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INTRODUCTION

Containerization is now being propounded as a very resilient technology packaging applications and all their
dependencies into portable units. In contrast to traditional virtual machines, it offers strengths in fast deployment,
utilization of resources, and ease of portability [15]. Since it uses the same host operating system's kernel, overhead
reduction is achieved with faster boot times [33], which enables further efficiency in resources and more rapid
application deployment. Although cloud computing has transformed the way we use and access computing resources,
it also comes with several issues, among which load balancing is included. Load balancing is one of the most
important techniques in distributing incoming traffic across various servers to gain optimal performance, reliability,
and scalability. Recent trends in research and studies are pointing out the evolution of cloud technologies from VM-
based architectures towards container-based approaches and also throws light on the challenges and opportunities
related to load balancing in containerized environments.We can say that contearization provides great advantages to
load balancing , so many industries have adapted container based architectures for managing their work load m
optimize resource allocation by imoriving their cloud based architectures.

Docker container has transformed deployment and development of software by enabling efficient resource
management so development process and effectiveness as well as scalability is imporved because container provides
lightweight processing and less dependency.

In this paper we proposed Docker based resource optimization solution with use of heuristic approaches, The main
challenge is resource allocation and optimization is addressed, also we have explored other challenges such as
scalbility, and security, we have compared docker with other virtualization techniques.

Particle Swarm Optimization is a swarm intelligence algorithm inspired by the collective behaviour of flocks of birds
and schools of fish. First introduced by Kennedy and Eberhart in 1995, PSO has undergone significant development
and has been successfully applied to many real-world problems. It works by iteratively improving the positions of
particles within a specified search space. Each particle adjusts its position depending on its own best-known position
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(personal best) and the best-known position of the entire swarm (global best). This process is guided by velocity
vectors that determine the magnitude and direction of particle movement. Recent efforts to improve PSO
performance have been in parameter tuning and hybridization with other techniques, but these approaches often
overlook the evolving nature of the optimization process. Thus, they lack a developed methodology to deal with the
hard problems and may persist with weaknesses.

Graph Representation of PSO Algorit hm

Figure 1. Illustration of Particle Swarm Optimization Algorithm.
RELATED WORK

Cloud computing encompasses numerous challenges, with load balancing standing as a crucial problem among them.
Defined as “a technique, method, or strategy to efficiently manage resource utilization and allocate resources to
clients, ensuring that neither overloading nor resource starvation occurs” [14], load balancing has been widely
explored. A thorough literature review reveals that researchers have proposed various mechanisms and developed
multiple algorithms to optimize load distribution [44]. However, within the realm of containerized technology—still
in its developmental stage—a definitive, universally effective approach to load balancing remains yet unsolved. In
literature survey we have identified and classified load balancing approaches as shown in figure2.

In this research paper, we focus on Particle Swarm Optimization (PSO)-based algorithms for effective resource
allocation in container-based cloud computing systems. As demonstrated in [38], PSO has been shown to outperform
Ant Colony Optimization (ACO) in various scenarios. Cloud computing offers a wide range of PSO-based variations,
with Standard PSO serving as the foundational model. This standard approach is commonly employed for basic load
balancing and resource allocation in cloud environments. It relies on key parameters such as inertia weight, cognitive
coefficients, and social coefficients to guide the search process and facilitate convergence toward optimal solutions.
While Standard PSO is known for its speed and efficiency in handling straightforward tasks, it often struggles when
applied to complex, high-dimensional problem spaces typical of cloud systems. The implementation of these
algorithms is typically carried out using tools such as MATLAB, Python, or C++
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This research paper explores various advanced Particle Swarm Optimization (PSO) variants and their applications in
resource allocation for container-based cloud computing systems. Several enhanced versions of PSO have been
developed to improve efficiency, adaptability, and optimization performance in complex cloud environments.

Two-Memory PSO (TMPSO) [22] introduces additional memory to balance exploration and exploitation, leading to
faster convergence and improved efficiency, particularly in resource-intensive scenarios.

Adaptive PSO [23] dynamically adjusts control parameters to ensure scalability and fault tolerance, making it ideal
for rapidly changing cloud environments.

Multi-Objective PSO (MOPSO) [22] optimizes multiple objectives simultaneously, such as cost and time, using Pareto
dominance to generate diverse solutions.

Hierarchical PSO (HPSO)[24] structures particles in a hierarchy to enhance resource utilization, which is useful for
multi-level decision-making tasks like clustering and scheduling.

Cooperative PSO (CPSO) enables collaboration among particles, improving solution quality and convergence speed
in complex cloud-based applications.

Discrete PSO (DPSO)[23] is adapted for tasks like container placement by discretizing positions and velocities,
making it effective for task scheduling.

Quantum-behaved PSO (QPSO) [] incorporates quantum mechanics principles for enhanced search capabilities,
benefiting applications that require high security and energy efficiency.

Hybrid PSO combines PSO []Jwith other optimization techniques like Genetic Algorithms (GA) or Simulated
Annealing (SA) to improve convergence and resource allocation in cloud computing.

Dynamic Multi-Swarm PSO (DMS-PSO)[25] is designed for dynamic cloud environments, using multiple interacting
swarms to quickly adapt to changing conditions.

Opposition-Based Learning PSO (OBL-PSO)[26] enhances global search and prevents local optima trapping by
integrating opposition-based learning strategies.

Chaotic PSO (CPSO) incorporates chaos theory to avoid premature convergence, making it suitable for environments
with fluctuating workloads.

Constriction Factor PSO (CF-PSO) stabilizes convergence by applying a constriction factor, ensuring reliable
performance across various cloud optimization problems.

In this paper we have imlemente hybrid Adaptive PSO and Decesion tree classifier to improve resource allocation
and load balancing in Docker container based eco system, Compbining both algorithm allows efficient resource
management and historical data in decision tree improves future dynamic load requirements, we try to achieve
efficient resource allocation and improved performance for Docker container.

Resource Utilization CPU Usage

Memary Usage Load Balancing

Load Balancing Effectiveness (¥

Figure 3. Resource Utilization, CPU Usage, Memory Usage, and Load Balancing using PSO algorithms.
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Figure 4. CPU Load Comparison using PSO Algorithm (PSO, TMPSO, and Adaptive PSO)

Here figure 3 and 4 shows comparative analysis of PSO,TMPSO, AdaptivePSO , in this PSO performs slightly better
then TMPSO and Adaptive PSO because of low computation overhead but when we increase load PSO will lead to
local optimization problem [13] which can be removed by assigning dynamic weight in Adaptive PSP

METHODOLOGY
The resource allocation is modified using adaptive PSO, which can be used in the three situations listed below.
a. Optimal Neighbourhood Method in Particle Optimization:

In this approach, every particle learns from both its own ideal location (pbest) and the optimal position of its
neighbours (Ibest). Particles iii and j are regarded as neighbours if their distances are less than a given threshold R.
If not, they might nevertheless be regarded as "virtual neighbours" with a low probability p (the range is o<p=10).

b. Randomized Connections with Virtual Neighbours: Particles have a probability p (again 0<p<«10) of
becoming virtual neighbours when the distance between them exceeds the threshold RRR. This random linking
allows particles to escape local optima by enabling them to connect to particles outside their immediate
neighbourhood, thus avoiding entrapment in suboptimal positions.

c. Dynamic Learning Factor C.: A dynamic learning factor is added to adjust each particle's "flying inertia,"
which varies over time and space. This adaptation promotes diverse learning interactions among particles and
reduces the risk of particles converging prematurely in high-dimensional search spaces. Each particle only learns
from the position of its best neighbouring particle, including virtual neighbours. If a particle has multiple neighbours,
it prioritizes the optimal one based on fitness difference, with larger differences indicating a more pressing need to
adjust toward that neighbour’s position.

Problem Formulation

A thorough review of the literature [29,31,33] indicates that containerization is still in its formative stage but has
demonstrated significant advantages over traditional hypervisor-based virtualization. Containers are lightweight,
support microservice architectures, and facilitate easier migration. Despite these benefits, load balancing remains a
critical challenge in container-based cloud environments, directly impacting performance, scalability, energy
efficiency, and resource scheduling [45]. As shown in Figure 2, various load balancing approaches have been
proposed by many researchers. The effectiveness of these algorithms depends on system architecture, workload
characteristics, and the selected performance metrics. Given the continuous expansion of data-intensive applications
and industrial demand, further research in this domain remains essential.
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In container based system Efficient load balancing system is required to manage resources effectively , many
researchers have applied heuristic algorithms such as ACO-Ant Colony Optimization[8] and PSO- Particle Swarm
Optimization for such scenario [1,2,7], Contaiener runs microservice based architecture which requires dynamic
resource allocation. We have tried to optimize resources such as CPU utilization, Memory utilization and I/0O cost ,
to efficiently allocate resources adaptice and hybrid mechanism is essential which allows resource allocation as per
dynamic demand , traditional approaches uses round robin , FCFS, or least connection methods which are not
efficient as they cannot manage dynamic workloads.

Decision Tree Classifier

The Decision Tree algorithm helps in managing container workloads by analyzing real-time resource usage, including
CPU usage, memory consumption, and request rate. Based on these factors, it classifies containers as "overloaded,"
"underutilized," or "balanced." This classification helps the load balancer distribute resources efficiently.

For example, if a container’s CPU usage goes above 80% and memory usage exceeds 70%, it is considered overloaded,
prompting the system to either add more resources or move some tasks to another container. On the other hand, if a
container has low CPU usage and minimal requests, it is classified as underutilized, suggesting that resources can be
freed or consolidated.

Since Decision Trees process data quickly, they are useful for real-time load balancing in large-scale Docker
environments. However, they need to be retrained periodically to adapt to changes in workloads and ensure accurate
resource allocation.

Adaptive Particle Swarm Optimization (PSO)

The Adaptive PSO (APSO) algorithm is useful to optimize resources dynamically by fine tunig the resource
optimization mechanism , here each container in Docker swarm have saperate resources, It optimizes the resources
by adjusting inertia weight of neighbour and individual conntaienr which enables the containers to move towards
resource efficient configuration. For example, when a container enters an overloaded state, the algorithm modifies
its position to explore configurations that either reduce resource consumption or redistribute the load across other
containers. The adaptive nature of PSO allows it to modify swarm behavior in response to workload fluctuations,
making it effective for real-time optimization in large-scale containerized environments. By dynamically adjusting
resource allocation, this approach helps prevent both overloading and underutilization, ensuring balanced workload
distribution in a highly dynamic cloud infrastructure.

Proposed Methodology

After detailed literature and examining existing approaches we have proposed following methodology for effective
resource optimization in container-based cloud systems. The methodology integrates PSO and DST.

Step 1: Initialization

e Define Parameters:

e  Number of particles P

e  Maximum number of iterations Imax

e Inertia weight w

¢ Cognitive coefficient C1

e Social coefficient C2

e Population size for classification Cpop

e Initialize Particles:
Each particle represents a possible solution (container allocation state).
Initialize positions and velocities of particles randomly within the permissible range.
Initialize Global and Local Bests:
Set initial local best position for each particle.
Identify and set the global best position.
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Step 2: Classification for Load Prediction

1. Train a Decision Tree Classifier:

Collect historical data with features: CPU usage, memory usage, and resource allocation.

Labels represent the load level (e.g., low, medium, high).

Train a Decision Tree classifier on this dataset.

2. Predict Load:

Use the trained Decision Tree classifier to predict the load for each container based on current
features.

Step 3: Fitness Evaluation

1. Calculate Fitness:

Define a fitness function
N

f_z < CPUI MEMORYi + RESOURCEI )

Total CPU + Total MEMORY Total RESOURCE
i=1
The goal is to minimize the variance in the load distribution.
Step 4: Update Particles
1. Adaptive Update of Inertia Weight:
Update inertia weight www based on the iteration number to balance exploration and
exploitation.

Wmax — Wmin

W = wmax — ( ) X iteration

Imax
2. Velocity Update:
Update the velocity of each particle using;:

vij(t+ 1) = w X vij(t) + c1 X rl X (pij — xij) + c2 X r2 X (gj — xij)

Where viis the velocity of particle i in dimension j, pj is the local best position, gjis the global best
position, and r,,r, are random numbers between 0 and 1.
3 Position Update:
e Update the position of each particle using:
xij(t + 1) = xij(t) + vij(t + 1)
4 Boundary Conditions:
¢ Ensure that the positions are within the permissible range.
Step 5: Update Local and Global Bests
1. Evaluate Fitness:
Calculate the fitness of each particle's new position.
2. Update Local Best:
If a particle's new position has a better fitness than its current local best, update the local best.
3. Update Global Best:
If a particle's new position has a better fitness than the current global best, update the global best.
Step 6: Termination
1. Check Termination Criteria:
If the maximum number of iterations: Imax is reached or the fitness value converges, terminate the
algorithm.
2. Output the Global Best:
The global best position represents the optimal load distribution.
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IMPLEMENTATION

This section presents the experimental setup, configuration, data collection process, and evaluation metrics used to
validate the effectiveness of the proposed methodology utilizing Adaptive Particle Swarm Optimization (PSO) and
Decision Tree models in a Docker containerized environment.

Experimental Setup

For experinetation we have used a Docker container system installed on Rayzen-I7 12700H processor with 16GB Ram
and windows OS with Docker version 24.0.2 , We have created and managed containerzed envirement by Docker
desktop and Python 3.10 Docker libraires.to data analysis we have also used libraries such as Scikit-learn, NumPy,
and Matplotlib, Below listed parameters were considered for experimentation .

v No of Containers: 5
v'  Adaptive PSO Parameters:
o Swarm Size: 50 particles
Maximum Iterations: 100
Inertia Weight (w): Adaptive, initialized at 0.9 and decreased linearly to 0.4.
Cognitive Coefficient (c1): 2.0
Social Coefficient (c2): 2.0

O O O O

The adaptive mechanism of PSO dynamically adjusted the inertia weight based on the workload conditions of the
containers, ensuring efficient resource allocation.

The configuration of Decision Tree is as follows:

v" Type: CART (Classification and Regression Tree)
v' Splitting Criterion: Gini index

v Maximum Depth: 10

v" Minimum Samples Split: 2

The Decision Tree served as a predictive model to identify patterns in resource usage and guide the PSO algorithm
for optimal load balancing.

4.2 Data Collection

To conduct the experiment resource usage (CPU and memory) data were collected from Docker containers running
workloads of varying intensities, including CPU-intensive, memory-intensive, and mixed workloads. Synthetic
workloads were generated using Apache JMeter, were used for comparison.

Monitoring Tools used: Docker Stats API was employed for real-time monitoring of resource usage. The data was
logged at 5-second intervals and aggregated over one-minute periods for analysis.

Data Processing: Raw data was pre-processed to remove outliers and smooth short-term fluctuations using a moving
average filter. The data was stored in CSV format for subsequent analysis and input into the optimization algorithms.

RESULTS AND ANALYSIS
Efficiency Improvement

Table 1. shows before-and-after comparisons of resource usage CPU centric processes.

Container CPU Before Memory Before CPU After Memory After
(%) (%) (%) (%)
Container 1 13.8 93.0 12.2 93.7
Container 2 16.6 93.8 15.3 93.7
Container 3 20.5 92.8 15.6 93.9
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Container 4 11.7 93.4 14.0 94.4
Container 5 15.2 93.5 16.5 93.7
Process Execution
Time
Decision Tree | 0.014994 (s)
PSO 0.217299 (s)
Optimization
Table 2. CPU and Memory Efficiency Improvement.
Container | CPU Memory | CPU Memor | CPU Memory
Before Before After (%) | y After | Efficiency Efficiency
(%) (%) (%) Improveme | Improvement
nt (%) (%)
Container 1 22.1 95.7 11.7 95.2 47.06 0.522
Container 2 12.8 95.7 11.7 95.3 8.59 0.418
Container 3 20.2 95.4 8.2 95.2 59.41 0.21
Container 4 11.5 95.4 10.5 95.2 8.7 0.21
Container 5 25.0 94.9 11.2 95.3 55.2 -0.421

Table 3. shows before-and-after comparisons of resource usage Memory centric processes.

Container CPU Before Memory Before | CPU After Memory After (%)
(%) (%) (%)
Container 1 2.0 89.1 9.4 86.5
Container 2 19.8 89.1 6.2 86.5
Container 3 7.6 89.1 4.2 86.5
Container 4 17.4 89.1 0.4 86.5
Container 5 8.1 89.1 2.6 86.5

Table 4. shows before-and-after comparisons of resource usage after 1000 iteration.

Container CPU Before Memory Before | CPU After Memory After (%)
(%) (%) (%)
Container 1 8.5 93 1.5 92.8
Container 2 5.2 93 3.8 92.8
Container 3 6.2 93 10.0 92.8
Container 4 8.2 93 1.2 92.8
Container 5 9.7 93 3.5 92.8
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Table 5. Comparision of PSO and APSO+DT for memory and CPU improvement .

Container CPU CPU Memory | Memory CPU Memory
PSO (%) | APSO+DT | PSO (%) | APSO+DT | Improvement | Improvement
(%) (%) (%) (%)
Container 1 71.82 57.46 84.04 67.24 14.36 16.81
Container 2 60.11 48.09 75.73 60.59 12.02 15.15
Container 3 69.64 55.71 83.53 66.82 13.93 16.71
Container 4 83.11 66.49 97.93 78.35 16.62 19.59
Container 5 66.49 40.01 77.78 62.22 10.00 15.56
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DISCUSSION

The results demonstrate the effectiveness of the Adaptive Particle Swarm Optimization (PSO) and Decision Tree
algorithms in optimizing resource utilization across multiple Docker containers in a cloud Figure 6: CPU and Memory
improvement over time. The figure 5,6,7 and tables 1-4 shows CPU Usage Before and After Optimization
results indicate significant improvements, with notable reductions in CPU usage across all containers post-
optimization. For example, Container 3 reduced its CPU usage from 20.5% to 15.6%, and Container 1 showed a
drop from 13.8% to 12.2%, highlighting the ability of the Adaptive PSO to redistribute computational loads effectively.
In contrast, the Memory Usage Before and After Optimization results showed relatively marginal
improvements, such as Container 1’'s memory usage increasing slightly from 93.0% to 93.7%, which suggests that
memory resource allocation remains stable with minor efficiency enhancements. The Efficiency Improvement
Analysis in figure 7 further underscores the effectiveness of the optimization approach, where CPU efficiency saw
significant improvements—Container 3 achieved a remarkable 59.41% improvement, while Container 1 followed
with 47.06%, demonstrating the strength of the Adaptive PSO algorithm in handling resource-heavy workloads.
However, Container 5 displayed a slight decline in memory efficiency (-0.42%), indicating that optimization may
need further adjustments for containers experiencing inconsistent workloads. Additionally, the Execution Time in
Table 1 reveals that the Decision Tree algorithm executes in (0.0149s) compared to PSO Optimization in (0.2173s),
yet the improved CPU efficiency gains justify the slightly higher computational overhead of the PSO approach.
Further detailed analysis of container performance, as shown in Resource Usage 2 and 3, highlights that container
with initially high CPU usage, such as Container 3 and Container 5, experienced the most significant reductions,
whereas containers with lower starting workloads achieved minimal optimizations. These findings validate the
Adaptive PSO and Decision Tree algorithms as effective techniques for CPU load balancing and resource scheduling
in a containerized cloud environment, offering substantial improvements in CPU efficiency while maintaining stable
memory usage. The results also emphasize the need for fine-tuning optimization parameters to address containers
with variable workloads and achieve holistic improvements across all resource dimensions. Table 8 and figure 9
suggests PSO+ DT performs well in terms of CPU and Memory utilization compare to traditional PSO and this also
solves the problem of local optimization in PSO Overall, this study highlights the potential of the Adaptive PSO with
Decision Tree based classification approach to enhance resource utilization, reduce computational bottlenecks, and
improve system efficiency in dynamic cloud environments.

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 1093

Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Journal of Information Systems Engineering and Management

2024,9(4s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

CONCLUSION

The experimental analysis demonstrates that the Adaptive Particle Swarm Optimization (PSO) and Decision Tree
algorithms effectively optimize resource utilization in Docker container-based cloud environments. The results
showcase significant reductions in CPU usage across all containers, with efficiency improvements reaching up to
59.41% for certain workloads, such as Container 3. These findings validate the Adaptive PSO’s ability to balance CPU
load effectively, redistributing computational resources to underutilized containers and reducing overall bottlenecks.
Memory usage exhibited minor improvements, indicating that while CPU optimization was successful, further
enhancements in memory management could be achieved. The execution time analysis highlights that although the
PSO incurs slightly higher computational costs compared to the Adaptive PSO + Decision Tree algorithm hybrid
model has substantial gains in resource efficiency.

FUTURE WORK

Future improvements can focus on incorporating dynamic memory reallocation algorithms to enhance memory
efficiency and address current limitations. Introducing adaptive thresholds for workload prediction and scheduling
can optimize performance for containers with fluctuating workloads. Integrating machine learning-based predictive
models can further improve adaptability by anticipating resource demands and enabling proactive resource
allocation. Additionally, testing the framework in larger, heterogeneous cloud environments with diverse workloads
will help validate its scalability and robustness. These enhancements will make the system more efficient, adaptive,
and capable of delivering better resource
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