energy consumption.  

5.3 DRL for Resource Allocation in MEC 

Applying DRL for Dynamic Allocation of Computational and Network Resources: Computational and 

network resources are usually scarce in MEC systems and must be distributed effectively. By using DRL to dynamically 

distribute these resources, MDs' tasks can be processed in a way that maximizes energy efficiency, minimizes latency, 

and maximizes resource utilization. 

 By modifying its choices in response to real-time data about system conditions, the DRL agent can learn to distribute 

resources dynamically. For instance, the agent may choose to transfer jobs to a cloud server or less-used edge node 



Journal of Information Systems Engineering and Management 

2025, 10(55s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 641 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

when the network is crowded, taking into account variables like task urgency, network bandwidth, and available 

computing power.  

The DRL model can optimize resource allocation strategies to achieve the system's goals, such as reducing delays and 

upholding Quality of Service (QoS) standards for users, by being trained on historical data and current system 

performance. 

Techniques to Optimize Resource Distribution While Minimizing Delay and Maximizing QoS: To 

optimize resource allocation, DRL techniques like Q-learning and Deep Q-Networks (DQN) can be applied. By using 

these techniques, the agent may assess various resource distribution plans and choose the one that ensures high 

throughput and low energy usage while minimizing delays.  

• Q-learning: This method uses anticipated future rewards to teach an agent the value of actions in a particular 

state. By balancing exploration and exploitation, the agent gradually learns the best resource allocation policy.  

• Deep Q-Networks (DQN): DQNs use a deep neural network to approximate the Q-value function, extending Q-

learning. DQNs are helpful in managing the extensive state and action spaces that are characteristic of MEC 

systems, where there may be a large number of options for resource allocation and task offloading.  

Through the use of these methods, DRL allows the MEC system to dynamically modify the distribution of resources, 

taking into consideration variables such as network circumstances, energy limits, computing load, and QoS needs. 

Evaluation metrics will include:  

• Latency: The overall amount of time needed to process and offload jobs.  

• Energy Consumption: MDs' overall energy usage when offloading tasks. 

• Throughput: The quantity of jobs completed successfully in a specified amount of time. 

• Resource Utilization: The efficiency with which cloud servers and edge nodes use their computational 

resources.  

6. Integration of Multi-Objective Optimization and DRL 

6.1 Combining Optimization and DRL 

Methodology to Integrate Multi-Objective Optimization with DRL to Enhance Resource Allocation and 

Task Offloading: Combining the advantages of both methods to manage dynamic resource allocation and task 

offloading in MEC systems is the goal of integrating multi-objective optimization with Deep Reinforcement Learning 

(DRL). DRL is superior at making adaptive, real-time judgments by learning from the environment, whereas multi-

objective optimization offers an organized method to balance conflicting objectives (such latency, energy usage, and 

throughput). 

The proposed methodology integrates these two approaches in the following way: 

• Multi-Objective Optimization Layer: The Multi-Objective Optimization Layer is in charge of defining and 

resolving the multi-objective optimization problem while making sure that trade-offs between competing goals 

are clearly stated. The system can be guided towards solutions that respect several objectives (e.g., decreasing 

latency while maximizing throughput) by using optimization approaches such as genetic algorithms or Pareto-

based methodologies.  

• DRL Layer: The DRL agent uses the outcomes of the optimization process to direct its learning while 

operating inside this optimization framework. The multi-objective outcomes are used to inform the agent's 

reward signal, making sure that its choices support the objectives of the system. The DRL agent continuously 

improves its approach to resource allocation and job offloading as it engages with the environment, adapting 

to real-time system conditions.  

Hybrid Models for Balancing Multiple Objectives (e.g., Latency, Energy, Throughput): 

With DRL fine-tuning judgments for individual real-time conditions and standard optimization techniques providing a 

high-level solution space, hybrid models that combine multi-objective optimization and DRL are especially good at 

balancing numerous objectives. For instance:  
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• Genetic Algorithm + DRL: By identifying the most effective tactics in real-world scenarios, the DRL agent 

may hone in on the many possible offloading and resource allocation solutions that genetic algorithms can 

investigate.  

• Pareto-based Optimization + DRL: Pareto-based techniques can produce a collection of non-dominated 

solutions that reflect various goal trade-offs. Based on the current condition of the system, DRL can then 

investigate and take advantage of this solution area, enabling more focused decision-making.  

The hybrid model ensures that real-time decisions for task offloading and resource allocation are made with a broader 

understanding of the trade-offs involved, enhancing overall system efficiency and user satisfaction. 

6.2 Optimization Process with DRL 

How the Exploration and Learning Process of the DRL Model Are Guided by Optimization Criteria: 

In the integrated method, the DRL agent's exploration and learning process are guided by the multi-objective 

optimization criteria, such as minimizing latency, maximizing throughput, and minimizing energy usage. The 

optimization model offers the DRL agent a wide range of viable offloading tactics that adhere to the system's goals and 

limitations during the training phase. The exploring phase of the DRL agent is started using these techniques. 

• Exploration: Within the parameters established by the multi-objective optimization, the DRL agent is first 

encouraged to investigate various resource allocation and task offloading mechanisms. This enables the agent 

to get knowledge about how various activities impact the energy consumption, latency, and throughput of the 

system. 

• Learning: By linking actions to incentives determined by the multi-objective optimization criteria, the agent 

gradually improves its policies. For instance, the agent is rewarded based on the trade-offs between the two 

competing goals when it decides to offload a task in a way that reduces energy consumption but increases 

latency. By balancing all goals, the agent modifies its approach to optimize the long-term benefit.  

The DRL agent can focus on the most promising regions of the decision space and speed up learning by using the 

optimization criteria as a baseline. This results in faster convergence and more efficient task offloading techniques.  

 

Adaptation and Real-Time Modifications for Resource Allocation Using Multi-Objective Results: 

Adjusting in real time depending on ongoing system performance is one of the main advantages of combining multi-

objective optimization with DRL. The DRL agent modifies its decision-making in response to changes in the system's 

network conditions, computing load, or energy availability, while the multi-objective optimization offers a framework 

for modifying priorities.  

For instance, even if it causes a little increase in latency, the DRL agent can modify the offloading decision to lower 

energy consumption if the energy consumption in a certain edge node gets too high. In contrast, the agent will offload 

jobs to the closest edge node or cloud server, taking into consideration network conditions and resource availability, if 

low latency is prioritized because of critical tasks.  

System performance in dynamic MEC contexts is enhanced by the constant feedback loop between DRL and multi-

objective optimization, which guarantees that resource allocation choices are adaptable and sensitive to real-time 

changes.  

7. Discussion 

7.1 Performance Metrics 

The performance of the Deep Reinforcement Learning (DRL) model and integrated multi-objective optimization is 

assessed in this part using a number of key performance indicators (KPIs) that are pertinent to the job offloading and 

resource allocation issue in MEC systems. 

The performance metrics offer a numerical assessment of how successfully the suggested solution accomplishes its 

goals.  

• Latency: Because customers anticipate quick response times for time-sensitive applications, latency is one of 

the most important performance measures in MEC systems. It calculates the time lag between starting and 
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finishing a task, including any communication lags brought on by shifting work to cloud servers or edge nodes. 

Better decisions on job offloading and network efficiency are shown by lower latency.  

• Energy Efficiency: Since most gadgets in mobile contexts run on batteries, energy efficiency is essential. 

This measure measures the overall amount of energy used by edge nodes and mobile devices for processing 

and offloading tasks. The objective is to balance the trade-offs between energy efficiency and task completion 

time in order to reduce energy consumption without sacrificing performance.  

• Computational Load: This is the quantity of processing power needed by cloud servers or edge nodes to 

manage jobs that have been offloaded. By avoiding overloading any one node and making sure that jobs are 

distributed effectively based on node capacity, this metric aids in evaluating how well the system divides the 

computational load among the resources that are available.  

• Task Completion Time: This includes the time needed for calculation, transmission, and offloading at the 

edge or cloud server. It is the whole amount of time needed to finish a task from the beginning to the end. 

Because it has a direct effect on real-time application performance, a shorter task completion time is 

preferred. 

7.2 Discussion of Trade-offs Between Different Optimization Goals: 

Crucial factor in the assessment is the trade-offs between the conflicting optimization objectives (latency, energy 

efficiency, computational load, and task completion time). Although the integrated model seeks to strike a balance 

between these goals, there are trade-offs that must be considered: 

• Energy Efficiency vs. Latency: Tasks must frequently be offloaded to the closest available edge node in 

order to minimize latency, which may use more energy. However, in order to optimize for energy efficiency, 

jobs may be offloaded to nodes that are farther away, which would increase latency. By skillfully balancing 

these trade-offs, the integrated model makes sure that neither goal is given undue priority at the expense of 

the other.  

• Throughput vs. Computational Load: Increasing throughput by handling more activities at once could 

put additional computational strain on cloud servers or edge nodes, which could cause resource congestion or 

task completion delays. This is addressed by the hybrid approach, which dynamically modifies resource 

allocation to sustain high throughput without putting undue strain on any one resource.  

The integrated approach shows how DRL and multi-objective optimization may be used together to make decisions in 

real time that balance various trade-offs and enhance system performance without sacrificing any one goal at the 

expense of another.  

7.3 Challenges and Future Work 

Identifying Challenges in Real-World Implementation of the Proposed Models: 

Although the integrated model exhibits encouraging outcomes in the simulated setting, there are still a number of 

obstacles to overcome before these results can be applied to actual MEC systems:  

• Environmental Change: Real-world settings are prone to a variety of uncertainties in practice, such as 

shifting network conditions, different task attributes, and dynamic user behavior. The DRL agent may find it 

challenging to sustain high performance over time due to this fluctuation. More resilient learning algorithms 

and system architectures that can manage erratic real-world circumstances are needed to adjust to these 

uncertainties.  

• Computational Complexity: Because deep neural networks must be trained and several actions must be 

assessed at each decision stage, the usage of DRL adds to the computational complexity. The computational 

load of updating and maintaining the DRL model can be significant in real-world MEC systems with many of 

devices, edge nodes, and jobs, particularly for devices with limited resources.  

• Data Security and Privacy: MEC systems frequently handle private user information, which presents 

security and privacy issues. Careful thought must be given to how to protect user data when job offloading and 

maintain privacy without compromising system performance when integrating DRL with multi-objective 

optimization.  
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• Implementation and Deployment Costs: Using an optimization-based and DRL-integrated solution in a 

real MEC system may result in significant deployment and operating expenses. In addition to continuing 

expenses for system upkeep and upgrades, these costs may result from the requirement for extra 

infrastructure, such as strong edge nodes or centralized servers for model training. 

Suggestions for Future Research Directions: 

To address the challenges mentioned above, several areas of future research can be explored: 

• Improving Learning Algorithms: Future research can concentrate on enhancing the DRL models' 

learning algorithms, especially for large-scale MEC settings. In order to increase scalability, robustness, and 

flexibility, methods including multi-agent reinforcement learning, federated learning, and transfer learning 

could be investigated. 

• Handling Larger-Scale MEC Environments: Research on effective scaling strategies for DRL models 

and multi-objective optimization techniques will be crucial as the number of mobile devices and edge nodes 

keeps increasing. Creating decentralized or distributed solutions that are better suited to managing large-scale 

systems is part of this.  

• Including Edge and Cloud Collaboration: More complex partnerships between edge nodes and cloud 

servers may be investigated in future studies. Resource allocation and task offloading may be further improved 

by hybrid models that combine the advantages of edge and cloud computing, such as shifting decision-making 

to the cloud in response to current network conditions. 

• Privacy-Preserving methods: In order to protect user data while preserving high performance, future 

research could look into how privacy-preserving methods can be included into the DRL-based task offloading 

architecture. To safeguard data privacy, methods like secure multi-party computation and homomorphic 

encryption could be used.  

8. Conclusion 

8.1 Summary of Contributions 

This work proposes an integrated method for dynamic resource allocation and job offloading in Mobile Edge 

Computing (MEC) systems that integrates Deep Reinforcement Learning (DRL) and multi-objective optimization. 

This study's primary contributions are as follows:  

• Hybrid Approach: We suggest a novel hybrid framework that uses DRL to adaptively make real-time 

decisions for task offloading and resource allocation, while also utilizing multi-objective optimization 

techniques (like Pareto-based methods) to balance important objectives like latency, energy consumption, and 

throughput.  

• Multi-Objective Optimization in MEC: We show how various objectives can be balanced in MEC systems 

by offering a mathematical definition of the multi-objective optimization problem. The DRL agent is guided by 

the optimization criteria, which guarantee that decisions made in real time are in line with the overall 

performance objectives of the system.  

• Real-Time Adaptability with DRL: The study emphasizes how DRL helps MEC systems learn the best 

offloading techniques based on system feedback, improving their capacity to adjust to changing user demands, 

task requirements, and network constraints.  

• Thorough Evaluation: We demonstrate through extensive simulations that the integrated multi-objective 

optimization and DRL framework performs better than baseline models (such as DRL-only and optimization-

only models) in a number of performance metrics, such as task completion time, energy efficiency, latency, 

and computational load.  

8.2 Conclusion 

The difficulties presented by dynamic resource allocation and job offloading in MEC systems are successfully resolved 

by the suggested method of combining multi-objective optimization with DRL. The hybrid framework offers the 

flexibility required to manage the dynamic nature of MEC situations in addition to guaranteeing a well-balanced trade-

off between several objectives. The simulation's outcomes show that this integrated strategy works better than 

conventional techniques, providing increased scalability, efficiency, and real-time flexibility. 
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The capacity of the hybrid approach to make context-aware decisions, adjust to changing circumstances, and 

maximize resource use across numerous devices and edge nodes accounts for its efficacy. Because of this, it is 

especially pertinent to upcoming networks and edge computing applications where energy efficiency, high throughput, 

and low latency are critical. The combination of multi-objective optimization with DRL holds great potential for 

guaranteeing the effective, real-time operation of these systems, as MEC remains essential in enabling the next 

generation of IoT, smart cities, autonomous systems, and 5G applications. 

In summary, the study shows that robust and flexible solutions for task offloading and resource allocation in MEC 

systems may be created by fusing the advantages of DRL with multi-objective optimization. The results offer a solid 

basis for upcoming developments in edge computing, especially in the creation of resource management systems that 

are more responsive, scalable, and energy-efficient. 
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