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The increasing deployment of Internet of Things (IoT) devices in security-critical and 

resource-constrained environments has amplified the demand for efficient and 

privacy-preserving Intrusion Detection Systems (IDSs). Traditional centralized IDSs 

fail to meet the real-time, lightweight, and privacy-aware requirements of modern IoT 

networks. This paper proposes a Federated Learning (FL)-enabled IDS architecture 

specifically designed for resource-constrained IoT devices facing adversarial threats 

such as Denial of Service (DoS), Man-in-theMiddle (MitM), spoofing, and malware 

injection or data poisoning. The proposed system employs decentralized training 

across IoT nodes while preserving local data privacy. Our model combines lightweight 

deep learning classifiers and robust aggregation strategies to ensure accuracy and 

efficiency. Experimental evaluations on benchmark datasets demonstrate high 

detection accuracy, reduced communication overhead, and strong resilience against 

evolving attack vectors, highlighting the viability of our FL-IDS in real-world IoT 

deployments. 
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INTRODUCTION 

The exponential growth of the Internet of Things (IoT) has led to the widespread deployment of smart devices 

across critical sectors such as healthcare, military, transportation, and industrial automation. These devices, often 

deployed in heterogeneous and resourceconstrained environments, are increasingly becoming prime targets for 

cyber threats due to their limited computational power, memory, and lack of robust built-in security mechanisms 

[1]. The growing attack surface, coupled with sophisticated threats like Denial of Service (DoS) [2], Man-in-the-

Middle (MitM) [3], spoofing [4], Data Poisoning [5], and botnet-driven assaults, necessitates the development of 

lightweight yet robust Intrusion Detection Systems (IDSs) tailored for such environments [12].  

Traditional IDS architectures [8] [6] [7] typically rely on centralized data aggregation and processing, which poses 

significant risks in terms of data privacy, latency, and single-point-of-failure vulnerabilities. In highly sensitive or 

distributed IoT deployments—such as battlefield surveillance, smart military gear, or healthcare monitoring 

systems—centralized learning models may not be viable due to network constraints and privacy requirements [13]. 

Furthermore, centralized approaches can become bottlenecks in the face of targeted attacks or network 

partitioning. 

To address these limitations, Federated Learning (FL) has emerged as a promising decentralized paradigm that 

enables collaborative model training across edge devices without requiring raw data to be shared with a central 

server. This not only preserves data privacy but also leverages edge computing capabilities to reduce latency and 

improve system responsiveness [14]. By training local IDS models on-device and aggregating updates via a central 

coordinator, FL can support scalable and privacy-preserving intrusion detection across diverse IoT environments. 
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This paper proposes a Federated Learning-enabled Intrusion Detection System (FL-IDS) designed specifically for 

resource-constrained IoT nodes operating in adversarial environments. The system supports col1 laborative 

anomaly detection across devices while preserving data locality. We utilize a combination of lightweight deep 

learning models and federated aggregation techniques to train effective IDS models in a privacy-preserving 

manner. To evaluate the resilience of our approach, we consider a variety of attack scenarios—such as DoS, MitM, 

spoofing, malware, and data injection attacks—and test the performance on benchmark IoT intrusion datasets. 

DATASET COLLECTION AND PREPROCESSING 

Dataset Overview 

The dataset used in this study comprises 100,000 multidimensional sensor readings collected from a testbed 

consisting of six IoT edge devices deployed in a controlled lab environment. Each device is a Xigbeebased mote, 

specifically configured for edge computing and wireless communication in low-power environments. The dataset 

was collected on April 26, 2025, and captures real-time operational and adversarial scenarios to simulate both 

benign and attack-driven network behaviors. Each data record contains a time stamped snapshot of various 

physical and network-level features. Spoofing attacks were simulated by injecting falsified sensor readings that 

mimic legitimate nodes but exhibit values significantly deviating from expected operational ranges or temporal 

patterns. Man-in-the Middle (MitM) attacks were emulated by introducing subtle alterations to the data packets 

during transmission, leading to inconsistencies in sequential readings or delays in timestamps. Data poisoning 

attacks were crafted by gradually modifying training or operational data to introduce bias or mislead analytical 

models, often maintaining plausibility to avoid detection. Denial of Service (DoS) attacks were modeled by 

overloading specific sensor nodes or communication channels, resulting in dropped packets, repeated identical 

readings, or significant gaps in data collection. Each attack type was carefully labeled based on its origin and nature 

during the simulation phase to enable supervised learning and detection model development. 

Table 1: Sensor Specifications on Each Xigbee Mote 

Sensor Type Measured parameter Specification 

DHT Humidity, Temperature  Accuracy: 22±0.5◦C, ±2% RH 

MQ-135 Air Quality(PPM) Range: 10-1000 PPM 

INA219 Voltage Current ±3.2A, 26V range 

  

Table 2: Xigbee Mote Specifications 

Feature Specification 

Microcontroller Atmega328P (8-bit AVR, 16 MHz) 

Communication Protocol IEEE 802.15.4 (Xigbee) 

Transmission Range Up to 100 meters (line-of-sight) 

Power Source 3.3V Li-ion rechargeable battery 

RAM 2 KB 

Flash Memory 32 KB 

 

 Proposed Methodology 

This section presents a decentralized Federated Learning-based Intrusion Detection System (FL-IDS) tailored for 

resource-constrained IoT environments. The architecture integrates edge intelligence with federated training to 

detect anomalies in real-time, preserving data privacy and reducing communication overhead. 
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Figure 1: Proposed Architecture for Federated Learning-Based Intrusion Detection System 

Workflow of FL-Based IDS 

Step 1: Initialization – The server initializes a global model θ 0 and distributes it to all participating edge nodes. 

Step 2: Local Training – Each edge node trains the model on local data using mini-batch SGD. Step 3: Update 

Sharing – After training, each edge node sends the model update (not the raw data) back to the server. Step 4: 

Aggregation – The server uses FedAvg to generate a new global model. Step 5: Distribution and Inference – The 

updated model is redistributed and used locally for intrusion detection. 

Algorithm: Federated Learning based IDS Training 

1: Input: Number of rounds T, learning rate η, edge nodes E = {E1, E2, ..., EM}  

2: Initialize global model θ 0  

3: for each round t = 1 to T do  

4: for each edge node Ej ∈ E in parallel do  

5: Receive global model θ t from server 

 6: Train model on local dataset Dj : θ t+1 j = θ t j − η∇L(θ t j , Dj ) 

 7: Send updated model θ t+1 j to server  

8: end for 

 9: Server aggregates updates: θ t+1 = X M j=1 nj N θ t+1 j  

10: Server broadcasts θ t+1 to all edge nodes  

11: end for  

12: Output: Final global model θ T 

RESULTS AND EVALUATION 

This section presents a comprehensive evaluation of the proposed Federated Learning-based Intrusion Detection 

System (FL-IDS) in comparison with two baseline models: Centralized Machine Learning (CML) and Random 

Forest (RF). The evaluation is performed across multiple dimensions including classification performance, 

computational efficiency, communication overhead, and scalability. 

Model Performance 
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Table 3 presents the performance metrics for all models evaluated on the same dataset and experimental 

environment: As seen in Table 5, the FL-based IDS achieves the highest performance across all classification 

metrics, demonstrating the ability to learn collaboratively from distributed data without compromising accuracy. In 

this section, we present a detailed evaluation of our proposed models using the sensor dataset collected from six 

Zigbee motes deployed in a simulated environment. Each mote records environmental parameters such as 

Temperature (°C), Humidity (%), Air Quality (PPM), Vibration (Hz), Light Intensity (Lux), and Sound Level (dB). 

These sensors collectively monitor the environment under both normal and adversarial conditions. 

Table 3: Performance Comparison of Models 

Model Accuracy Precision Recall F1-Score 

Federated 

Learning 

96.95% 96.8% 97.5% 97.1% 

Centralized 

Model 

94.06% 94.9% 95.6% 95.2% 

Random Forest 94.47% 91.8% 93.2% 92.5% 

 

 Model Accuracy Comparison 

To evaluate the performance of various machine learning models, we compare the accuracy of Federated Learning, 

Centralized Machine Learning, and Random Forest classifiers. Federated Learning outperforms both Centralized 

and Random Forest approaches, achieving an accuracy of 96.95%, compared to 94.47% for Random Forest and 

94.05% for the Centralized ML model. This highlights the effectiveness of Federated Learning in distributed 

environments like sensor networks, especially in preserving data privacy and handling heterogeneous data 

distributions. 

Table 4: Federated Learning Model Performance Over Epochs 

Epoch Round 1 Loss Round 1 

Accuracy 

Round 2 Loss Round 2 

Accuracy 

1 0.3392 0.9222 0.3342 0.9245 

2 0.2882 0.9363 0.2894 0.9358 

3 0.2827 0.9378 0.2827 0.9377 

4 0.2796 0.9384 0.2796 0.9384 

5 0.2775 0.9389 0.2777 0.9387 

6 0.2767 0.9390 0.2767 0.9389 

7 0.2752 0.9392 0.2760 0.9390 

8 0.2749 0.9394 0.2749 0.9392 

9 0.2742 0.9694 0.2747 0.9692 

10 0.2742 0.9693 0.2744 0.9692 

Final Federated Model Accuracy 0.9693 

 

Table 5: Classification Report of the Federated Learning-based IDS 

Class Precision Recall F1-Score Support 

Data Poisoning 1.00 1.00 1.00 408 

DoS 1.00 0.28 0.44 643 

Man-in-the-

Middle 

1.00 0.56 0.72 371 

Normal 0.94 1.00 0.97 18006 

Spoofing 0.00 0.00 0.00 572 

Accuracy 0.9691 (on 20,000 samples) 
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Macro Avg 0.79 0.57 0.62 20000 

Weighted Avg 0.92 0.94 0.92 20000 

 

Table 6: Classification Report of the Centralized Learning-based IDS 

Class Precision Recall F1-Score Support 

Data Poisoning 1.00 1.00 1.00 408 

DoS 0.99 0.30 0.46 643 

Man-in-the-

Middle 

1.00 0.56 0.72 371 

Normal 0.94 1.00 0.97 18006 

Spoofing 0.00 0.00 0.00 572 

Accuracy 0.94055 (on 20,000 samples) 

Macro Avg 0.79 0.57 0.63 20000 

Weighted Avg 0.92 0.94 0.92 20000 

 

                                    Table 7: Classification Report of the Random Forest-based IDS 

Class Precision Recall F1-Score Support 

Data Poisoning 1.00 1.00 1.00 408 

DoS 1.00 0.38 0.55 643 

Man-in-the-

Middle 

1.00 0.64 0.78 371 

Normal 0.94 1.00 0.97 18006 

Spoofing 0.00 0.00 0.00 572 

Accuracy 0.9447 (on 20,000 samples) 

Macro Avg 0.79 0.60 0.66 20000 

Weighted Avg 0.92 0.94 0.93 20000 

 

                                                 Table 8: Performance Comparison of Different Models 

Model Accuracy 

Federated 

Learning 

0.9695 

Centralized 

ML 

0.9406 

 

  CONCLUSION 

In this study, we have presented a comprehensive approach for enhancing cybersecurity in IoT environments using 

Federated Learning (FL). The proposed methodology effectively addresses the dual challenge of maintaining high 

detection accuracy for cyberattacks while simultaneously preserving the privacy of sensitive data generated at the 

edge. By decentralizing the model training process and enabling edge devices to collaboratively learn a global model 

without sharing raw data, FL significantly reduces the risk of data breaches that are common in centralized 

architectures. 
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