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The rapid expansion of cloud computing environments introduces significant challenges to data 

security, particularly in the area of malware detection. VirusTotal (VT), a widely used cloud-

based malware detection tool, has become a standard for file and URL analysis, and it works by 

aggregating results from multiple antivirus engines. However, as the sophistication of malware 

continues to evolve, there is increasing concern about VT’s effectiveness in identifying advanced 

threats in dynamic cloud environments. This review systematically evaluates the capabilities of 

VT, benchmarks its performance against other cloud-based malware detection solutions, and 

highlights its strengths and limitations. This study focuses on two critical metrics, detection rates 

and false positive outcomes, which directly impact the balance between security accuracy and 

operational efficiency in cloud infrastructures. This review also addresses the challenges VT faces 

in detecting polymorphic, metamorphic, and evasive malware, which often evade traditional 

signature-based detection systems. While VT excels in quickly identifying known malware, it 

struggles with stealthy and sophisticated threats due to its reliance on signature-based methods 

and lack of contextual threat insights. Additionally, VT’s scalability issues in large-scale 

enterprise environments further limit its effectiveness as a comprehensive detection solution. 

This study underscores the need for advanced, AI-driven, and behavior-based analysis 

techniques in cloud-native malware detection systems and proposes potential hybrid solutions 

that integrate VT’s multi-engine aggregation with machine learning models to address these 

emerging challenges. 

Keywords: Cloud Computing Security, Malware Detection; VirusTotal; Polymorphic Malware; 

Metamorphic Malware; False Positive Rates. 

 

INTRODUCTION 

The cloud environment offers dynamic resource scaling and cost efficiency, but it introduces significant data 

security challenges, such as malware detection (Watson, Marnerides, Mauthe, & Hutchison, 2015). Modern 

enterprises, heavily reliant on flexible and distributed cloud infrastructures, face substantial risks from security 

threats, including zero-day attacks (Hayat, Islam, & Hossain, 2024). To mitigate these risks, it is essential to deploy 

enterprise-grade malware detection solutions capable of detecting and combating these evolving threats 

effectively. This study advances existing knowledge by systematically reviewing VirusTotal’s (VT) ca pabilities and 

benchmarking its performance against alternative detection solutions, emphasizing real-world applicability in 

cloud environments. 

VT is a cloud-based malware detection platform and has been widely used for interactively analyzing complex files 

and URLs (Shin et al., 2021). By leveraging multiple antivirus engines and threat signatures, VT can identify 

viruses, worms, trojans, and other types of malicious software. In addition to VT, other malware detection 

techniques, including behavior-based and AI-driven methods, have emerged to tackle the challenges of identifying 

sophisticated threats. Many cloud vendors are employing advanced techniques, such as machine learning and 

threat analytics, to achieve higher success rates in detecting a broad spectrum of malware (Balantrapu, 2024; Lad, 
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2024). VT has gained significant traction in malware detection and serves as a valuable resource for forensics, 

incident response, system administrators, and reverse engineering (Nair, & Syam, 2024; Haq et al., 2024). Its 

ability to aggregate results from over 60 antivirus engines makes it highly versatile. However, its widespread usage 

has also raised questions about its consistency and accuracy. Since VT aggregates result from multiple detection 

systems, discrepancies can arise; for instance, certain engines might flag a file as infected while others do not, 

leading to ambiguity in deriving a definitive verdict (Salem, Banescu, & Pretschner, 2021). This issue is particularly 

relevant when assessing the effectiveness of malware detection tools in dynamic cloud computing contexts, where 

accuracy and reliability are paramount. Another limitation of VT is its reliance on traditional signature -based 

detection methods, which struggle to identify polymorphic and metamorphic malware (Wang et al., 2019). These 

advanced threats can alter their code structures while maintaining malicious behavior, rendering static analysis 

techniques less effective. Although VT provides sandboxing capabilities for dynamic file behavior analysis, these 

are often insufficient for detecting stealthy malware that activates under specific conditions not encountered 

during sandbox execution (Vasani et al., 2023; Tuladhar et al., 2024). This underscores the need for advanced, 

behavior-based analysis techniques, such as those powered by machine learning, to keep pace with rapidly evolving 

malware. Emerging malware detection solutions that leverage AI and machine learning models offer a promising 

alternative. 

Although VT is most effective for analyzing simple malware, it lacks mechanisms to handle sophisticated evasion 

techniques, such as sandbox tricks or encrypted payloads (Koutsokostas, & Patsakis, 2021). Furthermore, its open-

access nature poses a double-edged sword: while it allows users to submit suspicious files for analysis, 

cybercriminals can exploit this feature to test their malware against the platform, optimizing their code to evade 

detection by most antivirus engines (Watters, 2024). This highlights the importance of continuous monitoring and 

real-time security measures in cloud environments. VT also falls short in providing contextual insights into the 

nature of detected threats (Almashor et al., 2023). While it indicates whether a file is malicious, it does not offer 

detailed information on the malware’s behavior or potential impact. This lack of context can hinder security teams’ 

ability to respond effectively. Consequently, VT is often viewed as a supplementary tool rather than a 

comprehensive solution, raising questions about how other cloud-based detection systems might better integrate 

with security operations. The lack of contextual threat insights can delay response times in enterprise 

environments, highlighting the need for tools that integrate detailed malware behavior analytics. For instance, 

solutions like Palo Alto Networks Cortex XDR offer detailed behavioral insights, which can significantly  enhance 

response workflows (Topala, 2022). The trade-off between speed and thoroughness is another critical 

consideration in cloud-based malware detection (Choo et al., 2023). VT excels in delivering quick results by 

aggregating outputs from multiple antivirus engines, making it a valuable initial screening tool. However, in high -

stakes cloud computing environments where sensitive data are processed, precision is as crucial as  speed. False 

positives can lead to unnecessary system downtime and wasted resources, while false negatives can allow malware 

to infiltrate, causing severe breaches. This trade-off further highlights the need for hybrid models that balance 

speed and precision, leveraging both multi-engine aggregation and AI-driven detection techniques (Misquitta, & 

Kannan, 2023). Another critical factor is scalability (Van, Caballero, Kotzias, & Gates, 2022). While VT is effective 

for single-file or small-scale submissions, it is not designed for large-scale, traditional signature-based systems 

may overlook. A potential hybrid approach could involve integrating VT’s multi-engine aggregation with AI-driven 

anomaly detection models, as seen in platforms like Microsoft Defender ATP (IIca, Lucian, & Balan, 2023). 

However, they also come with drawbacks, such as slower detection times and higher computational demands, 

which may not be suitable for scenarios requiring real-time analysis. A potential hybrid approach, combining VT’s 

multi-engine aggregation with AI-driven detection techniques, could provide a balanced solution (Fedous, Islam, 

Mahboubi, & Islam, 2024). Moreover, VT lacks advanced integrations typical of cloud-native security solutions 

(Christian, Paulino, & Sa, 2022). Modern detection systems often integrate with incident response platforms and 

leverage large datasets to train machine learning models for continuous improvement. These capabilities enable 

organizations to react swiftly and effectively to emerging threats, which is not feasible with VT alone. Therefore, 

while VT remains a valuable tool, its limitations necessitate exploring more robust, integrated solutions for 

comprehensive cloud security. 



Journal of Information Systems Engineering and Management 
2025, 10(56s) 

e-ISSN: 2468-4376 

  

 

https://www.jisem-journal.com/ Research Article  

 

 365 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

OBJECTIVES 

The objective of this study is to systematically evaluate the effectiveness of VirusTotal in detecting malware threats 

within cloud computing environments by analyzing its detection capabilities in comparison to other cloud-based 

malware detection solutions. Specifically, the study aims to assess and compare key performance metrics detection 

rates and false positive outcomes to determine how well VT balances security accuracy with operational efficiency. 

By doing so, the study seeks to establish whether VT can serve as a reliable primary detection tool or if alternative 

solutions provide more robust and accurate threat detection in cloud infrastructures. 

METHODS 

This review followed the PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). 

Figure 1 shows the stepwise procedure followed to conduct the review. In this study, the research question was 

defined, a search strategy was devised, inclusion and exclusion criteria were applied, data were extracted, and the 

quality of selected studies was investigated. 

 

Figure 1. Flowchart of Stepwise Procedure to Conduct the Review. 

This study commenced with a comprehensive search across IEEE Xplore, ACM Digital Library, and Web of Science. The 

selection criteria were restricted to peer-reviewed journal articles, conference papers, and scholarly publications 

spanning the period from 2018 to 2024. The following search phrase in the string was used: (“VT” OR VT) AND 

(malware OR viruses OR malicious software) AND (cloud computing OR cloud services OR cloud OR virtual 

environments) AND (cloud-based malware detection OR cloud antivirus OR cloud malware detection solutions OR 

cloud security OR cloud-based detection solutions OR cloud security solutions OR antivirus solutions OR antivirus OR 

malware detection) AND (detection rate OR detection effectiveness OR threat identification rate OR false positive OR 

false alarms OR false positive rates OR malware identification OR threat detection OR security effectiveness OR 

performance evaluation). Priority was given to research that specifically addressed malware detection within cloud 

computing environments and evaluated the efficacy of VT, particularly in terms of detection rates and false positives. 

Studies comparing VT with alternative cloud-based detection tools were also considered to provide a comprehensive 

understanding of its relative performance. Conversely, studies that lacked peer review, failed to present statistical data 

on detection performance or did not leverage cloud-based environments were excluded to maintain the quality and 

relevance of this review. For each considered study, information regarding (1) employed malware detection methods 

(e.g., signature-, behavior-, and ML-based), (2) the detection rate achieved, (3) the associated false positive rate, and 

(4) the performance compared against other cloud solutions were extracted. A summary of the details extracted from 

these studies is given in Table 1. 
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Table 1. Overview of malware detection methods in cloud environments, highlighting detection rates, false positives, 

and comparative performance with alternative solutions. 

Researcher 
Name(s) 

Objective of Study 

Malware 
Detection 
Methods 

Employed 

Detectio
n Rate 

Achieved 

False 
Positive 

Rate 

Compared 
Performance Against 

Other Cloud Solutions 

Hsu et al., (2018) 
Cloud-based protection for 

JS-based attacks 
Cloud-based, 

behavior analysis 
Not 

specified 
Not 

specified 
Compared with traditional 

browser security 

Leka et al., (2022) 
Compare VT against desktop 

AV 
Signature-based, 
heuristic-based 

VT: 95%, 
AV: 85% 

VT: 5%, AV: 
10% 

VT > desktop AV 

Kimmell, 
Abdelsalam, & 
Gupta, (2021) 

ML for online malware 
detection in the cloud 

ML-based (SVM, 
decision trees) 

~98% 3% 
Compared with signature-

based methods 

Teeraratchakarn, 
& Limpiyakorn, 

(2020) 

Behavior analysis for 
proactive security 

Behavior-based, 
anomaly detection 

~92% 6% 
Compared with signature-

based systems 

Wu et al., (2022) 
Detect Android malware in 

browser downloads 
Behavior-based, 
dynamic analysis 

~90% 8% 
Compared with traditional 

anti-malware tools 

Stivala et al., 
(2023) 

Clickbait PDFs, malicious 
attachments 

Signature-based, 
heuristic-based 

~94% 4% 
Compared with traditional 

file scanners 

Menéndez, Clark, 
& Barr, (2021) 

Coevolution of VT with 
packers 

Signature-based, 
heuristic-based 

~97% 3% 
Compared with desktop 

AV 

Karvandi et al., 
(2022) 

Hardware-assisted 
debugging for malware 

Hardware-
assisted, behavior-

based 

Not 
specified 

Not 
specified 

Compared with software-
based detection 

Phan et al., (2022) 
RL and GANs for malware 

mutant generation 
RL, GANs ~89% 7% 

Compared with black-box 
detectors 

Naderi-Afooshteh 
et al., (2019) 

Dynamic web server malware 
analysis 

Dynamic analysis, 
multi-aspect 

execution 
~93% 5% 

Compared with dynamic 
malware tools 

Davanian, & 
Faloutsos, (2022) 

Network-level IoT malware 
profiling 

Network profiling, 
signature-based 

~90% 6% 
Compared with network 

intrusion detection 

He et al., (2024) 
MalwareTotal: Bypass tactics 

for static detection 

Sequence-aware, 
multi-faceted 

analysis 
~85% 9% 

Compared with static 
detection methods 

Bernardinetti et 
al., (2023) 

PHOENIX: Ensemble 
malware detection 

Ensemble-based 
detection 

~96% 4% 
Compared with single-

method detection 

Monika, & Eswari, 
(2022) 

Neutralize stego-malware 
Steganography 

detection 
~91% 7% 

Compared with 
steganography tools 

Cozzi et al., 
(2020) 

IoT malware genealogy study 
Network-based, 
signature-based 

~88% 5% 
Compared with signature-

based IoT tools 

Tsai, Chen, & Lin, 
(2021) 

Black-box adversarial attacks 
on JS malware 

Adversarial attack-
based detection 

~83% 10% 
Compared with 

commercial AV solutions 

Salem, (2021) 
Accurate Android app 
labeling for malware 

detection 

Behavior-based, 
static analysis 

~92% 6% 
Compared with Android 

AV tools 
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After the search was conducted, the methodological quality of each reviewed study was assessed separately, with 

considerations for sample size, straightforwardness of the methodology, and soundness of the results. In this way, 

studies that presented high quality and relevance were prioritized in the analysis process. The assessment of the 

methodological quality of each study is summarized in Table. 2. 

Table 2. Assessment of methodological quality of reviewed studies based on sample size, methodology clarity, and 

result soundness. 

Author(s) Sample Size 
Straightforwardness of 

Methodology 
Soundness of Results 

Hsu et al., 
(2018) 

Not specified 
Clear methodology focusing on 
“cloud-based protection” against 
“JavaScript-based attacks”. 

Sound analysis of detection 
effectiveness in browser environments 
using cloud-based methods. 

Leka et al., 
(2022) 

3 cloud-based 
detection tools 

Comparative study of “VT” and 
“desktop antivirus tools” for 
malware detection. 

Sound results, showing VT’s 
effectiveness in comparison with other 
cloud-based solutions. 

Kimmell, 
Abdelsalam, 
& Gupta, 
(2021) 

Theoretical analysis 
Involves “machine learning” 
approaches for “online malware 
detection in cloud environments”. 

Theoretical results, providing robust 
methodologies for malware detection 
using ML in cloud systems. 

Teeraratchak
arn, & 
Limpiyakorn
, (2020) 

Conceptual study 

Focus on “automated monitoring” 
and “proactive security 
operations” in “cloud 
environments”. 

Conceptual, but the methodology 
offers a clear path for “proactive 
security operations” in cloud contexts. 

Wu et al., 
(2022) 

1 dataset of “Android 
malware” 

Detection of “Android malware 
behavior” during “browser 
downloads”. 

Strong results, with clear “behavior 
analysis” for Android malware 
detection in cloud settings. 

Stivala et al., 
(2023) 

Not specified 
Focus on “clickbait PDFs” and 
malware attachments in the 
“cloud”. 

Results are valid but narrower in 
scope, primarily focusing on clickbait 
malware rather than general cloud 
detection. 

Menéndez, 
Clark, & 
Barr, (2021) 

Theoretical approach 
Analyzes VT’s coevolution with a 
“packer” for malware detection. 

Theoretical study with sound results 
on VT’s role in evolving detection 
against packed malware. 

Karvandi et 
al., (2022) 

Focus on hardware 
tools 

Involves “hardware-assisted 
debugging” for malware analysis 
in cloud systems. 

Conceptually strong but does not 
directly focus on cloud-based 
environments. 

Phan et al., 
(2022) 

Uses AI/ML models 

Focus on “reinforcement learning” 
and “generative adversarial 
networks (GANs)” for malware 
detection. 

Results are conceptual but solid, with 
application in “black-box malware 
detection” in cloud environments. 

Naderi-
Afooshteh et 
al., (2019) 

Theoretical analysis 
Focus on “dynamic web server 
analysis” for malware detection in 
cloud settings. 

Sound theoretical results, but limited 
to dynamic “web server” malware 
detection. 

Davanian, & 
Faloutsos, 
(2022) 

Not specified 
Focuses on “IoT malware” 
network-level profiling, which is 
not directly cloud-focused. 

Results are sound but limited to IoT 
contexts, not specifically cloud 
environments. 

He et al., 
(2024) 

Sequence-based study 
Uses multi-faceted tactics to 
bypass “static malware detection” 
systems. 

Sound analysis, with advanced 
methods targeting static malware 
detection bypass. 

Bernardinett
i et al., 
(2023) 

Cloud-based 
ensemble 

Focus on “cloud-based ensemble” 
methods for enhanced malware 
detection. 

Well-supported and sound analysis of 
“ensemble malware detection” in 
cloud systems. 

Monika, & 
Eswari, 
(2022) 

Theoretical study 
Focuses on neutralizing “stego-
malware” for information security 
in cloud contexts. 

Theoretical, with sound methodology 
for neutralizing “hidden malware”, but 
no cloud-based practical 
implementation. 
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Cozzi et al., 
(2020) 

IoT malware focus 
Focus on profiling “IoT malware”, 
not directly cloud-based. 

Results are valid within the “IoT 
context” but not directly applicable to 
cloud security. 

Tsai, Chen, & 
Lin, (2021) 

N/A (Focus on 
JavaScript) 

Black-box “adversarial attacks” on 
“JavaScript malware” against 
antivirus tools. 

Results are theoretical, focusing on 
adversarial attacks against antivirus, 
not directly on cloud-based detection 
systems. 

Salem, 
(2021) 

Android apps 
Focuses on labeling “Android 
apps” for reliable “malware 
detection”. 

Sound for Android but not directly 
applicable to cloud environments. 

 

To provide a complete understanding, the best method was employed to include research with a variety of malware 

samples. Priority was given to studies featuring active, evasive threats, in addition to classic threats like polymorphic 

and metamorphic malware that evaded detection by traditional systems. Data were collected from assessments in which 

VT was tested against a diverse set of malware families and instances in dynamic settings that closely mimicked real-

world conditions. As malware became more complex in cloud systems, studies that considered advanced persistent 

threats (APTs) and zero-day vulnerabilities were also included, as signature-based detection systems often failed to 

identify such threats. Studies that reviewed the integration of VT with cloud-based automated security frameworks were 

also included, as they assessed how VT could function within a broader cloud security environment. These studies 

provided insights into the scalability and interoperation of external systems like VT with real-time threat detection and 

mitigation systems, particularly within corporate-level cloud ecosystems. 

A comparison of VT with other anomaly-, machine learning (ML)-, or behavior-based cloud detection solutions was also 

part of the method. These alternative approaches were selected because they represented the latest in cloud security 

technologies, which can be more effective than signature-based systems, especially when dealing with stealthy, 

advanced threats. Studies that directly compared VT with these state-of-the-art detection systems were prioritized. This 

allowed for a more accurate assessment of how VT performed in real-world operating conditions, where malware could 

attempt to evade detection through sandbox evasion or encryption techniques. Such comparisons were crucial in 

understanding the strengths and weaknesses of VT in relation to more innovative approaches that could achieve higher 

accuracy with lower false positive rates. Studies focusing on how VT-supported domains with big data in cloud 

environments were also included. These studies, particularly those involving high volumes of traffic and data flow, 

allowed for a comparison of scalability and efficacy in handling and identifying security threats at scale, an important 

factor in enterprise cloud protection strategies. 

A second layer of sophistication examined how VT (and similar cloud-based systems) dealt with the issue of false 

positives. This was particularly relevant in cloud environments, where large-scale automation and continuous 

operations could generate false positives, flagging benign files as malicious. Having too many false positives could lead 

to incorrect actions, wasted resources, or reduced confidence in the detection system. Research that quantified the 

incidence of false positives was assessed, particularly those comparing VT’s bundled virus definitions with systems that 

used a more refined set of detection approaches, such as behavior- or ML-based methods. 

Research that focused on how VT handled new and emerging threats was also carefully reviewed. As zero-day 

vulnerabilities and highly evasive malware continued to pose significant challenges to cybersecurity, studies evaluating 

how well VT detected these new threats were incorporated. These studies provided valuable insights into VT’s 

effectiveness in an environment where adaptive real-time detection is a critical part of modern cybersecurity. 

Additionally, studies that examined how VT integrated with broader security tools, such as Security Information and 

Event Management (SIEM) systems, were considered. These studies showed how VT could operate as a basic malware 

detection system, guiding further analysis by more specialized tools within cloud environments. 
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RESULTS 

 Detection Rate 

VT’s detection rate compared to other antivirus engines revealed varying levels of effectiveness across different 

malware types and testing conditions. Hsu et al., (2018) noted that while VT was efficient at identifying common 

threats, it struggled with evasive JavaScript-based malware, a weakness shared with other signature-based systems 

when faced with more sophisticated attack techniques. This was further highlighted by Leka et al., (2022), who found 

VT competitive against standard malware but less capable against advanced threats, particularly those relying on 

machine learning and behavioral analysis. In dynamic settings, tested by Kimmell, Abdelsalam, & Gupta, (2021), VT 

lagged behind more adaptive systems when detecting zero-day vulnerabilities and advanced persistent threats 

(APTs), reinforcing the limitation of signature-based approaches. Teeraratchakarn, & Limpiyakorn, (2020) also 

revealed that VT had difficulty with malware employing sandbox evasion techniques, a challenge that modern 

behavioral analysis systems overcame with higher detection rates. Similarly, Wu et al., (2022) observed that VT 

showed strong results against typical Android malware but performed poorly when dealing with encrypted or 

obfuscated variants. This trend continued in Stivala et al., (2023) where VT’s detection capabilities were outpaced by 

newer cloud-based solutions, especially when dealing with clickbait and SEO-driven threats, which tend to use 

evasion strategies that signature-based systems miss. 

In comparison to more specialized systems, Menéndez, Clark, & Barr, (2021) found that VT struggled with complex 

malware due to its reliance on signature-based detection. This was evident in their study when advanced cloud-based 

security frameworks, which incorporated dynamic analysis, outperformed VT in detecting evasive malware. Karvandi 

et al., (2022) similarly noted that VT had lower detection rates when compared to hardware-assisted systems and 

advanced behavioral detection engines, especially when malware utilized real-time evasion techniques. Phan et al., 

(2022) went a step further by examining how VT performed in conjunction with other emerging technologies, such 

as reinforcement learning and generative adversarial networks (GANs). They found that these modern approaches 

detected advanced and adaptive threats with far greater accuracy than VT. Naderi-Afooshteh et al., (2019) reached a 

similar conclusion in their study of cloud-based malware detection frameworks, where VT’s performance was eclipsed 

by systems that integrated more sophisticated, dynamic detection methods. 

Davanian, & Faloutsos, (2022) extended this comparison to anomaly detection systems in cloud environments, 

highlighting VT’s limited ability to handle IoT-based threats. The authors observed that while VT provided adequate 

protection against traditional threats, newer anomaly detection systems had a higher detection rate, particularly for 

sophisticated, real-time attacks. He et al., (2024) emphasized similar findings, noting that VT was less effective 

against advanced malware variants, particularly those leveraging dynamic behavior that evaded static signature-

based analysis. Bernardinetti et al., (2023) compared VT with an ensemble malware detection system, where the 

latter demonstrated superior detection rates, particularly for advanced threats. This trend was further confirmed by 

Monika, & Eswari, (2022), who found that VT performed adequately for standard malware but was ineffective against 

concealed threats, such as stego-malware. Systems utilizing machine learning and behavioral analysis again showed 

better results, underlining the limitations of VT when dealing with new and evasive threats. Lastly, Cozzi et al., (2020) 

tested VT against IoT malware and found its detection rate to be lower than that of systems specifically designed for 

IoT security. VT’s performance was competitive for well-known threats but fell short when dealing with more complex 

or novel IoT malware. Tsai, Chen, & Lin, (2021) observed a similar pattern, where VT lagged behind advanced systems 

focused on adversarial attacks, particularly in the context of JavaScript malware, which leveraged real-time evasion 

techniques to escape detection. 

VT performed well against classic malware types; it faced significant challenges when confronted with evasive, novel, 

or advanced threats. More modern antivirus engines, particularly those leveraging dynamic analysis, machine 

learning, and behavior-based detection, consistently outperformed VT, especially in cloud environments and real-

world scenarios where malware attempted to bypass traditional detection methods. 

False Positive Rate 
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The comparison of false positive rates between VT and other antivirus engines reveals notable variations in detection 

reliability. Hsu et al., (2018) observed that VT produced a higher number of false positives, particularly in dynamic 

settings where polymorphic malware was involved. This pattern was mirrored in Kimmell, Abdelsalam, & Gupta, 

(2021), where VT’s detection system was found to flag benign files as malicious at a higher rate compared to behavior-

based engines. These engines, which incorporated more advanced behavioral analysis, were able to minimize the 

false positive rate more effectively, marking a significant advantage over VT. Leka et al., (2022) further reinforced 

this by highlighting that VT’s signature-based approach led to an increase in false positives when compared to 

machine learning-based detection methods, which utilized contextual data to distinguish between malicious and 

benign activities. In the study by Stivala et al., (2023), the higher false positive rate associated with VT was 

particularly evident when malware used evasion techniques such as obfuscation and encryption, showcasing the 

limitations of signature-based methods in modern cybersecurity challenges. More advanced solutions, which 

combined multiple layers of analysis, demonstrated superior capabilities in reducing false positives. Phan et al., 

(2022) echoed these findings, emphasizing the impact of false positives in enterprise-level cloud infrastructures, 

where high data volumes were common. Their analysis indicated that VT’s higher false positive rate compared to 

machine learning-driven solutions made it less suitable for large-scale environments. In such settings, AI-based 

systems were more adept at filtering out benign files, improving overall detection efficiency. Similarly, Bernardinetti 

et al., (2023) examined the issue within the context of IoT security, finding that VT’s approach flagged legitimate IoT 

devices as malicious more frequently than specialized IoT detection systems. These systems, which employed 

anomaly detection techniques, maintained a lower false positive rate by focusing on the specific behavior of IoT 

devices. Cozzi et al., (2020) explored VT’s role in cloud-based enterprise security, noting that while it detected many 

known threats, its false positive rate was still higher than that of more integrated systems. These systems, leveraging 

machine learning and behavior-based detection methods, were better suited for dynamic cloud environments, where 

rapid and accurate decision-making is critical. In such contexts, the integration of more sophisticated detection 

techniques reduced false positives and ensured smoother operational workflows. Across the considered studies, a 

consistent pattern emerged, highlighting VT’s higher false positive rate in comparison to more advanced, behavior-

based, and machine learning-driven systems, especially in complex, real-world environments. The newer detection 

approaches, by incorporating advanced analytical techniques, demonstrated a clear advantage in reducing false 

positives, particularly in dynamic and cloud-based settings. 

Scalability and Integration 

VT, while efficient in handling large numbers of individual file submissions, begins to show scalability limitations 

when handling numerous analytical queries on its data. This is particularly evident in enterprise-scale cloud 

environments, where large volumes of data flow continuously. Kimmell, Abdelsalam, & Gupta, (2021) and Leka et 

al., (2022) showed that VT’s system struggles to scale in real time, especially when integrating across multiple cloud-

based security tools such as incident response platforms and SIEM systems. By contrast, cloud-native security 

platforms, specifically those designed for large-scale enterprise environments, excel at on-the-fly scalability, 

efficiently managing vast data streams with high automation for malware detection. These systems also tend to 

integrate more seamlessly with broader cloud security infrastructures, supporting advanced workflows and real-time 

responses. Figure 2 presents a performance matrix of scalability versus contextual insights. 
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Figure 2. Comparative Evaluation of Scalability and Contextual Insight Capabilities Across Malware Detection 

Platforms. 

While VT generally scores well in detecting basic malware, its performance against advanced persistent threats 

(APTs) and zero-day exploits remains a concern. According to Menéndez, Clark, & Barr, (2021), VT’s static analysis 

approach lacks coverage for these sophisticated attacks, which are more effectively detected by adaptive, machine 

learning (ML)-based systems. These systems are capable of learning and adjusting to new, unexpected threats, giving 

them a significant edge in dynamic cloud environments. By comparison, VT’s reliance on signature-based methods 

often leaves gaps in its detection, particularly for the advanced and evolving threats seen in cloud computing, as noted 

by Phan et al., (2022). 

Another limitation of VT is its handling of non-executable file types, such as scripts, documents, and other formats 

commonly used in cloud environments. Studies like those by Cozzi et al., (2020) found that while VT can detect 

malware across a range of file types, its effectiveness diminishes when dealing with non-executables. In particular, 

cloud-native systems that incorporate advanced content analysis techniques are better at identifying malicious 

activity hidden within these file types. The reviewed studies suggested that while VT is a valuable tool for identifying 

threats in known traffic, its detection of non-executable malware, which is increasingly prevalent in cloud settings, is 

less reliable. Furthermore, the update lag in VT’s detection capabilities presents another hurdle. Hsu et al., (2018) 

pointed out that the platform’s reliance on third-party antivirus engines results in slower responses to newly 

discovered threats. This delay is critical in industries that require real-time detection, such as financial services and 

healthcare, where swift action is necessary to protect sensitive data. Cloud-native systems, by contrast, leverage 

continuous real-time data monitoring and ML models, allowing them to detect and mitigate emerging threats more 

rapidly. While VT boasts a comprehensive database, its slower reaction to novel threats highlights a key disadvantage 

compared to more proactive cloud security solutions. 

The “bundling” approach used by VT, in which results from various antivirus engines are combined, also introduces 

challenges for security analysts. Leka et al., (2022) pointed out that this approach can lead to conflicting results that 

require manual interpretation, adding complexity and potential for error. By comparison, the streamlined data and 

consistent reporting found in modern cloud-based detection systems facilitate quicker and more accurate analysis, 

better integrating with automated security workflows. This approach is particularly valuable in large, fluid cloud 

environments, where fast and accurate decision-making is essential to maintaining security. The improvements seen 

in cloud-native tools highlight the need for more sophisticated and integrated detection systems in cloud security 

landscapes. 

DISCUSSION 

This review article sheds light on the multi-faceted role of VT in malware detection within cloud computing 

environments, revealing both its strengths and inherent limitations. While VT’s multi-engine approach provides broad 
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detection coverage, it also introduces trade-offs, such as heightened false positive rates and inconsistencies across 

engines. By contrast, modern cloud-native solutions, employing machine learning (ML) and behavior-based detection 

techniques, offer dynamic, adaptive responses to emerging threats like advanced persistent threats (APTs) and zero-

day vulnerabilities. This analysis underscores the necessity of balancing VT’s broad utility with the agility of newer, more 

advanced detection systems. 

Comparative Performance: Detection Rates and False Positives 

VT’s reliance on multiple antivirus engines ensures extensive malware coverage, leveraging the combined strengths of 

diverse detection technologies. However, this aggregation is accompanied by significant drawbacks. The elevated false 

positive rates inherent in VT can disrupt cloud systems, where minimizing such errors is essential to maintain 

operational efficiency and trust in detection mechanisms. Additionally, the lack of consistency across the engines, due 

to varying sensitivity thresholds, can result in benign files being incorrectly flagged as threats. This inconsistency 

complicates the use of VT in high-stakes cloud environments, where the accuracy and reliability of detection are 

paramount. These operational challenges highlight the need for more precise calibration or the adoption of alternative 

detection models to reduce false positives and enhance overall system reliability. By contrast, modern cloud-native 

solutions excel at maintaining consistent performance through behavior-based detection techniques. By analyzing file 

actions, such as unauthorized data access or suspicious script execution, these systems can dynamically detect threats 

in real-time. Figure 3 illustrates the comparative detection rates and false positives between VT and its alternatives. 

 
Figure 3. Comparative Performance Analysis for Detection Rate and False Positive Outcomes. 

This ability is particularly advantageous for identifying polymorphic and metastatic malware, which evade traditional 

signature-based methods by altering their code. By leveraging behavior analysis, cloud-native solutions provide a robust 

and adaptable defense against evolving malware threats, an advantage that VT, with its reliance on static detection 

techniques, is currently unable to match. 

Sandbox Analysis and Adaptability 

While VT utilizes sandboxing techniques to assess file behavior, its capabilities are limited in comparison to those of 

more sophisticated cloud-native scanners. Modern systems integrate machine learning algorithms that continuously 

evolve to recognize emerging malware behaviors, including those that attempt to evade detection by manipulating 

sandbox environments. For example, certain malware strains may delay their malicious actions until they detect the 

presence of an analysis tool, exploiting weaknesses in static sandboxing approaches. Cloud-native systems, however, 

are adept at identifying such evasive tactics, making them more resilient to adaptive malware behaviors. This gap 
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underscores the importance for VT to incorporate dynamic, machine learning-driven analysis capabilities to remain 

competitive and effective in contemporary malware detection. 

Integration and Real-Time Detection 

Despite its limitations, VT continues to hold value within a layered security architecture. Its ability to compile results 

from multiple engines allows for rapid initial scans, identifying potential threats and offloading the computational load 

from more resource-intensive detection systems. In this way, VT can serve as an effective first line of defense, especially 

in cloud environments where diverse security tools must work in tandem to offer comprehensive protection. Figure 4 

illustrates the three core types of security controls administrative, physical, and technical along with their key 

subcategories. It emphasizes the broad scope of Technical Controls and the foundational role of Administrative policies 

and procedures. However, VT’s dependency on third-party engines introduces vulnerabilities, particularly when these 

engines fail to update their signature databases promptly. Cloud-native solutions, by contrast, are designed to 

incorporate continuous data updates and machine learning-driven insights, allowing them to quickly adapt to novel 

threats. This dynamic adaptability positions cloud-native systems as a more reliable option for real-time detection and 

rapid response in fast-evolving cloud infrastructures. 

 
Figure 4. The Impact of Security Controls with Control Mechanisms. 

Broader Implications and Public Accessibility 

A distinct advantage of VT is its public accessibility, which fosters global collaboration in malware detection by allowing 

the cybersecurity community to contribute to and benefit from its ever-expanding threat intelligence database. This 

collaborative model significantly enhances malware prevention by increasing the scope of known threats. However, the 

openness of the platform also introduces inherent risks, as attackers can exploit VT’s public-facing nature to test 

malware against its detection systems, identifying gaps in its defenses. This dual-edged characteristic of VT’s public 

platform underscores the need for careful integration of its capabilities with more secure, closed-loop systems to 

mitigate these vulnerabilities. 

Existing Limitations of this Study 

While this review provides valuable insights into the strengths and weaknesses of VirusTotal, several limitations must 

be acknowledged. First, the scope of the review was restricted to the analysis of VT’s multi-engine approach and its 

comparison with cloud-native solutions, without delving deeply into specific malware types or particular cloud 

environments. This limits the generalizability of the findings to other contexts, such as smaller cloud infrastructures or 

specific malware families. Additionally, this study primarily focused on the theoretical capabilities of cloud-native 

systems (i.e., qualitative analysis) and VT, without considering quantitative performance under various operational 

conditions. Real-world deployment scenarios, where variables such as system load, network latency, and integration 
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complexities come into play, may reveal different results. Moreover, this review did not explore the integration of VT 

with other security tools or consider potential hybrid approaches that combine multiple detection methodologies. These 

factors should be addressed in future research to provide a more comprehensive understanding of VT’s role in malware 

detection. 

 Future Research and Development 

As the threat landscape in cloud computing continues to evolve, there is a pressing need for more adaptive and 

intelligent malware detection systems. Future research should focus on developing hybrid models that combine VT’s 

strengths in aggregated detection with the dynamic, behavior-driven capabilities of modern systems. Areas for 

improvement include enhancing VT’s calibration across engines to reduce false positives and improve its overall 

reliability in diverse operational settings. The integration of dynamic sandboxing tools could counter evasive malware 

tactics, enabling VT to detect threats that exploit traditional static analysis weaknesses. Furthermore, incorporating 

real-time data updates and artificial intelligence-driven insights would help VT stay ahead of emerging threats in fast-

evolving cloud environments. To enhance VT’s utility within multi-layered security frameworks, seamless integration 

with other cybersecurity tools is essential. Exploring decentralized threat intelligence sharing could offer a solution to 

the security risks associated with VT’s public platform while preserving its collaborative advantages. This approach 

would ensure that global cybersecurity efforts remain robust without compromising security or system integrity. 

CONCLUSION 

This review assesses VirusTotal as a widely used malware detection tool in cloud environments, highlighting its 

advantages and limitations. VT’s use of multiple antivirus engines makes it a valuable first line of defense for scanning 

known threats. However, its reliance on signature-based detection and the inconsistencies between its various 

engines lead to frequent false positives and limited efficacy against complex and evolving malware, such as zero-day 

attacks and polymorphic threats. 

Cloud-native solutions, which leverage ML and behavior-based detection, offer superior performance in detecting 

advanced malware. These systems are capable of real-time threat identification, continuous adaptation to new attack 

techniques, and seamless integration into automated workflows, which are essential features for large-scale, dynamic 

cloud environments. By detecting anomalous behavior, rather than relying solely on static signatures, they provide 

more effective protection against emerging threats while reducing false positives. 

Although VT remains a useful tool for initial analysis, it cannot be the sole solution in addressing today’s sophisticated 

cyber threats. Its static nature, lack of integration with broader security management systems, and vulnerability to 

evasion techniques underscore the necessity for organizations to adopt more robust, adaptive security frameworks. 

Modern, cloud-native detection systems that incorporate machine learning and behavioral analysis are critical to 

staying ahead of evolving threats in an increasingly complex digital landscape. 
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