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1.  INTRODUCTION 

Emotion is a complex psychological state that arises in response to significant internal or external events, 

often involving a combination of subjective feelings, physiological changes, and behavioural expressions. It 

serves as a powerful motivator for action, guiding our decisions, interactions, and sense of well-being. An 

emotional response is the body's way of reacting to an emotional stimulus, encompassing a range of changes 

from heart rate and breathing adjustments to facial expressions and shifts in tone of voice [1], [2]. This 

response is not just an instinctual reaction but can also involve a conscious awareness of what one is feeling 

[3], [4], [5], providing insight into what we value, fear, or desire. Emotions play an essential role in 

human communication and connection, allowing us to relate to others and understand ourselves profoundly. 

25 Before using inner expression data, text, facial expression, and speech were the most common methods to 

detect emotions [2], [6]. Using physiological data towards emotion recognition has become an appropriate 
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Human emotion recognition is a peculiar task. Humans express emotions or provide 

emotional responses via facial gestures, body temperature, and brain activity. 

Interestingly, brain activities can be observed via EEG recordings. Analysis of an 

individual's emotional state to stimulations such as video, music, or activity is vital 

to their behaviour. Deep learning (DL) models are popular and influential enough 

to predict emotions from EEG signals. Mapping predictions to different EEG 

channels or features would be critical to further understanding human behaviour. 

The study in this paper presents an analysis of various deep-learning model 

performances in predictions of emotions with multi-channel, multi-label EEG 

signals. In the context of DL, convolutional and recurrent deep neural network 

models are utilized for emotion recognition. The synergistic use of CNNs and 

RNNs to extract temporal, spatial, and spectral features from multi-modal 

physiological data is especially considered here. The DEAP dataset, being a rich 

source of multi-modal physiological signal representation data, is therefore used 

in this study. The DEAP data encapsulates a range of stimulated human 

emotions and is suitable for this study. Most importantly, emotion predictions 

from proposed DL models on the DEAP dataset are analyzed within an XAI 

framework. SHAP XAI framework is used to interpret the predictions from DL 

models and its mapping onto input different physiological signals within the DEAP 

dataset. Results from DL models indicate improved emotion recognition permeance 

and SHAP values from the XAI framework indicate the significance of the DL model 

architecture and its features in achieving this performance.  

 

Index Terms – Emotion predictive analysis, deep-learning, Explainable AI 

learning, SHAP values. 
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alternative to external expression (facial expressions, text, and speech data). External expressions-based 

emotion detection and classification can be easily manipulated, which is why many recent studies have focused 

on physiological data [7]. Physiological data models can be utilized in unimodal or multi-modal approaches for 

emotion detection. However, unimodal and multi-modal emotion detection methods have pros and cons. 

The multi-modal method for emotion detection utilizes a combination of different physiological signals 

such as electrocardiograms (ECG), electromyogram (EMG), electroencephalogram (EEG), electrodermal 

activity(EDA), Photoplethysmogram (PPG), galvanic skin response (GSR), respiratory inductive 

plethysmograph (RIP), blood volume pressure (BVP) and temperature [8]. The multi-modal emotion 

detection method commonly gives better accuracy than the unimodal method; however, the multi-modal 

emotion detection method needs longer processing time and has a more complex data collection procedure 

than the unimodal method [8]. Deep learning has made significant strides in predicting emotion, particularly 

through the use of multi-modal data such as facial expressions, voice tone, body language, and even textual 

data. With advanced architectures like Convolutional Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs), and transformer models, deep learning systems can now process large and complex datasets to detect 

subtle cues related to emotion. This feature of the advanced DL models has applications in fields such as 

sentiment analysis, mental health support, personalized marketing, and human-computer interaction. Also, 

since DL methods can perform feature selection or extraction intrinsically, exclusive steps are not required to 

do so (311, 312). The DL architecture is suitable for scaling in terms of increased feature dimensions and 

increased number of samples. CNNs are often used to analyze facial expressions, where they can learn visual 

patterns associated with specific emotions (like happiness or anger) by focusing on micro-expressions, eye 

movement, or even posture. In audio processing, RNNs and transformer-based architectures such as BERT 

or GPT can be applied to recognize emotional tone and sentiment from speech or text data, identifying 

nuances in tone and context. More sophisticated models now integrate multi-modal inputs, combining visual, 

audio, and text data to create a more holistic analysis of emotion. Recently, numerous studies have used the 

DEAP dataset for DL- based emotional response prediction model development. Authors in [9] developed a 

CNN with a multi-scale kernels model for emotion recognition with DEAP data. They focussed on 

correlating different EEG signals with frequency, which helped develop multi-scale kernels for different 

frequency EEG signals. Their multi-scale kernels attempted to capture both local and global patterns. Their 

method: The proposed method achieved high average accuracies of 98.27% for Arousal and 98.36% for 

valence binary classification. The authors in [10] construct a 3-D feature that integrates spatial and spectral 

information from DEAP multi-channel EEG signals. It involves arranging power values from different 

frequency bands into a 3-D tensor. They 

further proposed a framework, namely dilated bottleneck-based convolutional neural networks (DBCN), to 

process these 3-D features. This framework acts as a feature fusion module. Their model achieved high 

classification accuracies for participant- dependent strategies (89.67% for Arousal, 90.93% for Valence) and 

participant-independent (79.45% for Arousal, 83.98% for Valence). The authors proposed a novel method 

for emotion recognition with EEG signals from the DEAP dataset. Their method is based on multi-scale 

sample entropy, i.e. MSE and deep hybrid network that incorporates convolutional neural nets or CNNs and 

hidden Markov models or HMMs. One of the notable insights from their study is that it provides EEG 

channels with significant activations during classification. It helped them understand which features are 

contributing more and which are contributing less. Yu Chen et al. [11]combined CNNs with a Borderline-

synthetic minority oversampling data augmentation technique to perform emotion classification with the 

DEAP dataset. At first, they extracted frequency domain features and then performed data augmentation to 

achieve balanced training data. This balanced dataset of frequency domain features is used to train a 1D-

CNN-based DL model. They reported classification accuracies of 97.47% and 97.76% for Valence and 

Arousal, respectively. Baltatzis et al. in [12] studied bullying in schools by adopting a convolutional deep 

neural network model with EEG data. The EEG was recorded while making students watch specific videos. 

Their study identified whether a student is bullied or not. Tang et al. in proposed a method based on the deep 

2D-CNNs to be used with single-trial MI EEG. Their feature extraction and classification method is based on 
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the Spatiotemporal characteristics of EEG. In particular, the 2D-CNNs can extract features that are 

spatially correlated. They achieved accuracies of 0.6831 for Arousal and 0.6752 for valence 

classification. The 3D-CNN-based model by Salama, Elham S., et al. in [13] can capture spatial, spectral 

(channel) and temporal dependencies in EEG data. Their study was one of the preliminary studies that utilized 

3D-CNNs for emotion recognition with multi-channel EEG data. They reported achieving recognition 

accuracies of 87.44% and 88.49% for valence and arousal classes, respectively. Qiao, Rui, et al in [14] 

proposed a novel model for multi-subject emotion classification. They used convolution strategies for 

feature abstraction. Their model is based on the principle that CNNs can, in fact, represent the 

correlations among information from multiple channels of an EEG. Consequently, this strategy helps 

construct discriminatory features. Their strategy achieved an accuracy of 87.27%, which was averaged over 

the 32 participants of the DEAP dataset. 

The synergistic use of CNNs and RNNs in this regard is worth mentioning. However, the combined use of 

CNNs and RNNs for emotion identification has recently gained attention. Li et al. [15] applied wavelet 

features to train CNN combined with LSTM, and the binary classification accuracy reached 72%. Roy et al. in 

[16] concentrated on segregating brain activities into natural or abnormal with DL. They analyzed four 

different DL architectures that were based on convolutional networks and recurrent networks, especially 

using GRUs. One of their proposed models, namely ChronoNet, claimed to have achieved 90.60% training 

and 86.57% testing accuracies. Supratak et al. [17] proposed a deep learning model named DeepSleepNet for 

automatic sleep stage scoring based on raw single-channel EEG. They utilize CNN to extract time-invariant 

features and Bi-LSTM to learn transition rules among sleep stages from EEG epochs automatically. This 

approach achieved an accuracy of 90%. Bashivan et al. in [18] proposed a novel DL model that could learn 

representations from time series signals from a multi-channel EEG dataset. They demonstrated that the 

model is efficient in mental load classification among participants. They trained a deep recurrent CNN that 

was inspired by state-of-the-art models in the image and video processing domains. Their model aimed at 

learning robust representations from the multi-channel time-series EEG signals. Their designed model is 

aimed to preserve and maybe capture the spatial, spectral, and temporal structure of input EEG that is 

variation- insensitive distortion-insensitive. They achieved TPRs and TNRs higher than 60% for seven 

participants among the thirteen participants they considered. J. Chen et al. in [] proposed a 

convolutional-recurrent layers '-based hybrid neural network model for learning spatiotemporal EEG 

representations from multi-channel EEG data. They transformed 1D representations into 2D meshes. Then, 

they segmented these 2D meshes into equal parts. A combination of parallel and cascaded convolutional-

recurrent architecture is used to extract features from these segments. They reported classification 

accuracies of approx. 93% for both Valence and Arousal. This current study finds motivation to explore and 

utilize CNN-RNN models for emotion identification with multi-channel physiological signals, including 

EEGs, from the above literature. 

Despite progress, challenges remain. Emotions are highly subjective, context-sensitive, and culturally 

influenced, making generalization difficult. Furthermore, emotions are dynamic and can change rapidly, 

posing additional challenges for real-time analysis. Researchers are actively working on refining models 

to better handle these complexities, and with continual improvements in data availability, computational 

power, and model design, the field is moving closer to highly accurate and context-aware emotion 

recognition systems. In particular, it is also notable that although studies have shown that EEG signal 

classification via deep learning models can achieve high prediction accuracy [19] [20]. However, these 

models are still considered “black boxes,” lacking interpretability and immediate understanding ability for 

healthcare professionals. In recent years, explainable AI or XAI, has become an increasingly significant 

tool in the AI world because of its application in understanding critical decisions and the fact that 

regulators hold businesses responsible for their AI models' judgments. Its rapid growth suggests that in the 

days to come, real-time AI deployment and perception may change dramatically. An XAI framework's 

module typically consists of two parts: the interpretability module and the explainability module. [21]. 

Explaining the black-box model's decision output is the primary goal of the explainability model. 
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Explainability tries to answer the ‘why an algorithm produces a particular response’ question. Therefore, it 

considers issues like the weighting of each variable inside the model to evaluate the relative value of each 

variable in answering the question. Although the procedure that takes place within the model may continue 

to be a mystery, we are aware of the reasons why the response has been delivered. In the context of 

understanding analytical models and algorithms, interpretability refers to the process of identifying how 

the model or algorithm arrived at its results. For example, when a model is interpretable, it is easy to 

comprehend the inputs and processes utilized to arrive at its predictions. Frameworks like GradCAM [22], 

[23], Local Interpretable Model-Agnostic Explanation (LIME) [24], [25], Shapley Additive explanations 

(SHAP) [26] [27], Layer-wise Relevance Propagation (LRP) [28], [29], and others fall under explainability 

models. In order to train an interpretable model that is based on the predictions of black-box models, the 

well-known Local Interpretable Model-agnostic Explanation (LIME) was developed. Under normal 

circumstances, the LIME can rapidly produce superior local explanations for any black-box model. Game-

theoretic elements were included in the Shapley additive explanation (SHAP), which resulted in an 

improvement to the LIME model. It attributes characteristic elements of the data to the measurement results 

that are significant for making predictions. A more comprehensive explanation of learning models is provided 

by the SHAP, which contributes to an overall improvement in comprehension. Among the many methods that 

are capable of producing visual explanations for the decisions that CNN-based models make, the Grad-

CAM approach is yet another example. 

Therefore, this paper presents a study in which novel human emotion recognition models are developed and 

utilized. These models are based on the concepts of CNNs, RNNs, and XAI. The study proposes 

convolutional-recurrent architecture-based models for use in human emotion-response prediction and also 

proposes an XAI framework to interpret the performance of these models. At first, a multi-channel, multi-

label signal is fragmented into equal parts across the time dimension. The CNNs act on these time-wise 

fragments of the entire signal to extract discriminatory features. In contrast, the RNNs act on these 

temporally distributed discriminatory features obtained as an output from the CNNs. The Shapley Additive 

Explanations, more commonly termed the SHAP XAI method, is used to explain the significance and 

contributions of the model, especially discriminatory features from CNNs and temporal-information-based 

features from RNNs in emotional response prediction applications. 

The rest of this paper is divided as follows. Section 1 provides a premise for human emotion recognition 

using physiological signals, various sensors used so far to record and represent these emotions or plausible 

indicators, popular datasets in the field, and CNN-RNN-based models and methods popularly reported so 

far. In section 2, under materials and methods, at first, the DEAP dataset considered for study is 

discussed. Further, the proposed methodology describes DL model configurations and the SHAP XAI 

framework. Section 3 discusses DL model training and testing processes, classification performance 

evaluations, and model performance interpretability within the SHAP XAI framework. Finally, section 

4concludes the study. 

  

2. MATERIAL AND METHODS 

 

1. Dataset 

The DEAP dataset is a database for emotion analysis using physiological signals [30]. It included EEG signals 

and other specific physiological signals from 32 participants. These signals are recorded while they watch 1-

minute music videos. Overall, each participant watched 40 such videos, and the corresponding 

physiological responses were stored at a rate of 1280 unique observations. A total of 44 sensors are used 

to record 48 different physiological responses. The raw recordings are down-sampled to 512 Hz. The 

sensors consisted of 32 EEG sensors, 12 peripheral sensors, and one status signal channel. The dataset 

description is briefly summarized in Table 1. For model development in this study, all sensory data except the 

face videos are considered. Each participant’s reported emotion can be majorly decomposed into Arousal, 

Valence, and Dominance, as shown in Figure 1. 
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Table 1 Summary of the DEAP dataset containing multi-channel physiological signals. 

 Dataset DEAP 
Participants 32 
Sensory input signals: EEGs, EMGs, 44 
EOGs, GSR, RR, Plethy, Temperature 32, 4, 4, 1, 1, 1, 1 
Stimulation Music video clips 
Stimulation duration 1-minute 
Number of stimulations per participant 40 
Emotions 40 emotions based on the Arousal-Valence 

map 
Supplementary data Face videos 

155   
 

2. Methodology 

 
Figure 1 Emotional response decomposition 3D map. 

 

The overall methodology for emotion recognition in this study is as follows. 

1. The multi-modal and multi-label physiological time-series signal dataset, i.e. DEAP dataset, is 

preprocessed first. 

2. Various models based on CNN, RNN, and C-RNN architectures are proposed and developed for emotion 

recognition. 

3. An XAI framework, i.e. SHAP, is utilized to analyze how well and why the DL models perform on the 

emotion recognition problem. 

Each step is discussed separately here under the following sections and sub-sections. A flowchart to 

represent this overall methodology is shown in Figure 2. The overall idea of this methodology is to 

understand the functioning of DL models in emotion recognition tasks given a multi-source, multi-modal, 

and multi-label physiological signal.  

 

 
Figure 2 Flowchart summarizing proposed methodology for the study. 
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CNN Model: Configuration 

At first, the input signal is transformed via a 2-layer series of convolutions and non-linear activations 

functions. The first layer has 32 one-dimensional convolutional filters, each of which exploits the 

information encapsulated in a 1000-step long multi-channel signal segment. This transformed signal 

segment is then down-sampled via the max-pooling strategy. The down-sampled signal segment is further 

transformed via another set of 64 convolutional filters and further down-sampled again via the same pooling 

strategy as earlier. The output from this layer is vectorized and fed into a series of fully connected layers to 

accommodate the scaling of the signal. The non-linear action functions keep the non-linear relationship 

mapped through these transformations. Finally, a classification layer with a SoftMax activation is employed 

to achieve a binary classification output. The overall model is termed the 1D-CNN-EEG model, and its 

architecture description is listed in Table 2. 180 

 

RNN Model: Configuration 

The development of an RNN-based model is a bit tricky. This is because the signal length in time is 7860, a 

massive amount for an RNN to process and memorize. Therefore, the fragmentation of the signals into 

smaller temporal-length signals is critical to enable the model to learn faster. In this model, at first, the 

input signal is fragmented into 16 500-step signal segments. These 16 segments are then fed into 16 

separate RNNs simultaneously, with four filters in each RNN. These 16 RNNs provide 16 outputs, which 

are then fed into another RNN, which takes a 16-step long signal.  

 

The outputs from the previous RNNs are arranged chronologically. This means that the out from the RNN, 

which takes the first 500-step signal 

segment, is the first element in the 16-step long signal input to the second stage RNN. This keeps the 

temporal relationship intact up to an extent. The output from this second stage RNN is then fed into a fully 

connected layer. The non-linear action functions keep the non-linear relationship mapped through these 

transformations. Finally, a classification layer with a SoftMax activation is employed to achieve a binary 

classification output. The overall model is termed the RNN-EEG model, and its architecture description is 

listed in Table 3.  

 

CNN-RNN Model: Configuration 

In the RNN-EEG model development, it was clear that significantly large-length signals are challenging to 

process directly with RNNs. The fragmentation and temporally-localized processing of the signal help, but the 

500-step signal segment is still significant for RNNs to process. A similar transformation of these 

temporally localised signal segments could retain their temporal dependency with respect to each other. 

These transformations can be achieved with CNNs. Therefore, the input signal is initially fragmented into 16 

500-step signal segments in this model. These signal segments are then transformed via a 2-layer series of 

convolutions and non-linear activations functions. The first layer has 32 one-dimensional convolutional filters, 

each exploiting the information encapsulated in a 500-step-long multi-channel signal segment. This 

transformed signal segment is then down-sampled via the max-pooling strategy. The down-sampled signal 

segment is further transformed via another set of 64 convolutional filters and further down-sampled again 

via the same pooling strategy as earlier. Sixteen of these 2-layer transformations are simultaneously 

applied to the 16 signal fragments, proving that 16 transformed signal elements are temporally 

correlated. This 16-step long signal is then fed into an RNN layer. The output from this RNN is then fed into a 

fully connected layer. The non-linear action functions keep the non-linear relationship mapped through 

these transformations. Finally, a classification layer with a SoftMax activation is employed to achieve a binary 

classification output. The overall model is termed the C-RNN-EEG model, and its architecture description is 

listed in Table 4. 

Variants of these CNN, RNN, and C-RNN models are developed, trained and tested for emotion 

detection and recognition. 
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Table 2 CNN model configuration. 

 

Model 

Layer 

Input Convolution Fully connected 

(FCfirst, FCseond) 

Classification 

First Csecond 

C
N

N
-E

E
G

 

Data dimensions Convolution type = Convolution type = one- Node count = 64, 32 Label count = 2 

= 1   

(samples, time, channels) 

= 32 participants, 40 videos, 

60 seconds, 40 channels 

one-dimensional 

Filter count = 32 Kernel 

size =1000 Pooling =  

Activation =Tanh 

dimensional 

Filter count = 64 Kernel 

size =2000 Activation 

=Tanh 

Pooling =  

Activation =Tanh, 

Tanh 

Dropout fraction = 

0.15, 0.15 

Activation = 

SoftMax 

 Dropout fraction = 0.15 Dropout fraction = 0.15   

 

Table 3 RNN model configuration 
  Layer 

Model Input Fragmentation Recurrence Fully connected 

(FCfirst, 

Classific

ation Stage 1 Stage 2 

R
N

N
-E

E
G

 

Data dimensions Fragment the input signal 

into 16 small segments, 

with each segment being 

500 steps long. 

Number of fragments = 16 

(with padded input signal) 

Fragmented signal length = 

500 

16 RNNs, one for each signal 1 RNN to combine the 

previous stage 16 outputs 

from individual RNNs 

Recurrence cell type = 

LSTM 

Cell length = 16 Number 

of filters = 10 Recurrence 

activation = Sigmoid 

Output activation = Tanh 

Signal flow: Bidirectional. 

Architecture strategy = 

Many to one 

Node count = 32 Number 

of labels: 

= 1  

  

(samples, time, 

channels) 

= 32 participants, 40 

videos, 

60 seconds, 40 

channels 

segment 

Recurrence cell type = LSTM 

Cell length = 500 

Number of filters = 4 

Recurrence activation = Sigmoid 

Activation =Tanh 

Dropout fraction 

= 0.15 

2 

Activatio

n: 

Softmax 

 Output activation = Tanh   

 Signal flow: Bidirectional.   

 Architecture strategy = Many to 

one 

  

 

Table 4 CNN-RNN model configuration 
Model Layer 

Input Convolution stage 1 Convolution stage 2 Concatenation stage Recurrence stage: Classificatio

n stage 

C
-R

N
N

-E
E

G
 

Data dimensions 1D convolution (separately for 

each 

1D convolution 

(separately for 

Concatenate all 16 Recurrence cell type = 

LSTM 

Number of 

labels: 2 

= 

1   

 (samples, time, 

channels) 

= 32 participants, 40 

videos, 60 seconds, 40 

channels 

16 fragments are created, 

of the 16 fragments) 

Filter shape: 199 Number of 

filters: 32 Pooling size: 2 

Activation =ReLU Dropout 

fraction = 0.15 

each of the ten 

fragments) 

Filter shape: 151 

Number of filters: 64 

Pooling size: 2 

Activation =ReLU 

Dropout fraction = 0.15 

fragments in 

chronological order 

Shape: 16 '64 (16 

represent 

time-stamps and 64 

represent features) 

Cell length = 10 

Number of filters = 12 

Recurrence activation = 

Sigmoid Output activation 

= Tanh 

Signal flow: Bidirectional. 

Architecture strategy = 

Many to one 

Activation: 

Softmax 

each with a length of 500,      

i.e      

One fragment = 1       
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Table 5 CNN-EEG, RNN-EEG, and C-RNN-EEG model training parameter settings 

 
 

SHAP Explainable AI Framework 

The SHAP (Shapley Additive exPlanations) framework, a part of the Shapley explainable AI 

framework, is based on cooperative game theory and aims to provide insights into how each feature 

contributes to a model's predictions. SHAP leverages Shapley values, which are a method from game theory 

that can fairly allocate the "payout" (here, the model output or prediction) among the "players" (features), 

allowing us to quantify and interpret each feature's contribution to an individual prediction. Here is a detailed 

breakdown of the foundations of SHAP, including its mathematical basis. Lloyd Shapley developed Shapley 

values in the context of cooperative game theory. The idea is to determine each player's contribution in a 

game where players work together to achieve an expected outcome. 

 

Given, A set of players 𝑁 = {1,2, ....................... 𝑁}. A function 𝑣 : 2𝑁 → 𝑅 that assigns a "payout" to each 

subset of players, representing the total value (or contribution) that any subset can achieve together. For any 

player iii in the game, the Shapley value 𝜙𝑖(𝑣) is given by: 

 
 

Where, 𝑆 is any subset of players that does not include player i, ∣S∣ is the size of subset S, and 𝑣(𝑆 ∪ {𝑖}) − 

𝑣(𝑆)is the marginal contribution of player i to the subset 𝑆. The Shapley value thus represents an average of 

the marginal contributions of player iii across all possible subsets SSS of other players. 

Application of Shapley Values to Model Interpretability: In the SHAP framework, each feature in the model 

corresponds to a player in the cooperative game, and the model output is considered the total "payout" that 

we want to distribute amongthe features. 

Let 

• 𝑓(𝑥) represents the model's prediction for a specific input 𝑥. 

• 𝑓(𝑥𝜄) denotes the prediction if features are missing or replaced with their baseline values, 

• 𝑓(𝑥) − 𝐸[𝑓(𝑥)] is the "payout" we want to distribute, where 𝐸[𝑓(𝑥)] is the expected model output over all 

inputs. 

Then, for a given prediction, the SHAP value i for the feature i can be viewed as: 

 

 
 

Where, 

• 𝐹 is the set of all features. 

• 𝑆 ⊆ 𝐹\{𝑖} represents a subset of features excluding i , 

• 𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆) represents the marginal contribution of features i to the subset S . 

 

This approach distributes the prediction difference 𝑓(𝑥) − 𝐸[𝑓(𝑥)] across all features, creating an additive 

feature attribution as: 

L
o

s

s

Hyperparameter 

settings 
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Where, each 𝜙𝑖 is the SHAP value for feature i and represents its contribution to the difference between 𝑓(𝑥) 

and 𝐸[𝑓(𝑥)]. 

 

Gradient-Based Attribution 

At the core, the Gradient explainer relies on gradients to approximate the contribution of each input 

feature to the model's This gradient tells us the sensitivity of 𝑓(𝑥) to small changes in 𝑥𝑖, and can give a 

measure of 𝑥𝜄𝑠 local influence on the model𝑖 output. Integrated Gradients: This method addresses the 

problem of using only the local gradient to approximate feature importance. Integrated gradient 

calculates the cumulative effect of each feature along a straight-line path from a baseline input (often zero or a 

neutral state) to the actual input. For a single feature xi in the input 𝑥, the integrated gradient is calculated 

as: output. In general, if 𝑓(𝑥) is the model’s output given input 𝑥, the gradient of 𝑓 with respect to each 

input feature x is 𝛛𝑓 . 

 
 

Where 𝑥 is the actual input, 𝑥𝜄 is a baseline input (typically zero or some other reference point) and 𝛼 varies 

from 0 to 1, moving along the path from 𝑥𝜄 to 𝑥. 

 

Approximating Shapley Values with Integrated Gradients 

The Shapley value from the SHAP XAI module (ref) for a feature in a model represents the average ontribution 

of that feature across all possible feature combinations (or "coalitions"). Calculating the exact Shapley value 

is computationally expensive, especially for deep networks with many features. The SHAP XAI gradient 

explainer method approximates the Shapley value using expected integrated gradients over different baseline 

samples. It averages integrated gradients across multiple baselines rather than calculating the contributions 

from every possible coalition. For an input feature 𝑥𝑖, the Shapley approximation in Gradient explainer is: 

 

 
 

Where 𝐸𝑥𝜾∼𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 represents an expectation over a set of baseline values 𝑥𝜄.  

 

1. RESULTS AND DISCUSSION 

This section covers a detailed discussion of results obtained with the variants of the proposed DNN models. 

At first, a generic tabulation of model performance via overall accuracy as an indicator is presented. 

Different versions of the proposed CNN- EEG, RNN-EEG, and C-RNN-EEG are developed for different 

emotions. Next, a SHAP XAI framework-based interpretation of the C-RNN-EEG models is made, and 

corresponding interpretations are discussed. 

 

1. Model Training and Hyperparameter Settings 

A total of 12 models, 3 for Arousal, 3 for Valence, and 3 for Dominance, have been developed and trained. 

The three models for each emotion, say Arousal, are based on the CNN-EEG, RNN-EEG, and C-RNN-EEG 
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models discussed in Section 2. Each model is trained and tested on 1280 samples. An 87/6.5/6.5 (%) ratio is 

opted for training, validation, and testing respectively. Table 6 tabulates the distribution of samples for each 

model. Each model attempts to classify a baseline emotion, say Arousal, into three categories: Low, Medium, 

and High. Categorical Cross Entropy is chosen as the loss function, and the Adam method is considered for 

optimization. A batch size of 6 is set as the total sample size is low. The model is trained for over 200 epochs,  

and performance saturation is achieved around the 1ooth epoch, as shown in Figure 3. The model keeps 

these weights as the difference between training and validation accuracy and loss is minimal at this point. 293 

 

Table 6 DEAP dataset sample distribution for training and testing. 

Model Emotion Classes Samples (overall: 1280) 

Training and validation testing 

CNN-EEG-V Valence Low, Medium, High 1200 80 

CNN-EEG-A Arousal Low, Medium, High 1200 80 

CNN-EEG-D Dominance Low, Medium, High 1200 80 

RNN-EEG-V Valence Low, Medium, High 1200 80 

RNN-EEG-A Arousal Low, Medium, High 1200 80 

RNN-EEG-D Dominance Low, Medium, High 1200 80 

C-RNN-EEG-V Valence Low, Medium, High 1200 80 

C-RNN-EEG-A Arousal Low, Medium, High 1200 80 

C-RNN-EEG-D Dominance Low, Medium, High 1200 80 

 

 
Figure 3 Training progress plots for C-RNN-EEG model; (a) Categorical cross-entropy loss, 

and (b) Overall accuracy. 

 

2. Model performance: Quantitative analysis 

Table 7 reports the classification performance of the different DNN models on emotion recognition with the 

DEAP dataset. Since DNN models have matured to be efficient, robust, and reliable classification models 

with physiological signals, it is unnecessary to include results from other classical machine learning methods 

here. It is clear from Table 7 that the proposed C-RNN-EEG model variants, i.e., C-RNN-EEG-A, C-RNN-

EEG-V, and C-RNN-EEG-D, have performed better than their CNN-only and RNN-only counterparts. The C-

RNN-EEG-D performs the best, with 76.67% overall accuracy. 

To further understand the predictions up to interpretable emotional responses (see Figure 1), Table 8 and 

Table 9 present the emotional response predicted by the C-RNN-EEG variants when prompted with different 

testing samples. For example, the C- RNN-EEG-A responded with High-Arousal for samples s02-4, 5, and 11. 

Here, s02 corresponds to the participant ID, and 4, 5, and 11 correspond to the music video ID shown to the 

participant. In contrast, the C-RNN-EEG-V predicted Low Valence for samples s02-11 and High Valence for 

s02- 4 and 5. Whereas the C-RNN-EEG-D predicted Low Dominance for samples s02-11 and Medium 
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Dominance for s02- 4 and 5. Mapping the High-Arousal, Low-Valence, and Low-Dominance response from 

participant s02 to the emotion 3D-map shown in Figure 1 reveals Angry emotion. 

 

Table 7 Classification accuracies of popular algorithms in human emotion classification with 

DEAP dataset [31]. 

 Emotion Class Model Overall accuracy (%) 

Arousal Low CNN-EEG-A 69.10 

 Medium RNN-EEG-A 68.32 

 High C-RNN-EEG-A 73.12 

Valence Low CNN-EEG-V 68.20 

 Medium RNN-EEG-V 67.11 

 High C-RNN-EEG-V 76.25 

Dominance Low CNN-EEG-D 69.5 

  Medium RNN-EEG-D 68.5 

  High C-RNN-EEG-D 76.67 

313     

 

Table 8 Participant (id s02) emotional response to sample music videos. 

Emotion Class Patient ID; music video ID 

Valence Low S02; 1, 7, 11 

 Medium S02; 3, 8, 9 

 High S02; 4, 5, 6 

Arousal Low S02; 6, 8, 9 

 Medium S02; 1, 3, 7 

 High S02; 4, 5, 11 

Dominance Low S02; 6, 7, 11 

 Medium S02; 4, 5, 9 

 High S02; 1, 3, 8 

 

 

Table 9 Consolidated tabulation of predicted motions against sample music videos for the 

participant (id s02). 

Participant ID, Music 

video ID 

Emotional response 

Valence Arousal Dominance 

S02, 1 Low Medium High 

S02, 3 Medium Medium High 

S02, 4 High High Medium 

S02, 5 High High Medium 

S02, 6 High Low Low 

S02, 7 Low Medium Low 

S02, 8 Medium Low High 

S02, 9 Medium Low medium 

S02, 11 Low High Low 

 

3. Model interpretability with SHAP XAI framework 

Although the C-RNN-EEG model variants are performing better than their counterparts, it is essential to 

understand why they are able to do so. In order to understand how a model can perform well on the DEAP 
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dataset, an XAI framework is opted here. Shapley additive explanations, commonly known as the SHAP XAI 

framework, are considered. A mathematical foundation on the SHAP XAI framework is discussed in section 2. 

The SHAP XAI framework attempts to explain individual predictions via game theoretically optimal SHAP 

values. SHAP values are computed for testing samples of the dataset and are reported here. Figures 4(a), 

5(a), and 6(a) present the SHAP values from the C-RNN-EEG-A model for all the 40 features (physiological 

sensory inputs, see Table 1) for participant ‘s02’ watching music video (id: 20). It is evident from these 

figures that GSR, RR, Plethy, Temperature are contributing more towards prediction relative to other 

features. Therefore, to understand the contributions of EEG signals towards classification output, Figures 

4(b), 5(b), and 6(b) present the SHAP values for only EEG signal features for participant 's02' watching 

music video (id: 20). These figures indicate how different EEG signals contribute to different levels of Arousal 

state (classes- Low, Medium, and High). It is still challenging to map which parts of the signal (temporally) 

contribute to the emotional state. Future studies are needed to help us map this. This study restricts itself to 

mapping features with emotional states only. 

 

(a) (b) 

Figure 4 SHAP values summary plot for C-RNN-EEG-A model; (a) Patient id: s01-20 for all 40 

features, (b) Patient id: s0120 for all EEG features only. 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 5 SHAP values summary plot for C-RNN-EEG-V model; (a) Patient id: s02-20 for all 40 

features, (b) Patient id: s02-20 for all EEG features only. 
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(a) (b) 

Figure 6 SHAP values summary plot for C-RNN-EEG-D model; (a) Patient id: s02-20 for all 40 

features, (b) Patient id: s02-20 for all EEG features only. 

 

4. Gradient-based attributions for time-series signal analysis: 

Since the features are time-series signals, it is important to map which parts or segments of the time-series 

signals are contributing to a particular emotional state. The gradient-based attribution method of the SHAP 

XAI framework relies on gradients to approximate the contribution of each input feature to the model’s 

output. Model’s output to small changes in feature(s) and can give a measure of the feature's local influence 

on the model output. The SHAP XAI framework builds upon the Integrated Gradients (IG) method (refer to 

equations 1-5), which addresses the problem of using only the local gradient to approximate feature 

importance. Integrated gradients calculate the cumulative effect of each feature along a straight-line path 

from a baseline input (often zero or a neutral state) to the actual input. More details of this method are 

provided in section 2 (refer to equation 5). This can be achieved by napping the SHAP values over the time-

series signals for features contributing over a threshold value. Figure 7(a, b, and c) depicts SHAP values 

overlaid on selected feature time-series data for participant s01 watching music video id 1, 3, and 7, 

respectively. All three samples are classified as Medium-Arousal. The segments highlighted in orange are 

time segments contributing towards classification. It can be observed from these figures and the zoomed 

section that the SHAP values are significant around the same time-stamp in all features. The set of features 

contributed above the threshold is {AF3, F7, FC1, CP5, CP1, O1, O2, FC6, C2, C4, CP2, P8, PO4, O2, GSR, 

Perspiration, Plethy}.Figure 8(a, b, and c) depicts SHAP values overlaid on selected feature time-series data 

for participant s01 watching music video id 6, 8, and 9, respectively. All three samples are classified as Low-

Arousal. The segments highlighted in orange are time segments contributing towards classification. Figure 

9(a, b, and c) depicts SHAP values overlaid on selected feature time-series data for participant s01 watching 

music video id 4, 5, and 11, respectively. All three samples are classified as High-Arousal. The segments 

highlighted in orange are time segments contributing towards classification. 
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(a) 

 
(b) (c) 

Figure 7 SHAP values or integrated gradients overlaid on selected feature time-series data for 

participant s02 watching music video id (a) 1, (b) 3, and (c) 7. The class label is Medium -

Arousal. The classification model is C-RNN-EEG-A. 
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(a) (b) (c) 

Figure 8 SHAP values or integrated gradients overlaid on selected feature time-series data for 

participant s02 watching music video id (a) 6, (b) 8, and (c) 9. The class label is Low -Arousal. 

The classification model is C-RNN-EEG-A. 
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(a) (b) (c) 

Figure 9 SHAP values or integrated gradients overlaid on selected feature time-series data for 

participant s02 watching music video id (a) 4 (High-Arousal), (b) 5 (High-Arousal), and (c) 11 

(High-Arousal). The classification model is C-RNN-EEG-A. 

 

Figure 10 (a, b, and c) depicts SHAP values overlaid on selected feature time-series data for participant s02 

watching music video id 7, 19, and 21, respectively. The three samples are classified as Low-, Medium-, and 

High- Dominance, respectively. The segments highlighted in orange are time segments contributing towards 

classification. Finally, Figure 11 (a, b, and c) depicts SHAP values overlaid on selected feature time-series 

data for participant s02 watching music video id 1, 18, and 20, respectively. The three samples are classified 

as Low-, Medium-, and High- Valence, respectively. The segments highlighted in orange are time segments 

contributing towards classification.Similar studies can be done for other DNN models, such as CNN-only or 

RNN-only models; however, this study does not cover these. 
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(a) (b) (c) 

Figure 10 SHAP values or integrated gradients overlaid on selected feature time-series data 

for participant s04 watching music video id (a) 7 (Low -Dominance), (b) 19 (Medium -

Dominance), and (c) 21 (High -Dominance). The classification model is C-RNN-EEG-D. 

 

(a) (b) (c) 

Figure 11 SHAP values or integrated gradients overlaid on selected feature time-series data for 

participant s04 watching music video id (a) 1 (Low -Valence), (b) 18 (Medium -Valence), and 

(c) 21 (High -Valence). The classification model is C-RNN-EEG-V. 
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CONCLUSION 

 

The study presented here establishes the potential of synergistic exploitation of CNNs and RNNs in achieving 

improved emotion recognition performance with multi-modality, multi-source, and multi-label physiological 

signals. In order to use the best of both models, the complete signal is first fragmented in the time dimension. 

From the 60-second full-length recorded signal, ten fragments of 1-second each are made. The CNNs are first 

employed to extract complex features from high- dimensional, multi-modal, multi-label physiological DEAP 

data. Two convolutional layers are employed to obtain transformed feature space. Every 1-second transformed 

feature further acted as a time node for a recurrence layer to exploit temporal information underlying within 

the features. A single recurrence layer is employed to extract this temporal information. Considerately, a C-

RNN-EEG model is realized. SHAP XAI framework is used to interpret the performance of the C-RNN- EEG 

model. SHAP values approximating integrated gradients are used to indicate the contributions of features. 

SHAP-value- based interpretations reveal portions of time-series physiological signals that are contributing 

to emotion recognition. Participant-wise analysis of features contributing to emotion recognition is also 

presented. The study reveals the crucial importance of model performance interpretation for a detailed 

understanding of how and why models are able to perform well and what directions need to be improved. 

However, more studies aligned towards this objective are beneficial to strengthen the methodology 
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